• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Delay Identification in Dynamical Systems Based on Interpretable Machine Learning

    2022-09-29 01:47:04XIAMengWUYuzhe吳毓哲WANGZhijie王直杰

    XIA Meng(夏 夢), WU Yuzhe(吳毓哲), WANG Zhijie(王直杰)

    College of Information Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: The existence of time delay in complex industrial processes or dynamical systems is a common phenomenon and is a difficult problem to deal with in industrial control systems, as well as in the textile field. Accurate identification of the time delay can greatly improve the efficiency of the design of industrial process control systems. The time delay identification methods based on mathematical modeling require prior knowledge of the structural information of the model, especially for nonlinear systems. The neural network-based identification method can predict the time delay of the system, but cannot accurately obtain the specific parameters of the time delay. Benefit from the interpretability of machine learning, a novel method for delay identification based on an interpretable regression decision tree is proposed. Utilizing the self-explanatory analysis of the decision tree model, the parameters with the highest feature importance are obtained to identify the time delay of the system. Excellent results are gained by the simulation data of linear and nonlinear control systems, and the time delay of the systems can be accurately identified.

    Key words: time delay; dynamical system; interpretability; regression tree; feature importance

    Introduction

    When modeling the process of many systems in the industry, time delay is frequently encountered. Time delay in industrial processes comes from many sources. There are two main factors that contribute to the occurrence of time delay in the production process. One is the characteristics of medium transfer and energy exchange in the system. The other is related with automatic control systems, such as measurement sensing equipment, information transmission equipment, control equipment, and actuators. When time delay exists, it becomes more difficult to govern the corresponding system, and the stability of the system suffers significantly, resulting in a decline in the quality of productions. Therefore, there are many models aiming to figure out the exact time delay of the control systems[1-2]. The accurate identification of the time delay is also strongly tied to other performances besides stability of many controllers, such as the Smith controller[3]. It is imperative to develop an accurate model for the delay system to precisely identify the value of the delay. There are now two kinds of the time delay modeling researches: mathematical identification[4-5]and machine learning model[6-7].

    Initially, the traditional time delay identification methods were studied based on mathematical statistics. Yang and Gao[8]used the expectation-maximization (EM) algorithm to identify the time delay of a linear system. SASSIetal.[9]considered a method which consisted in minimizing a quadratic criterion using either the gradient method or the Levenberg-Marquardt method in dynamical time delay systems. Meanwhile, to improve the performance of the algorithm, they proposed quasi-Newton approach based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Lietal.[10]put forward a time delay identification algorithm for perturbed closed-loop dynamic processes based on maximum correlation analysis and verified the effectiveness of the algorithm in the actual industrial production process. However, the above methods need to know the prior knowledge of the system, and need to involve different mathematical and statistical algorithms to identify the time delay for different systems. With the rapid development of computer technology, machine learning algorithms have begun to shine in time delay identification. Karouietal.[11]conducted a new algebraic technique and constructed an online delay identification approach based on a distributional algebraic technique and a convolution way that could identify different time delays of different systems. However, most machine learning models are black-box models, which cannot accurately obtain some key information of the system (such as delay). Li and Yan[12]built a multidimensional Taylor network to simulate nonlinear time delay systems, and introduced a particle swarm optimization algorithm to adjust the weights of the Taylor network. Later, the authors replaced the particle swarm optimization algorithm with a modified conjugate gradient method to train multidimensional Taylor networks. Dingetal.[13]constructed a grey-box model combining discrete bayesian optimization (DBO) and controlled recurrent neural network (CRNN), namely the CRNN-DBO model, to model and identify time delay systems. This method provided a combination of back-propagation algorithm and DBO method to find the minimum loss value of the model, as well as the correct time delay. Some researchers have attempted to use neural networks for system modeling and time delay identification, but their applications are limited to single-input or linear systems.

    The time delay identification algorithm mentioned above can identify the time delay of the dynamic system well in practice. The models based on the mathematical statistics method can be understood, but these methods require prior knowledge of the structural information and nonlinear parts of the system, which is often inaccessible. Machine learning-based modeling techniques are not concerned with the structure of the model, but rather with the mapping relationship between input and output, unable to obtain the precise value of the time delay, which is detrimental when constructing the control strategy. The time delay identification method based on the neural network belongs to the black-box model after all, which lacks interpretability. At the same time, as machine learning technology improves, more and more researches care about how rationally the model predicts things. Tree-based interpretability models[14-15]are developing rapidly. The application of the tree model in financial[16], medical[17]and other issues fully demonstrates the outstanding interpretability of the tree model.

    To address the problems of the time delay identification, a method inspired by the development of the interpretable machine learning is established. And this paper establishes an interpretable machine learning model based on regression tree to identify the time delay. Experiments are conducted for linear and nonlinear control systems, and the experimental results verify the accuracy of the interpretable model in time delay identification, showing that the interpretable algorithm can be developed as a new method to identify the time delay of the system. Meanwhile, the experimental results also show that the interpretable model can be applied to both linear and nonlinear systems, and can deal with short and long delay.

    1 Methodology

    1.1 Discrete system

    Three different discrete systems are considered in this paper. They are linear first-order (LFO) time delay systems, linear second-order (LSO) time delay systems, and nonlinear time delay systems.

    1.1.1LFOtimedelaysystem

    Consider the following system:

    y(k)=Ay(k-1)+x(k-i),

    (1)

    wherei∈{1, 2,…,N} represents the time delay,xis the input of the time delay system,yis the system output, andAis the parameter of the system.

    Meanwhile, the system with noise is

    y(k)=Ay(k-1)+x(k-i)+ε(k),

    (2)

    whereε(k) is the white noise with zero mean and varianceδ.

    1.1.2LSOtimedelaysystem

    The system is

    y(k)=Ay(k-1)+By(k-2)+x(k-i),

    (3)

    whereAandBare the parameters of the system. The system with noise is

    y(k)=Ay(k-1)+By(k-2)+x(k-i)+ε(k).

    (4)

    1.1.3Nonlineartimedelaysystem

    The expression of nonlinear time delay system is

    y(k)=Ays(k-1)+x(k-i),

    (5)

    wheresstands for power. Add noise to the system

    y(k)=Ays(k-1)+x(k-i)+ε(k).

    (6)

    1.2 Time delay identification with explainable algorithm based on regression decision tree

    In this paper, the regression decision tree model is employed as the discrete time delay recognition model. Through the interpretability analysis of the tree model, it is convenient for readers to understand the interpretability principle of time delay identification.

    1.2.1Structureofalgorithmfortimedelayidentification

    The structure of the algorithm for time delay identification is shown in Fig. 1. The whole algorithm includes datasets construction, regression analysis and interpretability analysis. Matlab is used to simulate each system and generate the data needed for training. In the process of regression analysis, the simulation data are preprocessed, and the regression decision tree model is used for training. With coefficient of determination as the evaluation index of regression model performance, the optimal decision tree model is selected as the final regression model. Then, interpretability analysis is carried out to determine the time delay of the system. Specifically, based on the interpretability of the decision tree model, it is further to summarize and sort out the interpretability of the decision path of the decision tree, and finally identify the time delay of the system from the perspective of interpretability.

    Fig. 1 Structure of algorithm for time delay identification

    1.2.2Regressiondecisiontree

    Regression decision tree is a basic regression method. The decision tree consists of nodes and directed edges. There are two types of nodes: internal nodes and leaf nodes. An internal node represents a feature or attribute, and a leaf represents a category or value.

    Given a datasetD={(x1,y1),(x2,y2),…,(xn,yn)},xiis at-dimensional vector and hastfeatures. The goal of the regression problem is to create a functionf(x) to fit the elements in datasetD, and then get the smallest mean square error (MSE) shown as

    (7)

    Figure 2 presents the algorithm of the regression decision tree. In Fig. 1, it is assumed that a regression tree withMleaves needs to be constructed, which means that the feature spacexneeds to be divided intoMunitsR1,R2, …,Rm, and there is a predicted value for each feature space. Then the minimum MSE of the regression tree was calculated as

    Fig. 2 Regression decision tree algorithm

    (8)

    wherecmis on behalf of the predicted values of themth leaf.

    To get the minimum MSE, just need to minimize the MSE for each leaf, that is, set the predicted value to the mean of the leaves containing the training dataset labels.

    1.2.3Interpretabilityofregressiondecisiontree

    The interpretability of regression tree model is demonstrated through the analysis of feature importance[18]and tree decomposition[19].

    Feature importance traverses all partition points using this feature and calculates how much (in proportion) it reduces the variance or Gini index of the result compared to the parent node. The importance of each feature can be understood as an explanatory part of the whole model. Tree decomposition is to restore the path of the instance and add up the contributions of the passing nodes.

    2 Experimental Verification

    2.1 Datasets

    According to different discrete time delay systems, different datasets are constructed for training and testing the model. The training data can be listed as a matrix, shown as

    (9)

    whereqrepresents the start time of discrete system data,wrepresents the number of discrete system continuous data to be extracted, andurepresents size of data.

    In this study, datasets used in the experiment are collected by different systems in Matlab simulation. According to the three systems mentioned in section 1.1, Matlab is used to simulate them respectively. For each system, two kinds of datasets are generated, one with white noise and the other without white noise.

    In the LFO system without noise, the output of the previous moment of the current moment of the system output is taken as a feature, and the input including the current moment as well as the previous nine moments is taken as features. These features form a feature set. The label is the output of the current moment. The dataset with noise is constructed in the same way.

    In the LSO system dataset, the output of the first two moments of the current moment are taken, and the input including the current moment and the first nine moments are obtained as features. The datasets of the nonlinear system are the same operation as the LFO system. The relevant information of the dataset is shown in Table 1.

    In order to enrich the variety of experiments, different time delays are set. Time delays of different systems are shown in Table 2. Time delay identification of first-order, second-order and nonlinear systems is carried out.

    Table 1 Details of datasets

    Table 2 Time delay of each dataset

    In the industrial process, the discrete system is obtained by sampling the continuous system, and the time delay of the system is related to the delay of the continuous system and the sampling interval. Therefore, many datasets need to be obtained after a series of steps such as analysis and simulation from a specific system, and for different systems, many models are independent and do not have universal applicability. However, in this paper, different datasets can be established for different discrete time delay systems. The steps of establishing datasets are the same as those in this paper that just need to determine the size ofn, and the algorithm proposed in this paper is generally applicable. Therefore, the algorithm in this paper is scalable and greatly improves the efficiency of system time delay identification.

    2.2 Evaluation metrics for time delay identification

    The tree depth of regression decision tree has a certain influence on the interpretability, in the process of regression decision tree training, and it is necessary to determine the tree depth it can accurately fit the datasets.

    This paper uses the coefficient of determination referred to asR2to evaluate regression tree models performance. Its calculation formula is:

    (10)

    Fig. 3 R2 curves of different tree depths in different datasets

    Table 3 R2 scores of regression decision tree with different depths for each dataset

    Table 4 Optimal tree depth of each dataset

    2.3 Interpretability analysis

    2.3.1Featureimportanceanalysis(FIA)

    FIA commonly is used to detect a contribution to the prediction results. The basic idea is that FIA disrupts the feature column data, the other features are unchanged, then observe the change of model prediction accuracy or loss. FIA iterates over all features.

    The feature importance was analyzed for the dataset with fixed tree depth, and the result was shown in Fig.4. In Fig. 4,X1,X2, …,X10representx(k-10),x(k-9), …,x(k-1),x(k), respectively;X11andX12denotey(k-2) andy(k-1), respectively.

    It can be seen from the FIA in Fig. 4 that the regression tree model can fit the control system well, and the FIA can find the time delay of the system. As shown in Fig. 4(a), what can be clearly seen in this figure is the high score ofX5. And the corresponding time delay of the LFO system is 5. Time delay of the LFO system can be accurately identified by the FIA. The conclusion of FIA for the system with noise are almost the same as that without noise in Fig. 4(b).

    Fig. 4 FIA of different datasets: (a) LFO; (b) LFOWN; (c) LSO; (d) LSOWN; (e)NLFO; (F) NLFOWN

    Fig. 5 Visualization of regression decision tree for interpreting LFO dataset

    In Figs. 4(c) and 4(d), the results of FIA show that the model has redundant characteristics in the training process, leading to a little deviation in the results of FIA and partial over-fitting of the model, but it is still obviously observed thatX4has the highest score in feature importance score of the LSO system.

    Figures 4(e) and 4(f) show that FIA well identifies the time delay of nonlinear system, that is, the feature that has the greatest impact on the system. We can see from Figs. 4(e) and 4(f) that this feature isX5, meaning that the time delay is 5. This is consistent with the time delay set by simulation. Therefore, the time delay of the system is well identified by the interpretability analysis of the regression decision tree, and this paper provides an effective identification method for the system time delay identification.

    2.3.2Treedecomposition

    In order to see the decision-making process of the regression decision tree more intuitively, the decision-making process of the LFO system is visualized in Fig. 5, wherecis on behalf of the predicted values of themth leaf. As shown in Fig. 5, it is clear that each decision path in the decision tree represents a rule in the decision process.

    According to the rule of node selection in the decision tree, the structure of the decision tree is almost split based on the featureX5, which is the most important feature affecting the whole decision tree, and also echoes the feature importance analysis.

    3 Conclusions

    In this paper, a novel method is proposed for time delay identification by using the interpretability of machine learning. Experimental results show that the method based on the interpretable regression decision tree model can accurately identify the time delay of control systems, and thus provides a new algorithm for time delay identification of dynamical systems.

    777米奇影视久久| 亚洲精品日韩在线中文字幕| 国产精品人妻久久久久久| 内地一区二区视频在线| 日韩一区二区三区影片| 亚洲国产色片| 99久久精品国产国产毛片| av国产久精品久网站免费入址| 在线观看国产h片| 91久久精品国产一区二区三区| 大码成人一级视频| av又黄又爽大尺度在线免费看| 丰满人妻一区二区三区视频av| 99热网站在线观看| 3wmmmm亚洲av在线观看| 日本午夜av视频| 看非洲黑人一级黄片| 国产真实伦视频高清在线观看| 亚洲精品自拍成人| 亚洲欧美一区二区三区黑人 | 国产男人的电影天堂91| 日本vs欧美在线观看视频 | 精品国产三级普通话版| 五月伊人婷婷丁香| 少妇被粗大猛烈的视频| 精品国产三级普通话版| 国产免费一级a男人的天堂| 永久免费av网站大全| 99视频精品全部免费 在线| 久久久久久久久久人人人人人人| 亚洲国产日韩一区二区| 黄色配什么色好看| 久久av网站| 亚洲久久久国产精品| 成人午夜精彩视频在线观看| 日日啪夜夜爽| 九九爱精品视频在线观看| 一级黄片播放器| 热re99久久精品国产66热6| 亚洲欧美清纯卡通| 九色成人免费人妻av| 色婷婷av一区二区三区视频| 中文欧美无线码| 亚洲精品亚洲一区二区| 精品人妻偷拍中文字幕| 欧美xxⅹ黑人| 天堂中文最新版在线下载| 你懂的网址亚洲精品在线观看| 看免费成人av毛片| 亚洲中文av在线| 色5月婷婷丁香| 久久久欧美国产精品| 亚洲丝袜综合中文字幕| 国产在线一区二区三区精| 一个人免费看片子| 观看免费一级毛片| 亚洲人成网站在线播| 如何舔出高潮| 久久99热6这里只有精品| 亚洲精品国产av成人精品| 久久青草综合色| 综合色丁香网| 18禁在线播放成人免费| 综合色丁香网| 亚洲国产精品一区三区| 男女国产视频网站| 高清av免费在线| 国产精品免费大片| 免费不卡的大黄色大毛片视频在线观看| 国产精品av视频在线免费观看| 日韩精品有码人妻一区| 日本vs欧美在线观看视频 | 久久热精品热| 国内少妇人妻偷人精品xxx网站| 中文天堂在线官网| 91午夜精品亚洲一区二区三区| 国产免费一级a男人的天堂| 亚洲精品亚洲一区二区| 欧美亚洲 丝袜 人妻 在线| 国产极品天堂在线| 精品人妻偷拍中文字幕| 久久久久久九九精品二区国产| 大话2 男鬼变身卡| 大话2 男鬼变身卡| 成人毛片a级毛片在线播放| 日韩av在线免费看完整版不卡| 你懂的网址亚洲精品在线观看| 99精国产麻豆久久婷婷| 天堂中文最新版在线下载| 全区人妻精品视频| 久久热精品热| 久久99精品国语久久久| 深夜a级毛片| 精品人妻视频免费看| 久久精品久久久久久噜噜老黄| 欧美日韩视频精品一区| 国产伦精品一区二区三区视频9| 国产午夜精品久久久久久一区二区三区| 国产黄频视频在线观看| 国产精品成人在线| 日韩伦理黄色片| 草草在线视频免费看| 十分钟在线观看高清视频www | 国产熟女欧美一区二区| 人体艺术视频欧美日本| 大陆偷拍与自拍| 免费观看av网站的网址| 制服丝袜香蕉在线| 国产高潮美女av| 国产 一区精品| 观看av在线不卡| 亚洲精品乱久久久久久| 噜噜噜噜噜久久久久久91| 久久人人爽av亚洲精品天堂 | 中国美白少妇内射xxxbb| h视频一区二区三区| 久久这里有精品视频免费| 精品少妇黑人巨大在线播放| 亚洲中文av在线| 人体艺术视频欧美日本| 日本免费在线观看一区| 一级毛片黄色毛片免费观看视频| 国产白丝娇喘喷水9色精品| 亚洲av二区三区四区| 亚洲电影在线观看av| 欧美xxⅹ黑人| 中文天堂在线官网| freevideosex欧美| 3wmmmm亚洲av在线观看| xxx大片免费视频| 欧美性感艳星| 欧美xxxx黑人xx丫x性爽| 国产精品嫩草影院av在线观看| 国产淫片久久久久久久久| 亚洲综合精品二区| 美女cb高潮喷水在线观看| 亚洲欧美一区二区三区国产| 大香蕉97超碰在线| 亚洲精品日本国产第一区| 97精品久久久久久久久久精品| 久久精品国产亚洲网站| 精品99又大又爽又粗少妇毛片| 乱码一卡2卡4卡精品| 成人美女网站在线观看视频| 丝袜喷水一区| 亚洲人成网站在线播| 亚洲精品一区蜜桃| 美女中出高潮动态图| 中国美白少妇内射xxxbb| 网址你懂的国产日韩在线| 日本-黄色视频高清免费观看| 天天躁夜夜躁狠狠久久av| 五月伊人婷婷丁香| 国产亚洲91精品色在线| 久久久久人妻精品一区果冻| 亚洲精品久久久久久婷婷小说| 国产一区二区三区av在线| 亚洲av男天堂| 最近最新中文字幕免费大全7| 精品午夜福利在线看| 青青草视频在线视频观看| 亚洲四区av| 超碰97精品在线观看| tube8黄色片| 80岁老熟妇乱子伦牲交| 亚洲国产日韩一区二区| 欧美xxⅹ黑人| 亚洲欧美日韩无卡精品| 各种免费的搞黄视频| 激情五月婷婷亚洲| av国产精品久久久久影院| 亚洲国产精品成人久久小说| 午夜精品国产一区二区电影| 久久这里有精品视频免费| 黄色一级大片看看| 午夜福利网站1000一区二区三区| 成人黄色视频免费在线看| 18禁裸乳无遮挡动漫免费视频| 91久久精品国产一区二区三区| 卡戴珊不雅视频在线播放| 少妇人妻精品综合一区二区| 特大巨黑吊av在线直播| 赤兔流量卡办理| 三级经典国产精品| 免费观看av网站的网址| 自拍偷自拍亚洲精品老妇| 色吧在线观看| 色哟哟·www| 毛片一级片免费看久久久久| 最近2019中文字幕mv第一页| 中文在线观看免费www的网站| 欧美人与善性xxx| 亚洲第一区二区三区不卡| 亚洲熟女精品中文字幕| 大码成人一级视频| 日韩成人av中文字幕在线观看| 国产精品久久久久成人av| 亚洲精品成人av观看孕妇| 在线观看一区二区三区激情| 日韩国内少妇激情av| 精品人妻偷拍中文字幕| 日韩精品有码人妻一区| 高清av免费在线| 午夜福利影视在线免费观看| 如何舔出高潮| 午夜免费男女啪啪视频观看| 亚洲国产高清在线一区二区三| 国产午夜精品久久久久久一区二区三区| 国产国拍精品亚洲av在线观看| 国产成人免费无遮挡视频| 美女cb高潮喷水在线观看| 男人狂女人下面高潮的视频| tube8黄色片| 成人高潮视频无遮挡免费网站| 久久久午夜欧美精品| 午夜激情久久久久久久| 一区二区三区免费毛片| 人妻系列 视频| 国产精品麻豆人妻色哟哟久久| 欧美人与善性xxx| av网站免费在线观看视频| 美女国产视频在线观看| 久久久久久久精品精品| 日韩 亚洲 欧美在线| av线在线观看网站| 亚洲av中文字字幕乱码综合| 99精国产麻豆久久婷婷| 视频区图区小说| 成人特级av手机在线观看| 大香蕉97超碰在线| 婷婷色av中文字幕| 亚洲精品一区蜜桃| 亚洲国产日韩一区二区| 黄片无遮挡物在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区二区在线不卡| 我要看黄色一级片免费的| 特大巨黑吊av在线直播| 麻豆成人av视频| 91午夜精品亚洲一区二区三区| 在线观看三级黄色| 亚洲综合精品二区| 欧美高清性xxxxhd video| 欧美高清成人免费视频www| 纵有疾风起免费观看全集完整版| 亚洲国产精品专区欧美| 国产综合精华液| 亚洲精品日本国产第一区| 久久精品国产a三级三级三级| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 国产精品爽爽va在线观看网站| 性色avwww在线观看| 最近的中文字幕免费完整| 成人美女网站在线观看视频| 黄色配什么色好看| 婷婷色麻豆天堂久久| 亚洲一级一片aⅴ在线观看| 一二三四中文在线观看免费高清| 建设人人有责人人尽责人人享有的 | 精品久久久久久电影网| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 久久久a久久爽久久v久久| 精品少妇黑人巨大在线播放| 中文天堂在线官网| 欧美精品国产亚洲| 大香蕉97超碰在线| 涩涩av久久男人的天堂| 国产在线免费精品| 久久国产乱子免费精品| 最近中文字幕高清免费大全6| 色婷婷久久久亚洲欧美| 欧美成人午夜免费资源| 内射极品少妇av片p| 亚洲精品自拍成人| 亚洲国产欧美人成| 老司机影院成人| 老女人水多毛片| 国产高清不卡午夜福利| 最新中文字幕久久久久| 搡老乐熟女国产| 欧美xxxx性猛交bbbb| 国产免费又黄又爽又色| av.在线天堂| 国产一区亚洲一区在线观看| 夜夜骑夜夜射夜夜干| 亚洲图色成人| 亚洲国产日韩一区二区| 天天躁夜夜躁狠狠久久av| 中国三级夫妇交换| 高清欧美精品videossex| 国产日韩欧美亚洲二区| 国产在线免费精品| 欧美日韩在线观看h| 欧美性感艳星| 丝袜脚勾引网站| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| a级毛片免费高清观看在线播放| 中文乱码字字幕精品一区二区三区| 国产亚洲av片在线观看秒播厂| 99精国产麻豆久久婷婷| 国产伦精品一区二区三区视频9| 午夜免费鲁丝| 香蕉精品网在线| 亚洲精华国产精华液的使用体验| 免费高清在线观看视频在线观看| 亚洲怡红院男人天堂| 亚洲伊人久久精品综合| 91精品一卡2卡3卡4卡| 99热国产这里只有精品6| 免费观看无遮挡的男女| 久久国产精品大桥未久av | 三级国产精品欧美在线观看| 亚洲怡红院男人天堂| 亚洲欧美日韩卡通动漫| 精品99又大又爽又粗少妇毛片| 日本免费在线观看一区| 日韩大片免费观看网站| 99久久综合免费| 丝瓜视频免费看黄片| 老司机影院毛片| 七月丁香在线播放| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 最近中文字幕2019免费版| 99久久精品热视频| 卡戴珊不雅视频在线播放| 亚洲精品一区蜜桃| 欧美xxⅹ黑人| 日韩大片免费观看网站| 亚洲国产色片| 久久毛片免费看一区二区三区| 亚洲精品,欧美精品| 久久久久人妻精品一区果冻| 啦啦啦啦在线视频资源| 久久久久国产网址| 国产一区二区在线观看日韩| 啦啦啦中文免费视频观看日本| 青春草国产在线视频| 国产av一区二区精品久久 | 日本vs欧美在线观看视频 | 丰满少妇做爰视频| 内地一区二区视频在线| 国产精品一区二区三区四区免费观看| 久久国产乱子免费精品| 男男h啪啪无遮挡| 在线观看一区二区三区激情| 欧美xxⅹ黑人| 欧美另类一区| 国产中年淑女户外野战色| 欧美高清成人免费视频www| 婷婷色麻豆天堂久久| 天堂8中文在线网| 蜜桃亚洲精品一区二区三区| 不卡视频在线观看欧美| 看非洲黑人一级黄片| av在线播放精品| 欧美高清性xxxxhd video| 人体艺术视频欧美日本| 精品午夜福利在线看| 狂野欧美激情性bbbbbb| 人人妻人人看人人澡| 日本av免费视频播放| 日本爱情动作片www.在线观看| 国产v大片淫在线免费观看| 看免费成人av毛片| 久久99热这里只有精品18| 亚洲欧美日韩卡通动漫| 中文字幕人妻熟人妻熟丝袜美| 大陆偷拍与自拍| 国产高清国产精品国产三级 | 久久人妻熟女aⅴ| xxx大片免费视频| 国产成人aa在线观看| 中文资源天堂在线| 日本色播在线视频| 免费观看性生交大片5| 男人狂女人下面高潮的视频| 黄色日韩在线| 亚洲欧洲国产日韩| 国内精品宾馆在线| 国产av一区二区精品久久 | 久久久国产一区二区| a 毛片基地| 秋霞伦理黄片| 在线观看免费日韩欧美大片 | 91狼人影院| 精品国产三级普通话版| 在线免费十八禁| 亚洲精华国产精华液的使用体验| 国产精品无大码| 黄色怎么调成土黄色| 啦啦啦啦在线视频资源| 日韩,欧美,国产一区二区三区| 少妇人妻久久综合中文| 精品一区二区三区视频在线| 久久av网站| 色婷婷av一区二区三区视频| 美女cb高潮喷水在线观看| 赤兔流量卡办理| 久久99热这里只有精品18| 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 亚洲综合色惰| 国产成人aa在线观看| 免费大片黄手机在线观看| 五月玫瑰六月丁香| 少妇 在线观看| 伦精品一区二区三区| 视频区图区小说| 在现免费观看毛片| 亚洲,欧美,日韩| 各种免费的搞黄视频| 免费在线观看成人毛片| 五月开心婷婷网| 777米奇影视久久| 成人二区视频| 黄色日韩在线| 97在线视频观看| 直男gayav资源| 婷婷色麻豆天堂久久| 久久国产亚洲av麻豆专区| 国产色婷婷99| 久久99蜜桃精品久久| 国产在视频线精品| 国产伦在线观看视频一区| 精品一区二区免费观看| 亚洲精品第二区| h日本视频在线播放| 亚洲国产欧美人成| 精品99又大又爽又粗少妇毛片| 亚洲av欧美aⅴ国产| 国模一区二区三区四区视频| 人妻一区二区av| 免费不卡的大黄色大毛片视频在线观看| 麻豆乱淫一区二区| 亚洲成人av在线免费| 深爱激情五月婷婷| 一个人免费看片子| av免费观看日本| 久久久久精品性色| 亚洲国产日韩一区二区| 国产男女内射视频| 亚洲国产精品国产精品| 国产精品国产三级专区第一集| 一区二区三区乱码不卡18| 麻豆成人av视频| 大片电影免费在线观看免费| 九九爱精品视频在线观看| 亚洲av中文av极速乱| 夜夜骑夜夜射夜夜干| 国产在线视频一区二区| 少妇的逼好多水| 内地一区二区视频在线| 91久久精品电影网| 毛片一级片免费看久久久久| 久久毛片免费看一区二区三区| 高清日韩中文字幕在线| 欧美丝袜亚洲另类| 久久国产精品大桥未久av | 狂野欧美激情性xxxx在线观看| 久久久久久久国产电影| 色哟哟·www| 亚洲精品成人av观看孕妇| 欧美日韩一区二区视频在线观看视频在线| av在线播放精品| av专区在线播放| 国产欧美另类精品又又久久亚洲欧美| 高清毛片免费看| 久久国产乱子免费精品| 久久久久国产精品人妻一区二区| 国产精品一区二区性色av| 欧美成人一区二区免费高清观看| 国产精品不卡视频一区二区| 一级片'在线观看视频| 国产久久久一区二区三区| 国产真实伦视频高清在线观看| 下体分泌物呈黄色| 国产成人精品久久久久久| 国产成人免费无遮挡视频| 18+在线观看网站| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 男人舔奶头视频| 精品一区二区三区视频在线| 国产av精品麻豆| 日韩成人av中文字幕在线观看| 精品视频人人做人人爽| 国产成人91sexporn| 晚上一个人看的免费电影| 91aial.com中文字幕在线观看| 夜夜骑夜夜射夜夜干| 亚洲色图av天堂| 一级毛片久久久久久久久女| kizo精华| 亚洲国产欧美在线一区| 97在线人人人人妻| 婷婷色综合大香蕉| 51国产日韩欧美| 日韩欧美 国产精品| 亚洲国产最新在线播放| 亚洲最大成人中文| 偷拍熟女少妇极品色| av视频免费观看在线观看| 国产精品人妻久久久影院| 老师上课跳d突然被开到最大视频| 少妇被粗大猛烈的视频| 韩国av在线不卡| 22中文网久久字幕| 久久久久网色| 人体艺术视频欧美日本| 午夜福利视频精品| 亚洲最大成人中文| 国产精品女同一区二区软件| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级 | 韩国av在线不卡| 国产女主播在线喷水免费视频网站| 日韩欧美精品免费久久| 亚洲色图av天堂| 嫩草影院新地址| 亚洲精华国产精华液的使用体验| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 免费少妇av软件| 久久久久视频综合| 精品亚洲成国产av| 18禁裸乳无遮挡动漫免费视频| 极品少妇高潮喷水抽搐| 99热网站在线观看| 成年av动漫网址| 欧美bdsm另类| 蜜桃亚洲精品一区二区三区| 国产黄频视频在线观看| 建设人人有责人人尽责人人享有的 | 国产探花极品一区二区| 欧美性感艳星| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图 | 精品国产乱码久久久久久小说| 日韩国内少妇激情av| 亚洲精品国产色婷婷电影| 亚洲人成网站在线观看播放| 成人特级av手机在线观看| 国产av一区二区精品久久 | a 毛片基地| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区国产| 中文天堂在线官网| 国产美女午夜福利| 91久久精品电影网| 国产 精品1| 男的添女的下面高潮视频| 国产精品99久久99久久久不卡 | 最近最新中文字幕免费大全7| 免费黄频网站在线观看国产| www.色视频.com| 乱码一卡2卡4卡精品| 久久久久久伊人网av| 极品少妇高潮喷水抽搐| 日韩制服骚丝袜av| 精品人妻一区二区三区麻豆| 成人国产av品久久久| 18禁在线播放成人免费| 国产毛片在线视频| 久久影院123| 伦精品一区二区三区| 观看美女的网站| 黄色一级大片看看| 好男人视频免费观看在线| 国产精品.久久久| 好男人视频免费观看在线| 久久国产精品大桥未久av | 99久国产av精品国产电影| 你懂的网址亚洲精品在线观看| 99久久精品国产国产毛片| 我的老师免费观看完整版| 亚洲欧美中文字幕日韩二区| 日韩一本色道免费dvd| 韩国av在线不卡| 在线观看免费日韩欧美大片 | 草草在线视频免费看| 国产91av在线免费观看| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 国产精品三级大全| 在线播放无遮挡| 精品少妇久久久久久888优播| www.av在线官网国产| 18禁在线无遮挡免费观看视频| 亚洲电影在线观看av| 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| 妹子高潮喷水视频| 在线观看一区二区三区| 直男gayav资源| 五月玫瑰六月丁香| 久热这里只有精品99| 亚洲国产精品一区三区| 亚洲在久久综合| 亚洲成人手机| 亚洲欧美精品自产自拍| 老司机影院成人| 日韩av在线免费看完整版不卡| 国产视频内射| 国产一区二区三区av在线| 91精品国产九色| 99热国产这里只有精品6| 极品少妇高潮喷水抽搐| av又黄又爽大尺度在线免费看| 国产欧美日韩精品一区二区| 激情 狠狠 欧美|