• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Delay Identification in Dynamical Systems Based on Interpretable Machine Learning

    2022-09-29 01:47:04XIAMengWUYuzhe吳毓哲WANGZhijie王直杰

    XIA Meng(夏 夢), WU Yuzhe(吳毓哲), WANG Zhijie(王直杰)

    College of Information Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: The existence of time delay in complex industrial processes or dynamical systems is a common phenomenon and is a difficult problem to deal with in industrial control systems, as well as in the textile field. Accurate identification of the time delay can greatly improve the efficiency of the design of industrial process control systems. The time delay identification methods based on mathematical modeling require prior knowledge of the structural information of the model, especially for nonlinear systems. The neural network-based identification method can predict the time delay of the system, but cannot accurately obtain the specific parameters of the time delay. Benefit from the interpretability of machine learning, a novel method for delay identification based on an interpretable regression decision tree is proposed. Utilizing the self-explanatory analysis of the decision tree model, the parameters with the highest feature importance are obtained to identify the time delay of the system. Excellent results are gained by the simulation data of linear and nonlinear control systems, and the time delay of the systems can be accurately identified.

    Key words: time delay; dynamical system; interpretability; regression tree; feature importance

    Introduction

    When modeling the process of many systems in the industry, time delay is frequently encountered. Time delay in industrial processes comes from many sources. There are two main factors that contribute to the occurrence of time delay in the production process. One is the characteristics of medium transfer and energy exchange in the system. The other is related with automatic control systems, such as measurement sensing equipment, information transmission equipment, control equipment, and actuators. When time delay exists, it becomes more difficult to govern the corresponding system, and the stability of the system suffers significantly, resulting in a decline in the quality of productions. Therefore, there are many models aiming to figure out the exact time delay of the control systems[1-2]. The accurate identification of the time delay is also strongly tied to other performances besides stability of many controllers, such as the Smith controller[3]. It is imperative to develop an accurate model for the delay system to precisely identify the value of the delay. There are now two kinds of the time delay modeling researches: mathematical identification[4-5]and machine learning model[6-7].

    Initially, the traditional time delay identification methods were studied based on mathematical statistics. Yang and Gao[8]used the expectation-maximization (EM) algorithm to identify the time delay of a linear system. SASSIetal.[9]considered a method which consisted in minimizing a quadratic criterion using either the gradient method or the Levenberg-Marquardt method in dynamical time delay systems. Meanwhile, to improve the performance of the algorithm, they proposed quasi-Newton approach based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Lietal.[10]put forward a time delay identification algorithm for perturbed closed-loop dynamic processes based on maximum correlation analysis and verified the effectiveness of the algorithm in the actual industrial production process. However, the above methods need to know the prior knowledge of the system, and need to involve different mathematical and statistical algorithms to identify the time delay for different systems. With the rapid development of computer technology, machine learning algorithms have begun to shine in time delay identification. Karouietal.[11]conducted a new algebraic technique and constructed an online delay identification approach based on a distributional algebraic technique and a convolution way that could identify different time delays of different systems. However, most machine learning models are black-box models, which cannot accurately obtain some key information of the system (such as delay). Li and Yan[12]built a multidimensional Taylor network to simulate nonlinear time delay systems, and introduced a particle swarm optimization algorithm to adjust the weights of the Taylor network. Later, the authors replaced the particle swarm optimization algorithm with a modified conjugate gradient method to train multidimensional Taylor networks. Dingetal.[13]constructed a grey-box model combining discrete bayesian optimization (DBO) and controlled recurrent neural network (CRNN), namely the CRNN-DBO model, to model and identify time delay systems. This method provided a combination of back-propagation algorithm and DBO method to find the minimum loss value of the model, as well as the correct time delay. Some researchers have attempted to use neural networks for system modeling and time delay identification, but their applications are limited to single-input or linear systems.

    The time delay identification algorithm mentioned above can identify the time delay of the dynamic system well in practice. The models based on the mathematical statistics method can be understood, but these methods require prior knowledge of the structural information and nonlinear parts of the system, which is often inaccessible. Machine learning-based modeling techniques are not concerned with the structure of the model, but rather with the mapping relationship between input and output, unable to obtain the precise value of the time delay, which is detrimental when constructing the control strategy. The time delay identification method based on the neural network belongs to the black-box model after all, which lacks interpretability. At the same time, as machine learning technology improves, more and more researches care about how rationally the model predicts things. Tree-based interpretability models[14-15]are developing rapidly. The application of the tree model in financial[16], medical[17]and other issues fully demonstrates the outstanding interpretability of the tree model.

    To address the problems of the time delay identification, a method inspired by the development of the interpretable machine learning is established. And this paper establishes an interpretable machine learning model based on regression tree to identify the time delay. Experiments are conducted for linear and nonlinear control systems, and the experimental results verify the accuracy of the interpretable model in time delay identification, showing that the interpretable algorithm can be developed as a new method to identify the time delay of the system. Meanwhile, the experimental results also show that the interpretable model can be applied to both linear and nonlinear systems, and can deal with short and long delay.

    1 Methodology

    1.1 Discrete system

    Three different discrete systems are considered in this paper. They are linear first-order (LFO) time delay systems, linear second-order (LSO) time delay systems, and nonlinear time delay systems.

    1.1.1LFOtimedelaysystem

    Consider the following system:

    y(k)=Ay(k-1)+x(k-i),

    (1)

    wherei∈{1, 2,…,N} represents the time delay,xis the input of the time delay system,yis the system output, andAis the parameter of the system.

    Meanwhile, the system with noise is

    y(k)=Ay(k-1)+x(k-i)+ε(k),

    (2)

    whereε(k) is the white noise with zero mean and varianceδ.

    1.1.2LSOtimedelaysystem

    The system is

    y(k)=Ay(k-1)+By(k-2)+x(k-i),

    (3)

    whereAandBare the parameters of the system. The system with noise is

    y(k)=Ay(k-1)+By(k-2)+x(k-i)+ε(k).

    (4)

    1.1.3Nonlineartimedelaysystem

    The expression of nonlinear time delay system is

    y(k)=Ays(k-1)+x(k-i),

    (5)

    wheresstands for power. Add noise to the system

    y(k)=Ays(k-1)+x(k-i)+ε(k).

    (6)

    1.2 Time delay identification with explainable algorithm based on regression decision tree

    In this paper, the regression decision tree model is employed as the discrete time delay recognition model. Through the interpretability analysis of the tree model, it is convenient for readers to understand the interpretability principle of time delay identification.

    1.2.1Structureofalgorithmfortimedelayidentification

    The structure of the algorithm for time delay identification is shown in Fig. 1. The whole algorithm includes datasets construction, regression analysis and interpretability analysis. Matlab is used to simulate each system and generate the data needed for training. In the process of regression analysis, the simulation data are preprocessed, and the regression decision tree model is used for training. With coefficient of determination as the evaluation index of regression model performance, the optimal decision tree model is selected as the final regression model. Then, interpretability analysis is carried out to determine the time delay of the system. Specifically, based on the interpretability of the decision tree model, it is further to summarize and sort out the interpretability of the decision path of the decision tree, and finally identify the time delay of the system from the perspective of interpretability.

    Fig. 1 Structure of algorithm for time delay identification

    1.2.2Regressiondecisiontree

    Regression decision tree is a basic regression method. The decision tree consists of nodes and directed edges. There are two types of nodes: internal nodes and leaf nodes. An internal node represents a feature or attribute, and a leaf represents a category or value.

    Given a datasetD={(x1,y1),(x2,y2),…,(xn,yn)},xiis at-dimensional vector and hastfeatures. The goal of the regression problem is to create a functionf(x) to fit the elements in datasetD, and then get the smallest mean square error (MSE) shown as

    (7)

    Figure 2 presents the algorithm of the regression decision tree. In Fig. 1, it is assumed that a regression tree withMleaves needs to be constructed, which means that the feature spacexneeds to be divided intoMunitsR1,R2, …,Rm, and there is a predicted value for each feature space. Then the minimum MSE of the regression tree was calculated as

    Fig. 2 Regression decision tree algorithm

    (8)

    wherecmis on behalf of the predicted values of themth leaf.

    To get the minimum MSE, just need to minimize the MSE for each leaf, that is, set the predicted value to the mean of the leaves containing the training dataset labels.

    1.2.3Interpretabilityofregressiondecisiontree

    The interpretability of regression tree model is demonstrated through the analysis of feature importance[18]and tree decomposition[19].

    Feature importance traverses all partition points using this feature and calculates how much (in proportion) it reduces the variance or Gini index of the result compared to the parent node. The importance of each feature can be understood as an explanatory part of the whole model. Tree decomposition is to restore the path of the instance and add up the contributions of the passing nodes.

    2 Experimental Verification

    2.1 Datasets

    According to different discrete time delay systems, different datasets are constructed for training and testing the model. The training data can be listed as a matrix, shown as

    (9)

    whereqrepresents the start time of discrete system data,wrepresents the number of discrete system continuous data to be extracted, andurepresents size of data.

    In this study, datasets used in the experiment are collected by different systems in Matlab simulation. According to the three systems mentioned in section 1.1, Matlab is used to simulate them respectively. For each system, two kinds of datasets are generated, one with white noise and the other without white noise.

    In the LFO system without noise, the output of the previous moment of the current moment of the system output is taken as a feature, and the input including the current moment as well as the previous nine moments is taken as features. These features form a feature set. The label is the output of the current moment. The dataset with noise is constructed in the same way.

    In the LSO system dataset, the output of the first two moments of the current moment are taken, and the input including the current moment and the first nine moments are obtained as features. The datasets of the nonlinear system are the same operation as the LFO system. The relevant information of the dataset is shown in Table 1.

    In order to enrich the variety of experiments, different time delays are set. Time delays of different systems are shown in Table 2. Time delay identification of first-order, second-order and nonlinear systems is carried out.

    Table 1 Details of datasets

    Table 2 Time delay of each dataset

    In the industrial process, the discrete system is obtained by sampling the continuous system, and the time delay of the system is related to the delay of the continuous system and the sampling interval. Therefore, many datasets need to be obtained after a series of steps such as analysis and simulation from a specific system, and for different systems, many models are independent and do not have universal applicability. However, in this paper, different datasets can be established for different discrete time delay systems. The steps of establishing datasets are the same as those in this paper that just need to determine the size ofn, and the algorithm proposed in this paper is generally applicable. Therefore, the algorithm in this paper is scalable and greatly improves the efficiency of system time delay identification.

    2.2 Evaluation metrics for time delay identification

    The tree depth of regression decision tree has a certain influence on the interpretability, in the process of regression decision tree training, and it is necessary to determine the tree depth it can accurately fit the datasets.

    This paper uses the coefficient of determination referred to asR2to evaluate regression tree models performance. Its calculation formula is:

    (10)

    Fig. 3 R2 curves of different tree depths in different datasets

    Table 3 R2 scores of regression decision tree with different depths for each dataset

    Table 4 Optimal tree depth of each dataset

    2.3 Interpretability analysis

    2.3.1Featureimportanceanalysis(FIA)

    FIA commonly is used to detect a contribution to the prediction results. The basic idea is that FIA disrupts the feature column data, the other features are unchanged, then observe the change of model prediction accuracy or loss. FIA iterates over all features.

    The feature importance was analyzed for the dataset with fixed tree depth, and the result was shown in Fig.4. In Fig. 4,X1,X2, …,X10representx(k-10),x(k-9), …,x(k-1),x(k), respectively;X11andX12denotey(k-2) andy(k-1), respectively.

    It can be seen from the FIA in Fig. 4 that the regression tree model can fit the control system well, and the FIA can find the time delay of the system. As shown in Fig. 4(a), what can be clearly seen in this figure is the high score ofX5. And the corresponding time delay of the LFO system is 5. Time delay of the LFO system can be accurately identified by the FIA. The conclusion of FIA for the system with noise are almost the same as that without noise in Fig. 4(b).

    Fig. 4 FIA of different datasets: (a) LFO; (b) LFOWN; (c) LSO; (d) LSOWN; (e)NLFO; (F) NLFOWN

    Fig. 5 Visualization of regression decision tree for interpreting LFO dataset

    In Figs. 4(c) and 4(d), the results of FIA show that the model has redundant characteristics in the training process, leading to a little deviation in the results of FIA and partial over-fitting of the model, but it is still obviously observed thatX4has the highest score in feature importance score of the LSO system.

    Figures 4(e) and 4(f) show that FIA well identifies the time delay of nonlinear system, that is, the feature that has the greatest impact on the system. We can see from Figs. 4(e) and 4(f) that this feature isX5, meaning that the time delay is 5. This is consistent with the time delay set by simulation. Therefore, the time delay of the system is well identified by the interpretability analysis of the regression decision tree, and this paper provides an effective identification method for the system time delay identification.

    2.3.2Treedecomposition

    In order to see the decision-making process of the regression decision tree more intuitively, the decision-making process of the LFO system is visualized in Fig. 5, wherecis on behalf of the predicted values of themth leaf. As shown in Fig. 5, it is clear that each decision path in the decision tree represents a rule in the decision process.

    According to the rule of node selection in the decision tree, the structure of the decision tree is almost split based on the featureX5, which is the most important feature affecting the whole decision tree, and also echoes the feature importance analysis.

    3 Conclusions

    In this paper, a novel method is proposed for time delay identification by using the interpretability of machine learning. Experimental results show that the method based on the interpretable regression decision tree model can accurately identify the time delay of control systems, and thus provides a new algorithm for time delay identification of dynamical systems.

    91久久精品国产一区二区成人| 建设人人有责人人尽责人人享有的 | 91av网一区二区| 国产亚洲一区二区精品| 国产一区二区在线观看日韩| 黄色欧美视频在线观看| 毛片女人毛片| 国产综合精华液| 搡老乐熟女国产| 听说在线观看完整版免费高清| 亚洲成人精品中文字幕电影| 亚洲精品,欧美精品| 婷婷色麻豆天堂久久| 成人毛片a级毛片在线播放| 国产极品天堂在线| 黄片wwwwww| 久久人人爽人人爽人人片va| 久久综合国产亚洲精品| 啦啦啦中文免费视频观看日本| 免费观看无遮挡的男女| 国产精品嫩草影院av在线观看| 亚洲国产精品成人久久小说| 青春草国产在线视频| 女的被弄到高潮叫床怎么办| 国产精品久久久久久久久免| 一区二区三区四区激情视频| 久久久久精品久久久久真实原创| 深夜a级毛片| 精品久久久久久久久亚洲| 久久久成人免费电影| 日韩不卡一区二区三区视频在线| 日本色播在线视频| 亚洲av成人精品一二三区| 人人妻人人澡人人爽人人夜夜 | 99热这里只有是精品50| 婷婷色av中文字幕| 如何舔出高潮| 在线免费观看不下载黄p国产| 女人十人毛片免费观看3o分钟| 天堂√8在线中文| 久久99蜜桃精品久久| 亚洲第一区二区三区不卡| 搞女人的毛片| 欧美一级a爱片免费观看看| 日本黄色片子视频| 男人和女人高潮做爰伦理| 欧美zozozo另类| 久久久久久国产a免费观看| 3wmmmm亚洲av在线观看| 日韩精品青青久久久久久| 99视频精品全部免费 在线| 91狼人影院| 精品国内亚洲2022精品成人| 蜜桃久久精品国产亚洲av| 麻豆精品久久久久久蜜桃| 最近手机中文字幕大全| 精品久久久久久久末码| 免费看美女性在线毛片视频| 爱豆传媒免费全集在线观看| av国产免费在线观看| 日韩精品青青久久久久久| 亚洲第一区二区三区不卡| 99久久九九国产精品国产免费| 国产精品不卡视频一区二区| 国产色婷婷99| 高清在线视频一区二区三区| 如何舔出高潮| 国产精品一二三区在线看| 精品欧美国产一区二区三| 亚洲高清免费不卡视频| 欧美激情在线99| 欧美一区二区亚洲| 激情 狠狠 欧美| 国产伦精品一区二区三区视频9| 国产亚洲91精品色在线| 久久午夜福利片| 免费看美女性在线毛片视频| 99九九线精品视频在线观看视频| 高清av免费在线| 久久人人爽人人爽人人片va| 国产成人精品婷婷| 日韩精品有码人妻一区| 亚洲欧美日韩无卡精品| 欧美bdsm另类| 婷婷六月久久综合丁香| 亚洲欧美精品专区久久| 欧美日韩一区二区视频在线观看视频在线 | 日韩制服骚丝袜av| 特级一级黄色大片| 中文字幕久久专区| 美女被艹到高潮喷水动态| 成人亚洲精品av一区二区| 久久久久久久国产电影| 亚洲四区av| 亚洲欧美清纯卡通| 日韩av免费高清视频| 亚洲国产精品sss在线观看| 精品熟女少妇av免费看| 内射极品少妇av片p| 赤兔流量卡办理| 午夜精品一区二区三区免费看| 成年女人在线观看亚洲视频 | 色尼玛亚洲综合影院| 夜夜爽夜夜爽视频| 亚洲最大成人中文| 亚洲精品aⅴ在线观看| 日韩中字成人| 久久久久久国产a免费观看| 最后的刺客免费高清国语| 在线免费观看不下载黄p国产| 午夜久久久久精精品| 九草在线视频观看| 亚洲av日韩在线播放| 成人亚洲欧美一区二区av| 可以在线观看毛片的网站| 内地一区二区视频在线| 夜夜爽夜夜爽视频| 又爽又黄a免费视频| videos熟女内射| 看免费成人av毛片| 久久热精品热| av网站免费在线观看视频 | 九色成人免费人妻av| 国产精品av视频在线免费观看| 久久久成人免费电影| 亚洲国产精品sss在线观看| 国产av在哪里看| 汤姆久久久久久久影院中文字幕 | 日韩大片免费观看网站| 亚洲伊人久久精品综合| 精品久久久久久电影网| 国产精品av视频在线免费观看| 日韩精品有码人妻一区| 日韩精品有码人妻一区| 亚洲欧美成人综合另类久久久| 美女主播在线视频| 男人舔女人下体高潮全视频| 少妇被粗大猛烈的视频| 国产一区二区三区av在线| 欧美日韩在线观看h| 国产 一区精品| 日本午夜av视频| 少妇人妻一区二区三区视频| 久久精品国产自在天天线| 日韩不卡一区二区三区视频在线| 国产黄频视频在线观看| 亚洲成人中文字幕在线播放| 国产三级在线视频| av国产免费在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲美女视频黄频| 国产成人免费观看mmmm| 国产成人福利小说| or卡值多少钱| 日本爱情动作片www.在线观看| 六月丁香七月| 毛片女人毛片| 亚洲成人久久爱视频| 亚洲不卡免费看| 亚洲国产精品国产精品| 丝瓜视频免费看黄片| 亚洲美女搞黄在线观看| 精品一区二区三卡| 波多野结衣巨乳人妻| 国产黄片美女视频| 国产高清不卡午夜福利| 国产精品.久久久| 两个人的视频大全免费| 亚洲欧洲国产日韩| 成人国产麻豆网| 免费av毛片视频| 美女大奶头视频| 美女主播在线视频| 97超视频在线观看视频| 国产精品av视频在线免费观看| 床上黄色一级片| eeuss影院久久| 亚洲精品久久久久久婷婷小说| 2021天堂中文幕一二区在线观| 国产一区二区三区av在线| 床上黄色一级片| 精品久久国产蜜桃| 免费大片18禁| 亚洲综合精品二区| 丰满少妇做爰视频| 国产免费视频播放在线视频 | 美女高潮的动态| 国产精品久久久久久av不卡| 亚洲最大成人手机在线| 亚洲精品成人av观看孕妇| 成人二区视频| 日本一本二区三区精品| 国产高清不卡午夜福利| 国产av在哪里看| 国产精品人妻久久久影院| 欧美一区二区亚洲| 午夜爱爱视频在线播放| 国产成人精品一,二区| 联通29元200g的流量卡| 国产精品1区2区在线观看.| 亚洲av中文av极速乱| 久久这里只有精品中国| 大片免费播放器 马上看| 别揉我奶头 嗯啊视频| 内射极品少妇av片p| 国产午夜精品久久久久久一区二区三区| 日韩精品有码人妻一区| 国产伦精品一区二区三区视频9| 国产成人福利小说| 搡女人真爽免费视频火全软件| 久久久久久国产a免费观看| 性色avwww在线观看| 极品教师在线视频| 国产精品人妻久久久久久| 91久久精品电影网| 日韩精品青青久久久久久| 哪个播放器可以免费观看大片| 精品一区二区免费观看| 精品久久国产蜜桃| 两个人视频免费观看高清| 成人av在线播放网站| 国产精品久久久久久精品电影小说 | 精品一区二区三区视频在线| 亚洲成人一二三区av| 黄色一级大片看看| 色网站视频免费| 久久热精品热| 热99在线观看视频| 精品久久国产蜜桃| 两个人视频免费观看高清| 免费看av在线观看网站| 成人二区视频| 国产成人精品一,二区| 久久久久免费精品人妻一区二区| 黄色日韩在线| 国产永久视频网站| 日韩伦理黄色片| 麻豆国产97在线/欧美| 日日摸夜夜添夜夜爱| 五月天丁香电影| 一级av片app| 日韩电影二区| 精品酒店卫生间| 22中文网久久字幕| 日韩精品有码人妻一区| 有码 亚洲区| 亚洲精品第二区| 内射极品少妇av片p| 国内精品美女久久久久久| 日本色播在线视频| 久久人人爽人人爽人人片va| 欧美激情在线99| 秋霞在线观看毛片| 久久久a久久爽久久v久久| 少妇熟女aⅴ在线视频| 1000部很黄的大片| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲最大av| 毛片女人毛片| 亚洲av电影不卡..在线观看| 成人欧美大片| 精品熟女少妇av免费看| av免费观看日本| 国国产精品蜜臀av免费| 午夜老司机福利剧场| 欧美日韩亚洲高清精品| 成人午夜精彩视频在线观看| av福利片在线观看| av播播在线观看一区| 高清av免费在线| 一区二区三区乱码不卡18| 尤物成人国产欧美一区二区三区| 午夜视频国产福利| 麻豆久久精品国产亚洲av| 在线观看一区二区三区| 日韩av在线大香蕉| 国产成人aa在线观看| 日韩在线高清观看一区二区三区| 久久久午夜欧美精品| 一级毛片 在线播放| 国产在视频线精品| 日韩欧美国产在线观看| 寂寞人妻少妇视频99o| 国产一区亚洲一区在线观看| 99久国产av精品国产电影| 欧美一级a爱片免费观看看| 亚洲av日韩在线播放| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| av国产久精品久网站免费入址| 丝袜喷水一区| 边亲边吃奶的免费视频| 九色成人免费人妻av| 2021少妇久久久久久久久久久| 亚洲人成网站在线观看播放| 中文欧美无线码| 欧美zozozo另类| 久久久久久久亚洲中文字幕| 日本黄大片高清| 五月玫瑰六月丁香| 卡戴珊不雅视频在线播放| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 亚洲第一区二区三区不卡| 日韩制服骚丝袜av| av在线播放精品| 嘟嘟电影网在线观看| 在线播放无遮挡| 日韩精品青青久久久久久| 国产一区二区亚洲精品在线观看| 国产精品综合久久久久久久免费| 亚洲欧洲国产日韩| 久久久久久久久久黄片| 丰满乱子伦码专区| 午夜精品在线福利| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在| 夫妻午夜视频| 青春草国产在线视频| 国产毛片a区久久久久| 爱豆传媒免费全集在线观看| 三级国产精品片| 国产毛片a区久久久久| 亚洲综合色惰| 99久国产av精品| 岛国毛片在线播放| 欧美精品国产亚洲| 99热6这里只有精品| 天天一区二区日本电影三级| 精品午夜福利在线看| 在线免费观看不下载黄p国产| 九草在线视频观看| 午夜激情久久久久久久| 日韩一区二区三区影片| 久久久久免费精品人妻一区二区| 中文天堂在线官网| 国产 亚洲一区二区三区 | 深夜a级毛片| 亚洲婷婷狠狠爱综合网| 国产精品麻豆人妻色哟哟久久 | 久99久视频精品免费| av专区在线播放| 国产真实伦视频高清在线观看| 亚洲精品影视一区二区三区av| 高清在线视频一区二区三区| 欧美激情久久久久久爽电影| 亚洲伊人久久精品综合| av女优亚洲男人天堂| 啦啦啦韩国在线观看视频| 深夜a级毛片| 亚洲四区av| 国产成人午夜福利电影在线观看| 日韩人妻高清精品专区| 久久久久久国产a免费观看| 久99久视频精品免费| 80岁老熟妇乱子伦牲交| 日韩人妻高清精品专区| 欧美另类一区| 99热6这里只有精品| 亚洲欧美成人精品一区二区| 日韩av在线免费看完整版不卡| 麻豆国产97在线/欧美| 精品一区二区三区视频在线| 国产淫语在线视频| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久av| 成人性生交大片免费视频hd| 亚洲av中文字字幕乱码综合| 91午夜精品亚洲一区二区三区| 精品一区在线观看国产| 久久精品国产亚洲网站| 久久亚洲国产成人精品v| 国产黄频视频在线观看| 一级毛片久久久久久久久女| 男人狂女人下面高潮的视频| 内射极品少妇av片p| 免费观看a级毛片全部| 久久97久久精品| 99热这里只有精品一区| 女人久久www免费人成看片| 热99在线观看视频| 精品久久久精品久久久| 国产色爽女视频免费观看| 日本黄大片高清| 国产亚洲午夜精品一区二区久久 | av卡一久久| 亚洲天堂国产精品一区在线| 边亲边吃奶的免费视频| 男女国产视频网站| 秋霞在线观看毛片| 欧美人与善性xxx| 少妇被粗大猛烈的视频| 18禁在线无遮挡免费观看视频| 免费黄频网站在线观看国产| 两个人的视频大全免费| 色综合站精品国产| 国产亚洲一区二区精品| 一个人看视频在线观看www免费| 在线观看一区二区三区| 少妇人妻精品综合一区二区| 亚洲成人av在线免费| 久久久国产一区二区| 亚洲欧美一区二区三区国产| 免费av观看视频| 哪个播放器可以免费观看大片| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 永久网站在线| 91久久精品国产一区二区三区| 国产亚洲一区二区精品| 国产黄片美女视频| 一边亲一边摸免费视频| 建设人人有责人人尽责人人享有的 | 青春草视频在线免费观看| 只有这里有精品99| 女人十人毛片免费观看3o分钟| 老女人水多毛片| 日韩人妻高清精品专区| 亚洲精品久久午夜乱码| 老女人水多毛片| 街头女战士在线观看网站| 欧美成人a在线观看| 成人美女网站在线观看视频| 亚洲av国产av综合av卡| 午夜免费激情av| 亚洲丝袜综合中文字幕| 搡女人真爽免费视频火全软件| 高清欧美精品videossex| 小蜜桃在线观看免费完整版高清| 亚洲自拍偷在线| 亚洲av免费高清在线观看| 国产成人午夜福利电影在线观看| av免费观看日本| 国语对白做爰xxxⅹ性视频网站| 成人欧美大片| 搡女人真爽免费视频火全软件| 国内精品宾馆在线| 国产亚洲精品av在线| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 99久久九九国产精品国产免费| 国产成年人精品一区二区| 美女高潮的动态| 夫妻性生交免费视频一级片| 国产成人福利小说| 亚洲精品一区蜜桃| av在线蜜桃| 综合色丁香网| 中文在线观看免费www的网站| 亚洲激情五月婷婷啪啪| 国产精品久久久久久av不卡| 免费人成在线观看视频色| 看非洲黑人一级黄片| 精品人妻熟女av久视频| 久久久久免费精品人妻一区二区| 亚洲av成人av| 亚洲国产成人一精品久久久| 夜夜看夜夜爽夜夜摸| 色哟哟·www| 别揉我奶头 嗯啊视频| 久久精品人妻少妇| 寂寞人妻少妇视频99o| 国产成人精品婷婷| 高清毛片免费看| 成年女人看的毛片在线观看| 日本免费a在线| 国产综合懂色| 男女啪啪激烈高潮av片| 欧美成人a在线观看| 99久久精品一区二区三区| 嫩草影院入口| 啦啦啦啦在线视频资源| 亚洲精品视频女| 国产美女午夜福利| 午夜福利网站1000一区二区三区| 精品久久久精品久久久| 欧美人与善性xxx| 男女边吃奶边做爰视频| 亚洲在线观看片| 国产精品av视频在线免费观看| 在线 av 中文字幕| 免费观看av网站的网址| 国产精品久久久久久av不卡| 熟妇人妻久久中文字幕3abv| 色哟哟·www| 大又大粗又爽又黄少妇毛片口| 亚洲伊人久久精品综合| 久久草成人影院| 只有这里有精品99| 日韩 亚洲 欧美在线| 我的老师免费观看完整版| 免费观看的影片在线观看| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 极品少妇高潮喷水抽搐| 亚洲国产精品sss在线观看| 成人性生交大片免费视频hd| 国产精品1区2区在线观看.| 国产精品女同一区二区软件| 免费人成在线观看视频色| 亚洲精品色激情综合| 狠狠精品人妻久久久久久综合| 国产亚洲5aaaaa淫片| 国产精品嫩草影院av在线观看| 女人久久www免费人成看片| 日韩强制内射视频| 国产成人a区在线观看| 婷婷色综合大香蕉| 亚洲精品成人av观看孕妇| 国产午夜福利久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线观看播放| 日韩欧美三级三区| 午夜福利成人在线免费观看| 亚洲激情五月婷婷啪啪| 免费观看的影片在线观看| 伦理电影大哥的女人| 舔av片在线| 国产欧美日韩精品一区二区| 日日撸夜夜添| 午夜精品国产一区二区电影 | 中文字幕亚洲精品专区| 亚洲av中文av极速乱| 日韩亚洲欧美综合| 久久久久久久久久人人人人人人| 中国国产av一级| 国产欧美日韩精品一区二区| 日韩三级伦理在线观看| 亚洲av在线观看美女高潮| 国产 一区精品| 国产乱来视频区| 中文字幕av成人在线电影| 在现免费观看毛片| 欧美区成人在线视频| 国产精品久久久久久av不卡| 不卡视频在线观看欧美| 国产精品爽爽va在线观看网站| 欧美潮喷喷水| 亚洲av福利一区| 免费黄频网站在线观看国产| 亚洲av成人精品一二三区| 国产精品伦人一区二区| 国产亚洲5aaaaa淫片| 韩国av在线不卡| 2021天堂中文幕一二区在线观| 亚洲成人一二三区av| 国产一区二区三区av在线| 国产精品久久久久久久久免| 秋霞伦理黄片| 天堂√8在线中文| 国产一区有黄有色的免费视频 | 91在线精品国自产拍蜜月| 高清视频免费观看一区二区 | 夜夜爽夜夜爽视频| 97超视频在线观看视频| 又爽又黄a免费视频| 亚洲美女视频黄频| 欧美日韩亚洲高清精品| 日韩欧美精品v在线| 色视频www国产| 汤姆久久久久久久影院中文字幕 | av在线老鸭窝| 国产精品久久久久久精品电影| 免费黄网站久久成人精品| 精品久久久久久久久亚洲| 免费看日本二区| 欧美日韩在线观看h| 干丝袜人妻中文字幕| 自拍偷自拍亚洲精品老妇| 非洲黑人性xxxx精品又粗又长| 日韩一本色道免费dvd| 水蜜桃什么品种好| 久久久久久九九精品二区国产| 三级毛片av免费| 亚洲精品自拍成人| 三级毛片av免费| 自拍偷自拍亚洲精品老妇| 久久久久性生活片| 亚洲av国产av综合av卡| 麻豆精品久久久久久蜜桃| av在线观看视频网站免费| 国产精品国产三级国产专区5o| 只有这里有精品99| 麻豆av噜噜一区二区三区| 自拍偷自拍亚洲精品老妇| 国产亚洲一区二区精品| 少妇人妻一区二区三区视频| 一级av片app| 美女大奶头视频| 亚洲图色成人| 国产成人免费观看mmmm| 国产大屁股一区二区在线视频| 高清av免费在线| 天堂av国产一区二区熟女人妻| 有码 亚洲区| 国产精品不卡视频一区二区| 国产精品女同一区二区软件| 熟妇人妻久久中文字幕3abv| 国精品久久久久久国模美| 亚洲av二区三区四区| 最后的刺客免费高清国语| 日本黄大片高清| 最近2019中文字幕mv第一页| 午夜福利在线在线| 美女高潮的动态| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 久久99热这里只有精品18| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 久久这里有精品视频免费| 亚洲内射少妇av| 久久亚洲国产成人精品v|