楊 健
一類含奇異項的()-雙調(diào)和方程解的存在性
楊 健
(貴州民族大學(xué) 數(shù)據(jù)科學(xué)與信息工程學(xué)院,貴州 貴陽 550025)
文章立足于廣義 Lebesgue-Sobolev 空間理論,考慮一類含有變指數(shù)的奇異項的()型雙調(diào)和方程解的存在性。由于方程中含有可變指數(shù)和全局積分,研究具有一定難度。通過對奇異項的系數(shù)函數(shù)以及一般項作適當(dāng)假設(shè),利用變分方法驗證了該方程至少一個解的存在性。
雙調(diào)和方程;變分法;奇異項;非平凡解
雙調(diào)和方程是偏微分方程和非線性泛函分析領(lǐng)域的熱點問題之一,它來源于流體力學(xué)和振動力學(xué)。近年來,出現(xiàn)了一些含有雙調(diào)和算子方程的研究結(jié)果[1–4]。關(guān)于()-雙調(diào)和方程解的研究,可參考文獻[5–7]。
本文考慮一類四階變指數(shù)基爾霍夫型橢圓方程:
在文章中,我們作如下假設(shè):
在給出主要結(jié)果之前,先給出以下定義。
下面給出主要結(jié)果。
本文組織結(jié)構(gòu)如下:在第2部分給出一些本文需要的基本概念和基本結(jié)果;第3部分給出主要結(jié)果的證明。
本文在變指數(shù)空間中,考慮了一類含有可變指數(shù)奇異項的四階()-雙調(diào)和方程,立足于Lebesgue-Sobolev 空間理論,結(jié)合變分方法,將方程解的存在性轉(zhuǎn)化為臨界點的存在性,間接證明了原方程解的存在性。
[1] 王友軍, 沈堯天. 一類含臨界指數(shù)雙調(diào)和方程變號解的存在性[J]. 應(yīng)用數(shù)學(xué), 2009, 22(2): 233–238.
[2] 杜剛, 魏靜. 一類雙調(diào)和方程變號解的存在性[J]. 數(shù)學(xué)的實踐與認識, 2011, 41(23): 172–177.
[3] 趙舵舵. 含位勢的非線性雙調(diào)和方程解的存在性[J]. 池州學(xué)院學(xué)報, 2017, 31(3): 31–32.
[4] Chung N T. Multiple solutions for a fourth-order elliptic equation of Kirchhoff type with variable exponent[J]. Asian-European journal of mathematics, 2020, 13(5):2050096.
[5] ZHOU, QM, YH. Eigenvalue of the 𝑝(𝑥)-biharmonic operator with indefinite weight[J]. Z ANGEW MATH PHYS, 2015, 66(3): 1007–1021.
[6] Mbarki L. Existence results for perturbed weighted 𝑝(𝑥)-biharmonic problem with Navier boundary conditions[J]. Complex variables and elliptic equations, 2021, 66(1/4): 569–582.
[7] Khaled K. For a class of 𝑝(𝑥)-biharmonic operators with weights[J]. RACSAM REV R ACAD A, 2019, 113, 1557–1570.
[8] Yao J . Solutions for Neumann boundary value problems involving p(x)-Laplace operators[J]. Nonlinear analysis-theory methods & applications, 2008, 68(5):1271–1283.
[9] Fan X L, Zhao D. On the spaces Lp(x)() and Wm;p(x)()[J]. Journal of mathematical analysis and applications, 2001, 263(2): 424–446.
Existence of Solutions for a Class of p(x)-biharmonic Equations with Singular Term
YANG Jian
(School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang Guizhou 550025, China)
In the paper, based on the generalized Lebesgue-Sobolev space theory, we consider the existence of solutions for a class of p(x)-biharmonic equations with singular term. It is of physical significance to study this kind of equation, and it is difficult for the study due to the variable exponential and global integral in the equation. The existence of at least one solution of the equation is obtained by using the variational method under proper assumptions about the coefficient functions of singular terms and general terms.
biharmonic equation; variational method; singular term; nontrivial solution
2022-04-20
貴州民族大學(xué)基金科研項目(GZMUZK[2021]QN04);貴州省普通高等學(xué)校青年科技人才成長項目(黔教合KY字[2022]180號)
楊?。?986—),男,江西吉安人,講師,碩士,研究方向:計算數(shù)學(xué)。
O175.25
A
2095-9249(2022)03-0001-04
〔責(zé)任編校:吳侃民〕