• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Smart Clothing Fabric Color Matching with Reference to Popular Colors

    2022-09-29 01:46:54ZHANGYani張亞妮ZHUANGJianqiang莊劍強(qiáng)HUANGRongDONGAihua董愛(ài)華YUANHaodong袁浩東
    關(guān)鍵詞:愛(ài)華

    ZHANG Yani(張亞妮), ZHUANG Jianqiang(莊劍強(qiáng)), HUANG Rong(黃 榮), 2*, DONG Aihua (董愛(ài)華), 2, YUAN Haodong (袁浩東), 2

    1 College of Information Science and Technology, Donghua University, Shanghai 201620, China

    2 Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China

    Abstract: Color economy and market fashion trend have an increasing impact on clothing fabric color matching. Therefore, a smart clothing fabric color matching system with reference to popular colors is designed to realize the diversification of clothing color matching, which includes a palette generation module and a clothing fabrics-palette color matching network (CF-PCN). Firstly, palette generation module generates palettes referring popular colors while maintains color styles of clothing fabrics. Secondly, CF-PCN generates color matching images containing color information of palettes. The experimental results show that the color matching system has a higher average pixel ratio of palette colors and contains more palette color information. It demonstrates that the system achieves color matching innovation referring popular colors while retaining color style of clothing brands and provides designers with appropriate color matching solutions.

    Key words: popular color; clothing fabric color matching; support vector machine (SVM); discrete particle swarm optimization algorithm; generative adversarial network

    Introduction

    Clothing and its fabric color matching is of great importance to the competitiveness of brands. In the field of clothing fabric color matching, popular colors are gaining more and more attention from clothing brands and designers[1]. Popular colors are predicted by international trend experts and published on well-known trend websites such as Worth Global Style Network (WGSN), which represents popular trends, reflects the preferred colors of the public to some extent and is important for clothing brand sales[2]. As an element of clothing fashion, popular colors can promote and lead consumer behavior and improve the competitiveness of brands. Whenever a new sales season comes, brand clothing will replace the old products with the new ones in order to attract customers, and the selection of popular colors for clothing fabric color matching is an important tool. A seasonal popular colors often include more than a dozen. How to choose the right brand color among them poses a challenge to designers. Most of the existing researches on popular colors focus on analyzing the color characteristics, but little attention has been paid to the method of selecting color from popular colors for clothing brands.

    In addition, clothing brands have unique clothing styles including color styles as a way to establish consumer loyalty to the brands. Seasonal popular colors can attract customers to buy new clothes in stores, while keeping the color style of clothes unchanged can build customers’ loyalty to the brand and thus enhance the competitiveness of the clothing brand. Therefore, when designers develop a suitable color palette for clothing fabrics with reference to popular colors, they may consider maintaining the original style characteristics of the clothing brand while pursue color innovation to attract consumers.

    Currently, there are three main research directions in the field of color matching of clothing fabrics, in terms of color harmony theory, knowledge engineering theory and intelligent technology, respectively[3 -5]. The first two traditional methods rely on the designer’s professional knowledge and manual operation taking time and effort. Therefore, using intelligent technology for automatic color matching of clothing fabrics by means of intelligent algorithms and artificial intelligence has become a hot topic of research for scholars at home and abroad.

    Changetal.[6]proposed a color transfer algorithm for recoloring images using palettes. Zhangetal.[7]set up convolutional neural networks to directly map palettes in the library for color matching. The above smart color matching models improved the color matching efficiency of clothing fabrics, but their color selection mostly came from expert libraries and databases, and little attention was given to popular colors and clothing fabric styles of certain brand.

    This paper proposes a smart clothing fabric color matching system with reference to popular colors. Firstly, a palette generation module consisting of a support vector machine (SVM)-based clothing fabric style classification model and a popular color selection model is designed. The purpose of the module is to select the color palettes with color innovation from the seasonal popular colors on the basis of maintaining the original color style of clothing brands. Secondly, the clothing fabrics-palette color matching network (CF-PCN) module is designed. The CF-PCN designs a U-Net architecture based main color matching network and a conditional network to color the clothing fabric with popular color palettes. In this paper, intelligent algorithms and artificial intelligence technology in terms of SVM, the discrete particle swarm optimization algorithm, and the conditional generative adversarial network are employed to match the color of clothing fabrics with reference to popular colors, providing an exploration strategy in the field of clothing color matching.

    The rest of the paper are organized as follows. Section 1 discusses the color palette generation module with reference to popular colors. Section 2 illustrates the working theme of CF-PCN and shows the experimental results. Section 3 draws the conclusions.

    1 Color Palette Generation Module with Reference to Popular Colors

    The overall structure diagram of the color palette generation module with reference to popular colors is shown in Fig. 1. The original color style of clothing fabric for one certain brand is discriminated by SVM-based clothing fabric style classification model, and then the popular color selection model based on discrete particle swarm optimization algorithm is designed to select the popular color palettes from the seasonal popular colors.

    Fig. 1 Structure diagram of color palette generation module with reference to popular colors

    1.1 Color style of clothing fabric and popular colors

    The color style of clothing fabric classification method adopts the language image coordinate system proposed by Kobayashi[8]. According to 5-color combinations in clothing fabric, the language image coordinate system classifies color styles of clothing fabric into 16 categories, for example, rough, dynamic, luxurious,etc. Each category has hundreds of combinations. Table 1 shows 7 categories and their representative 5-color combination samples. Full table of 16 categories is shown in Appendix A.

    Table 1 Clothing fabric style table in language image coordinate system (7 categories)

    The popular colors chosen for this paper are 14 seasonal popular colors in the spring/summer of 2021 released by the WGSN trend agency[9], as shown in Fig. 2.

    Fig. 2 Popular color chart the spring/summer of 2021

    1.2 SVM-based clothing fabric style classification model

    The SVM-based clothing fabric style classification model is designed to classify the original color style of clothing fabrics for one certain brand.K-means clustering algorithm and SVM model are engaged to extract 5 main colors of the original clothing fabric and discriminate its style respectively.

    K-means clustering algorithm is engaged to extract 5 main colors from the image of the original clothing fabric for one certain brand. Firstly,Kclass centers (Kis 5 in this paper) are randomly selected in the image, and the Euclidean distance of the color features in terms of RGB from each pixel in the image to the 5 class centers is calculated. Each pixel is assigned to its nearest class center. After that, the mean location of pixels belonging to one class center is calculated and set as the new class center. The procedure repeats iteratively until 5 class centers change no more. Five main colors of the original brand clothing fabric are obtained. The combined features in RGB[10], hue saturation value (HSV[11]) and Lab[12]color space of the above 5 main colors are set as the input to SVM-based clothing fabric style classification model.

    The SVM model is a linear binary classifier with maximum interval in the feature space[13]. In this paper, the SVM binary classification is expanded into 16 classifications by a one-to-one approach, corresponding to 16 color style of clothing fabrics. The SVM models are trained by combining these 16 classifications two by two, for a total of 120 models. Equation (1) shows the training formulation.

    (1)

    1.3 Popular color selection model based on discrete particle swarm optimization algorithm

    Popular color selection model based on discrete particle swarm optimization algorithm is designed to realize the innovation of color matching with seasonal popular colors while retaining the original color style of clothing fabrics for one certain brand. In the discrete particle swarm optimization algorithm[14], the particle encoding, corresponding fitness function and constraint are formulated to select the optimal 5-color popular palette among the seasonal popular colors.

    The discrete particles designed in this paper are binary encoded and 14-dimension matrix particle is set for 14 popular colors in the spring/summer of 2021 in Fig. 2. In the matrix, 1 and 0 means whether the color is selected or not, respectively. One particle represents a 5-color popular color palette. Figure 3 gives an example of the particle encoding [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0], its corresponding color and the 5-color palette.

    Fig. 3 Particle encoding correspondence table

    Fig. 4 Overall structure diagram of CF-PCN: (a) generative network G1; (b) discriminatory network D1

    Fitness function and constraints are defined to pursue color matching innovation and maintain brand color, respectively.

    In order to realize the innovation of color matching, the fitness functionJis designed to maximize the color transformation between the original clothing fabric image of the brand and the generated 5-color palette. The fitness function is defined as follows: sum up the Euclidean distance among the 5 main colors of the original clothing fabric image and the generated 5-color palette normalized in RGB color space. Besides, the difference of hueHchannel normalized in HSV color space is set as the offset term inJ, shown as

    (2)

    where,R′i,G′i, andB′iare the values of R, G and B of theith main color in the original clothing fabric image;Ri,GiandBiare the R, G and B of theith color in the generated 5-color popular palette;H′irepresents theHvalue of theith color in the 5-color popular palette; the hyper parameterα= 0.5.

    The constraint condition is to maintain the color style of clothing fabric, and the formula is shown as

    SSVM(m)=x,

    (3)

    wheremis the 5-color popular palette generated in the algorithm,SSVM(m)represents its style category obtained by the SVM model designed in section 1.2, andxrepresents the color style category of the original clothing fabric for the brand. Only the particles whose 5-color popular palette is consistence to the original clothing fabric for the brand in the style will be alive and join in the iteration in the algorithm.

    2 CF-PCN Module

    The CF-PCN module generates clothing fabric color matching images according to the optimal solution of 5-color popular palette. CF-PCN is a conditional generative adversarial network, which includes a generative network and a discriminatory network. The former one is composed of a U-Net structure-based main color matching network and a conditional network. The latter one is a classier.

    2.1 Generative network of CF-PCN

    The purpose of the generative network is to make the generated clothing fabric color matching image close to the expected clothing fabric color matching image as much as possible. The generative networkG1consists of a main color matching network and a conditional network. Figure 4(a) shows the structure ofG1.

    The upper part in Fig. 4(a) is a conditional network. It is composed of three 3-kernel 2-step convolutional layers and one 3-kernel 1-step convolutional layer. The bottom part in Fig. 4(a) is the main color matching network. It adopts the U-Net architecture with eight 3×3 convolutional layers and three 4×4 convolutional layers[15]. Its skip structure could avoid information loss during down-sampling. It helps to recover spatial information and enhance the generative capacity of the network.

    The conditional network is composed of four convolutional layers, and the palette size input by the conditional network is 256×256×15. The conditional network extracts features with color information by convolving layer by layer and outputs a feature map of 32×32×512, while the features of layers 1, 2 and 4 are copied spatially and integrated into layers 9, 8 and 4 of the main color matching network, respectively. This ensures that the color matching image contains the color information of palettepin a high degree.

    The main color matching network model consists of 8 convolutional layers and 3 deconvolutional layers. It has an input grayscale image of 256×256×1 and outputs a clothing fabric color matching image of 256×256×1 which incorporates the color information of the color palette. The convolutional layers use the convolutional kernel of 3×3, the deconvolutional layers use the kernel of 4×4, and the network adopts rectified linear unit ReLU activation function.

    2.2 Discriminatory network of CF-PCN

    The discriminatory networkD1is a binary classifier, whose function is to distinguish the expected clothing fabric color matching image and the generated one. Figure 4(b) shows the structure ofD1.

    2.3 CF-PCN loss functions

    The generative networkG1and discriminatory networkD1models are trained against each other. Loss functions are defined to improve the quality of generated clothing fabric color matching image. Equations (4) and (5) are loss functions ofD1andG1, respectively.

    (4)

    (5)

    3 Experimental Results and Analysis

    This paper proposes a smart clothing color matching method with reference to popular colors and demonstrates the effectiveness of this method through experiments.

    3.1 Experimental results of SVM-based clothing fabric style classification model

    The proposed SVM model is implemented in Python language. SVC class in sklearn.svm library is chosen to train the model while the radial basis function (RBF) is selected as the kernel function. A voting strategy is designed for classification. In this paper, 16 color styles of clothing fabrics are labeled with labels 0 to 15, and each label has 300 samples and a total of 4 800 5-color palettes for training.

    The trained SVM model is applied to classify the color styles of clothing fabrics for certain brands. Figure 5 shows 4 examples of the classification results. In Fig. 5, from top to bottom, there are clothing fabric images, 5 main colors obtained by theK-means clustering algorithm, fabric color styles classified by the SVM model, and the one representative 5-color combination sample of the corresponding category in Table 1. The 5 main colors of each fabric image is quite similar to the representative sample in Table 1 previously mentioned, which verifies the classification capacity of the proposed SVM model.

    Fig. 5 Examples of SVM-based clothing fabric style classification model result: (a) rough; (b) natural; (c) dynamic; (d) classical

    Fig. 6 Example 1 of the popular color selection model based on discrete particle swarm optimization algorithm: (a) clothing fabric image; (b) palette; (c) fitness curve; (d) popular color chart

    Fig. 7 Example 2 of the popular color selection model based on discrete particle swarm optimization algorithm: (a) clothing fabric image; (b) palette; (c) fitness curve; (d) popular color chart

    3.2 Experimental results of popular color selection model

    Matlab language is applied to implement the popular color selection model. The initialization parameters of popular color particle population are set as follows: the population size is 30, the maximum number of iterations is 50, weight coefficientsc1andc2are 2, and the initialization speed of particlesviis [-4, 4].

    Figures 6 and 7 show two optimal solutions of 5-color popular palette and the corresponding fitness curves. Figures 6(a) and 7(a) are images of clothing fabrics for two different certain brands. The upper part of Figs. 6(b) and 7(b) are 5 main colors of the original clothing fabric obtained byK-means clustering algorithm, and the lower part of Figs. 6(b) and 7(b) are the optimal solutions of the 5-color palette obtained by the popular color selection model. The color styles classified by the SVM model are shown in the lower part of Figs. 6(b) and 7(b) and the color styles are rough and dynamic, respectively. Figures 6(c) and 7(c) are the algorithm fitness curves, and Figs. 6(d) and 7(d) are the popular color charts in the spring/summer of 2021. The optimal solutions are obtained at the 16th and 15th iteration in the two examples, whose fitness function valuesJare 4.16 and 3.96, respectively.

    It is obvious that the lower part of Figs. 6(b) and 7(b) are selected from Figs. 6(d) and 7(d). The popular color selection model designed in this paper can obtain an innovative popular color matching image on the basis of maintaining the original color style of clothing fabrics.

    3.3 Experimental results of CF-PCN model

    CF-PCN model is implemented in Python language. A Pytorch 3.6.5 deep learning framework is built on a Ubuntu 16.04 system with a NVIDIA-RTX3090 GPU and a 32 G of video memory. The data set is bird256 and the size of training set is 10 600 while that of test set is 1 100. The training batch size is 16 and the Adam optimizer is used to optimize the loss function by setting the learning rate to 0.000 2. Totally 1 000 iterations are trained.

    Six sets of color matching results using the proposed CF-PCN is shown in Fig. 8. The model in Ref.[6] is engaged as a comparison here.

    Fig. 8 Comparison of color matching results

    In Fig. 8, the first and the second columns are the input clothing fabric grayscale images and the 5-color popular palette while the third and the fourth columns are color matching results of Ref.[6] and proposed CF-PCN, respectively. In order to evaluate the color matching effect of CF-PCN, evaluation index of palette color proportion is designed and user research in the form of questionnaires is carried out. The 50 sets of color matching samples using the CF-PCN model and the model in Ref.[6] are studied for the evaluation.

    Fig. 9 Results of smart clothing fabric color matching system with reference to popular colors: (a) rough; (b) natural; (c) dynamic; (d) romantic; (e) lovely; (f) luxurious

    The evaluation index of palette color proportionpcis defined in Eq. (6). It counts the pixel ratio of colors in the 5-color popular palette among the clothing fabric color matching image. The higher palette color proportion is, the better the color matching image is

    (6)

    wherepirepresents the number of pixels of theith color in the 5-color popular palette, andpsumrepresents the total number of pixels in the clothing fabric color matching image.

    A questionnaire was designed to compare the given color matching results of the CF-PCN model and the model in Ref.[6] among 50 users. The users were asked to select the better color matching effect in each set among the 50 sets. The rates of votes obtained by the two models were counted.

    Table 2 Evaluation comparison of color matching effects

    Table S1 Clothing fabric style table in language image coordinate system (16 categories)

    The proposed smart fabric color matching system is applied to generate color palette with reference to popular colors and color the clothing fabrics. And the analysis of the results is presented.

    Figure 9 shows 6 groups of color matching results. The first column is the grayscale image of clothing fabrics, the second column is the 5-color popular palette, the third column is the clothing fabrics color matching image generated by CF-PCN model using the 5-color popular palette, and the fourth column is the original clothing fabric image of the brand. The color style categories classified by SVM model of the generated color matching image and the original one are given in the bottom of columns 3 and 4. It is clear that the styles of two images are of consistence. The CF-PCN model is capable of obtaining the color matching image of clothing fabrics with reference to popular color palette. Compared with the original images, the color matching images of clothing fabrics have enough visual changes. Therefore, on the basis of maintaining the original color style of clothing fabrics for one certain brand, the goal of pursuing color matching innovation is realized.

    4 Conclusions

    This paper designs a smart clothing fabric color matching system with reference to popular colors. The method includes two parts: a palette generation module referring to popular colors and CF-PCN. In the part of the palette generation, an SVM-based clothing fabric style classification model is designed to judge the color style of the original clothing fabric image for one certain brand. A popular color selection model based on a discrete particle swarm optimization algorithm is designed to select the appropriate 5-color popular palette by iterations. The CF-PCN employs a U-Net structure-based conditional generative adversarial network to generate clothing fabric color matching images according to the optimal 5-color popular palettes. The average pixel ratio of the color palette in the proposed clothing color matching image reaches 90.2%, which is 29.6% higher than that of the model in Ref.[6]. Moreover, the vote rate in the user research is much higher than that of the latter. The results of the smart clothing fabric color matching system with reference to popular colors provide color matching images for maintaining the original brand style and pursuing color innovation. The proposed method thus explores feasible strategy for designers.

    Appendix A

    猜你喜歡
    愛(ài)華
    Absorption spectra and enhanced Kerr nonlinearity in a four-level system
    Color-Changing Fabric System with Temperature Control
    野花
    我在外婆家
    第一次拔牙
    神奇的光
    寂寞的大地歌手
    在廈金胞張愛(ài)華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    隨機(jī)模擬法求不規(guī)則圖形面積
    午夜精品久久久久久毛片777| 女同久久另类99精品国产91| 亚洲伊人久久精品综合| 欧美激情 高清一区二区三区| 国产精品久久久久久精品电影小说| 成人18禁在线播放| 亚洲精华国产精华精| 国产精品久久久av美女十八| 曰老女人黄片| 成人18禁在线播放| 波多野结衣一区麻豆| 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜制服| 亚洲美女黄片视频| 亚洲 欧美一区二区三区| 久久精品亚洲av国产电影网| tube8黄色片| 国产在视频线精品| 国产精品亚洲av一区麻豆| 岛国毛片在线播放| 男人舔女人的私密视频| 亚洲精品国产色婷婷电影| 满18在线观看网站| 国产xxxxx性猛交| 又紧又爽又黄一区二区| www.精华液| 一边摸一边抽搐一进一小说 | 国产精品一区二区精品视频观看| 亚洲欧洲日产国产| 久久久久久久久久久久大奶| 91精品三级在线观看| 美女国产高潮福利片在线看| 国产一区二区在线观看av| 日韩视频一区二区在线观看| 久久久久久人人人人人| 国产人伦9x9x在线观看| 久久中文字幕人妻熟女| 国产亚洲一区二区精品| 国产精品免费大片| 免费观看人在逋| 99国产极品粉嫩在线观看| 国产日韩一区二区三区精品不卡| 狠狠精品人妻久久久久久综合| 日韩中文字幕欧美一区二区| 久久久久久人人人人人| 欧美精品高潮呻吟av久久| 老汉色∧v一级毛片| 亚洲国产欧美日韩在线播放| 日本五十路高清| 亚洲伊人色综图| 老司机靠b影院| 亚洲精品国产区一区二| 国产欧美日韩一区二区三区在线| 亚洲 国产 在线| 嫩草影视91久久| 国产精品影院久久| 国产精品久久久av美女十八| 亚洲成av片中文字幕在线观看| 欧美黑人欧美精品刺激| 精品国产一区二区三区久久久樱花| 午夜福利免费观看在线| 亚洲黑人精品在线| 香蕉国产在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 无人区码免费观看不卡 | 人人妻人人澡人人爽人人夜夜| 亚洲一卡2卡3卡4卡5卡精品中文| 99精品在免费线老司机午夜| 亚洲精品中文字幕在线视频| 成年人免费黄色播放视频| 青草久久国产| 日日爽夜夜爽网站| 欧美日韩亚洲高清精品| 国产欧美日韩精品亚洲av| a在线观看视频网站| 法律面前人人平等表现在哪些方面| 免费日韩欧美在线观看| 一区二区日韩欧美中文字幕| 国产黄色免费在线视频| 色视频在线一区二区三区| 丰满饥渴人妻一区二区三| 亚洲第一青青草原| 最黄视频免费看| av国产精品久久久久影院| 国产一区二区三区视频了| 亚洲久久久国产精品| 大香蕉久久成人网| 黄片播放在线免费| 国产精品亚洲一级av第二区| 久久av网站| 黄片大片在线免费观看| 亚洲精品久久午夜乱码| 成人国产一区最新在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲avbb在线观看| 建设人人有责人人尽责人人享有的| 亚洲视频免费观看视频| 欧美日韩福利视频一区二区| 99国产精品99久久久久| 国产男靠女视频免费网站| 午夜福利免费观看在线| 欧美成人免费av一区二区三区 | 亚洲欧美激情在线| 日韩欧美三级三区| 在线观看免费午夜福利视频| 久久精品亚洲精品国产色婷小说| 一区福利在线观看| 久久精品亚洲av国产电影网| 一区二区三区国产精品乱码| 少妇精品久久久久久久| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 欧美日韩成人在线一区二区| 青青草视频在线视频观看| 手机成人av网站| 美女视频免费永久观看网站| 精品亚洲成a人片在线观看| 亚洲精品久久成人aⅴ小说| www.999成人在线观看| 亚洲成av片中文字幕在线观看| 日韩成人在线观看一区二区三区| 在线亚洲精品国产二区图片欧美| 久久精品aⅴ一区二区三区四区| 欧美黑人欧美精品刺激| 欧美精品人与动牲交sv欧美| 国产区一区二久久| 精品国内亚洲2022精品成人 | 免费av中文字幕在线| 亚洲色图综合在线观看| 欧美精品亚洲一区二区| 日本五十路高清| 久久精品国产亚洲av香蕉五月 | 亚洲中文av在线| 18禁美女被吸乳视频| 99riav亚洲国产免费| 黄色片一级片一级黄色片| 老司机午夜福利在线观看视频 | 老熟妇乱子伦视频在线观看| 窝窝影院91人妻| 亚洲av日韩精品久久久久久密| 黑丝袜美女国产一区| 欧美在线一区亚洲| 成人手机av| 两人在一起打扑克的视频| 多毛熟女@视频| 亚洲中文日韩欧美视频| 国产精品一区二区精品视频观看| 999久久久国产精品视频| 午夜福利一区二区在线看| 午夜福利在线免费观看网站| 男女免费视频国产| 国产麻豆69| 精品一区二区三区av网在线观看 | 丝袜美足系列| 侵犯人妻中文字幕一二三四区| 精品亚洲成国产av| 精品国产乱码久久久久久男人| 中文字幕人妻熟女乱码| 另类亚洲欧美激情| 午夜福利在线免费观看网站| 亚洲色图 男人天堂 中文字幕| 一本色道久久久久久精品综合| 一区二区三区国产精品乱码| 国产亚洲一区二区精品| 国产亚洲精品第一综合不卡| 午夜福利在线免费观看网站| 操出白浆在线播放| 9热在线视频观看99| 欧美黄色片欧美黄色片| 一本—道久久a久久精品蜜桃钙片| a级毛片黄视频| 宅男免费午夜| 成人国语在线视频| 国产精品久久久久久精品电影小说| 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av香蕉五月 | 久久人人爽av亚洲精品天堂| 乱人伦中国视频| 黄色视频,在线免费观看| 亚洲avbb在线观看| 韩国精品一区二区三区| 久久精品成人免费网站| 在线观看舔阴道视频| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频| www.999成人在线观看| 99热网站在线观看| 久久久久网色| 成人免费观看视频高清| 高清av免费在线| 国产视频一区二区在线看| 欧美激情 高清一区二区三区| 99久久国产精品久久久| 亚洲专区国产一区二区| 日韩欧美三级三区| 老司机福利观看| 日本黄色视频三级网站网址 | 热99re8久久精品国产| 欧美 亚洲 国产 日韩一| 80岁老熟妇乱子伦牲交| 极品人妻少妇av视频| 岛国在线观看网站| 国产三级黄色录像| 男女高潮啪啪啪动态图| 精品亚洲成国产av| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 国产精品二区激情视频| 精品欧美一区二区三区在线| 久久久久久久大尺度免费视频| 男女之事视频高清在线观看| 搡老乐熟女国产| 老熟女久久久| 大香蕉久久成人网| 亚洲一区中文字幕在线| 91成年电影在线观看| 色综合欧美亚洲国产小说| 亚洲成人免费电影在线观看| 国产免费福利视频在线观看| 国产1区2区3区精品| 一区福利在线观看| 日韩有码中文字幕| 在线 av 中文字幕| 天天添夜夜摸| 国产片内射在线| 成人av一区二区三区在线看| 天天操日日干夜夜撸| 啦啦啦在线免费观看视频4| 日韩成人在线观看一区二区三区| 在线观看免费日韩欧美大片| 激情在线观看视频在线高清 | 香蕉国产在线看| 无限看片的www在线观看| 精品乱码久久久久久99久播| 欧美另类亚洲清纯唯美| 国产日韩欧美亚洲二区| 国产av又大| 亚洲va日本ⅴa欧美va伊人久久| 黄片小视频在线播放| 免费在线观看黄色视频的| a级毛片黄视频| 美女高潮到喷水免费观看| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| 色婷婷久久久亚洲欧美| 99精国产麻豆久久婷婷| 国精品久久久久久国模美| 国产真人三级小视频在线观看| 久久久国产成人免费| 欧美国产精品va在线观看不卡| 深夜精品福利| 欧美中文综合在线视频| 国产在线观看jvid| 黄色片一级片一级黄色片| 一二三四在线观看免费中文在| 国产一区二区激情短视频| 午夜久久久在线观看| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 亚洲一区中文字幕在线| 黄色视频,在线免费观看| 亚洲情色 制服丝袜| 少妇精品久久久久久久| 亚洲伊人久久精品综合| 另类精品久久| 久久精品91无色码中文字幕| 老司机亚洲免费影院| 国产在线免费精品| 我的亚洲天堂| 热99久久久久精品小说推荐| 国产男女内射视频| 欧美+亚洲+日韩+国产| 中国美女看黄片| 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 国产男女超爽视频在线观看| 日本一区二区免费在线视频| 亚洲精品国产色婷婷电影| 变态另类成人亚洲欧美熟女 | 午夜福利在线免费观看网站| 日本撒尿小便嘘嘘汇集6| 亚洲色图av天堂| 热99久久久久精品小说推荐| 欧美日韩成人在线一区二区| 色视频在线一区二区三区| 国产高清视频在线播放一区| 国产亚洲欧美在线一区二区| 精品一区二区三区四区五区乱码| 天天躁日日躁夜夜躁夜夜| 少妇精品久久久久久久| 母亲3免费完整高清在线观看| 搡老乐熟女国产| 亚洲国产成人一精品久久久| 啦啦啦视频在线资源免费观看| 日韩视频在线欧美| 性少妇av在线| 午夜精品国产一区二区电影| 中文字幕人妻丝袜制服| 操出白浆在线播放| 美女主播在线视频| 国产精品99久久99久久久不卡| 水蜜桃什么品种好| 999久久久精品免费观看国产| 亚洲美女黄片视频| 男女床上黄色一级片免费看| 国产精品av久久久久免费| 欧美亚洲 丝袜 人妻 在线| 国产精品美女特级片免费视频播放器 | 黄色 视频免费看| 午夜福利乱码中文字幕| 99精国产麻豆久久婷婷| 99精品久久久久人妻精品| 伦理电影免费视频| 欧美精品啪啪一区二区三区| 日韩欧美国产一区二区入口| 啦啦啦 在线观看视频| 精品国产乱码久久久久久小说| 我要看黄色一级片免费的| 午夜福利,免费看| 国产精品亚洲av一区麻豆| 午夜视频精品福利| 纵有疾风起免费观看全集完整版| 久久久久久久久免费视频了| 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 成人精品一区二区免费| 欧美精品高潮呻吟av久久| 欧美乱妇无乱码| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| 日本wwww免费看| 国产精品一区二区精品视频观看| 在线看a的网站| 欧美日韩国产mv在线观看视频| 美女高潮到喷水免费观看| 精品少妇久久久久久888优播| 亚洲成人国产一区在线观看| 久久人妻av系列| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 久久精品熟女亚洲av麻豆精品| 狂野欧美激情性xxxx| 国产亚洲精品第一综合不卡| 性少妇av在线| 久久久国产欧美日韩av| 亚洲免费av在线视频| www.自偷自拍.com| 国产麻豆69| 欧美+亚洲+日韩+国产| 精品熟女少妇八av免费久了| 18禁观看日本| 国产极品粉嫩免费观看在线| 日韩欧美国产一区二区入口| 无人区码免费观看不卡 | 亚洲成国产人片在线观看| 亚洲精品在线观看二区| 国产成人免费观看mmmm| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码| 精品人妻1区二区| 日本wwww免费看| 日韩制服丝袜自拍偷拍| 国产一区二区在线观看av| 18禁观看日本| 色婷婷av一区二区三区视频| 日韩成人在线观看一区二区三区| 欧美成人免费av一区二区三区 | 美女高潮喷水抽搐中文字幕| 精品少妇久久久久久888优播| 国产精品二区激情视频| 窝窝影院91人妻| 亚洲精品国产精品久久久不卡| 久久99热这里只频精品6学生| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 色94色欧美一区二区| 亚洲成人手机| 国产av精品麻豆| 香蕉久久夜色| 国产福利在线免费观看视频| 黄色成人免费大全| 国产精品偷伦视频观看了| 日本黄色视频三级网站网址 | 亚洲欧美日韩高清在线视频 | 一区二区三区乱码不卡18| 丝袜美腿诱惑在线| www日本在线高清视频| 亚洲av第一区精品v没综合| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品中文字幕一二三四区 | 国产成人影院久久av| 亚洲专区国产一区二区| 中文欧美无线码| 久久久精品区二区三区| av福利片在线| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 国产在线观看jvid| 黑人猛操日本美女一级片| 午夜福利欧美成人| 在线播放国产精品三级| 国产精品二区激情视频| 一区二区三区国产精品乱码| 91av网站免费观看| 精品福利观看| 成人手机av| 欧美 日韩 精品 国产| 美女主播在线视频| 99国产极品粉嫩在线观看| 成人国产av品久久久| aaaaa片日本免费| 91成人精品电影| 一本色道久久久久久精品综合| 国产精品久久久av美女十八| 免费av中文字幕在线| 他把我摸到了高潮在线观看 | 亚洲av电影在线进入| 香蕉久久夜色| 啪啪无遮挡十八禁网站| 丰满饥渴人妻一区二区三| 麻豆国产av国片精品| 久久人人97超碰香蕉20202| 日本撒尿小便嘘嘘汇集6| 波多野结衣av一区二区av| 大片电影免费在线观看免费| 久久久精品免费免费高清| 成人18禁高潮啪啪吃奶动态图| 国产不卡一卡二| 国产成人一区二区三区免费视频网站| 国产一区有黄有色的免费视频| 国产成+人综合+亚洲专区| 久久中文看片网| 午夜久久久在线观看| 丝袜喷水一区| 99热国产这里只有精品6| 国产亚洲av高清不卡| 99国产精品一区二区蜜桃av | 正在播放国产对白刺激| 天天影视国产精品| 男女高潮啪啪啪动态图| 日本黄色日本黄色录像| 美国免费a级毛片| 亚洲精品中文字幕一二三四区 | av福利片在线| 无遮挡黄片免费观看| av网站在线播放免费| 80岁老熟妇乱子伦牲交| 一级毛片女人18水好多| 亚洲九九香蕉| 一二三四在线观看免费中文在| 久久九九热精品免费| 亚洲 国产 在线| 一本色道久久久久久精品综合| 精品一品国产午夜福利视频| 丰满迷人的少妇在线观看| 大香蕉久久网| av不卡在线播放| 电影成人av| 激情视频va一区二区三区| 操出白浆在线播放| 国产成人系列免费观看| 亚洲avbb在线观看| 十八禁网站免费在线| 午夜91福利影院| 国产精品久久久久久人妻精品电影 | 久久精品人人爽人人爽视色| 亚洲成人手机| 亚洲黑人精品在线| 国产成人欧美| 18禁裸乳无遮挡动漫免费视频| 精品一品国产午夜福利视频| 高潮久久久久久久久久久不卡| 一个人免费在线观看的高清视频| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人| 亚洲专区字幕在线| a级片在线免费高清观看视频| 国产午夜精品久久久久久| 久久久精品94久久精品| 欧美av亚洲av综合av国产av| 性少妇av在线| 亚洲国产欧美日韩在线播放| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 午夜福利在线免费观看网站| 成人精品一区二区免费| 国产伦理片在线播放av一区| √禁漫天堂资源中文www| 男女无遮挡免费网站观看| 久久国产精品人妻蜜桃| 日韩视频一区二区在线观看| 一二三四在线观看免费中文在| 久久久国产成人免费| 免费黄频网站在线观看国产| 欧美大码av| 国产在线免费精品| 色老头精品视频在线观看| 两性夫妻黄色片| videos熟女内射| av一本久久久久| 亚洲精品美女久久av网站| 亚洲自偷自拍图片 自拍| 亚洲一区二区三区欧美精品| 嫩草影视91久久| 美女扒开内裤让男人捅视频| 日韩三级视频一区二区三区| 色婷婷久久久亚洲欧美| 男人操女人黄网站| 丝袜喷水一区| 久久人人爽av亚洲精品天堂| 精品国产乱码久久久久久男人| 麻豆成人av在线观看| 国产国语露脸激情在线看| 国产又爽黄色视频| 精品少妇久久久久久888优播| 少妇裸体淫交视频免费看高清 | aaaaa片日本免费| 人妻 亚洲 视频| 黄色毛片三级朝国网站| 99国产精品一区二区蜜桃av | 精品人妻在线不人妻| 男女高潮啪啪啪动态图| 欧美激情 高清一区二区三区| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| av国产精品久久久久影院| 国产在线免费精品| 精品国产国语对白av| 欧美日韩亚洲综合一区二区三区_| netflix在线观看网站| 成在线人永久免费视频| 亚洲自偷自拍图片 自拍| 狠狠狠狠99中文字幕| 在线 av 中文字幕| 午夜福利在线观看吧| 日韩一区二区三区影片| 欧美日韩视频精品一区| 三上悠亚av全集在线观看| 亚洲国产av影院在线观看| 在线观看人妻少妇| 午夜激情久久久久久久| 久久亚洲精品不卡| 国产高清videossex| 亚洲成人国产一区在线观看| 久久青草综合色| 90打野战视频偷拍视频| 免费在线观看视频国产中文字幕亚洲| 人成视频在线观看免费观看| 亚洲中文字幕日韩| 操出白浆在线播放| 色在线成人网| 亚洲国产中文字幕在线视频| 精品乱码久久久久久99久播| 亚洲色图综合在线观看| 亚洲性夜色夜夜综合| 又黄又粗又硬又大视频| cao死你这个sao货| 国产亚洲av高清不卡| 免费观看a级毛片全部| 国产深夜福利视频在线观看| 成年女人毛片免费观看观看9 | 麻豆成人av在线观看| 一边摸一边抽搐一进一小说 | 欧美亚洲日本最大视频资源| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇粗大呻吟视频| 日本撒尿小便嘘嘘汇集6| 国产真人三级小视频在线观看| www.熟女人妻精品国产| 亚洲第一青青草原| 亚洲精品av麻豆狂野| 人人妻人人澡人人爽人人夜夜| 又黄又粗又硬又大视频| 老鸭窝网址在线观看| 亚洲三区欧美一区| 国产极品粉嫩免费观看在线| 一个人免费看片子| 成人18禁在线播放| 一二三四社区在线视频社区8| 一区二区三区国产精品乱码| 51午夜福利影视在线观看| 精品福利观看| 亚洲五月婷婷丁香| 久久人人97超碰香蕉20202| 狂野欧美激情性xxxx| 国产精品久久久人人做人人爽| 两个人看的免费小视频| videosex国产| a级毛片黄视频| 男人操女人黄网站| 80岁老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 99香蕉大伊视频| 日韩欧美一区二区三区在线观看 | 国产日韩欧美视频二区| 国产精品亚洲av一区麻豆| 国产精品久久久人人做人人爽| 久久久久久久久免费视频了| 亚洲av日韩精品久久久久久密| 欧美人与性动交α欧美软件| av超薄肉色丝袜交足视频| 每晚都被弄得嗷嗷叫到高潮| 99热网站在线观看| 久久精品aⅴ一区二区三区四区| 黄色a级毛片大全视频| 国产精品.久久久| 欧美精品亚洲一区二区| 日韩大片免费观看网站| 美女高潮到喷水免费观看|