• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique

    2022-09-24 08:02:04ChengYuHuang黃成玉JinYanWang王金延BinZhang張斌ZhenFu付振FangLiu劉芳MaoJunWang王茂俊MengJunLi李夢軍XinWang王鑫ChenWang汪晨JiaYinHe何佳音andYanDongHe何燕冬
    Chinese Physics B 2022年9期
    關(guān)鍵詞:王鑫佳音張斌

    Cheng-Yu Huang(黃成玉) Jin-Yan Wang(王金延) Bin Zhang(張斌) Zhen Fu(付振)Fang Liu(劉芳) Mao-Jun Wang(王茂俊) Meng-Jun Li(李夢軍) Xin Wang(王鑫)Chen Wang(汪晨) Jia-Yin He(何佳音) and Yan-Dong He(何燕冬)

    1School of Integrated Circuits,Peking University,Beijing 100871,China

    2Beijing Chip Identification Technology Co.,Ltd,Beijing 102200,China

    Keywords: atomic layer deposition Al2O3/GaN MOSFET, normally-off, interface/border traps, thermal oxidation-assisted wet etching

    1. Introduction

    GaN, as wide band gap semiconductor material, has a bright future in the field of power semiconductor devices due to its advantages of high thermal conductivity, high breakdown electric field, and high electron saturation drift velocity. Two-dimensional electron gas(2DEG)with high concentration and high mobility can be formed at the AlGaN/GaN interface due to the strong polarization effect in III-nitrides.However, the traditional AlGaN/GaN high electron mobility transistor (HEMT) is a depletion-mode device, Considering the design of driving circuit. single polar power supply, and the safe operation,it is necessary to realize enhancement mode(E-mode)AlGaN/GaN device. Various techniques have been proposed to realize the normally-off operation of AlGaN/GaN HEMTs.[1-4]Among them, the recessed-gate with insulator gate dielectric is a commonly used structure to realize E-mode GaN device because of its high gate voltage swing, low gate leakage current, and high threshold voltage, which has been widely studied for realizing E-mode GaN HEMTs.[4]

    Our research group has developed a self-terminating thermal oxidation-assisted wet etching technique[5]to realize the E-mode MOSFET structure,the device which is simple to fabricate, easy to control, and possesses reliable performance,has broad market prospects. In this work, based on this technique,the enhancement mode Al2O3/GaN MOSFETs of sapphire substrate and Si substrate were developed, respectively.And the characteristics of the two devices were analyzed.The indicators reflecting the significant improvement in the sapphire substrate device are maximum drain current (Idmax),field-effect mobility (μFEmax), and on-state resistance (Ron).The experimental results show that the difference in device performance depends on the difference in Al2O3/GaN interface state. The interface/border trap density in the Si substrate device is one order of magnitude higher than that in the sapphire substrate device. The border traps in Al2O3dielectric and the interface traps in Al2O3/GaN gave a significant effect on device channel mobility. The quality of GaN grown on Si is not so good as that grown on sapphire.

    2. Device fabrication

    2.1. Sapphire substrate device

    The AlGaN/GaN epitaxial structure studied here were grown on a 3-in(0 0 0 1)sapphire substrate by metal organic chemical vapor deposition(MOCVD)(1 in=2.54 cm). In the AlGaN/GaN epitaxial structure, the GaN buffer layer is 1.5-μm thick, GaN channel layer is 120-nm thick, AlN spacer layer is 1-nm thick,Al0.23Ga0.77N barrier layer is 18-nm thick,and GaN cap layer is 2-nm thick. Its structure is shown in Fig.1(a).

    2.2. Si substrate device

    The epitaxial structure studied here was grown on a 3-in p-type(111)Si substrate by metal-organic chemical vapor deposition (MOCVD). In the epitaxial structure, GaN buffer layer is 1.5-μm thick,GaN channel layer is 120-nm thick,AlN spacer layer is 1-nm thick, Al0.23Ga0.77N barrier layer is 25-nm thick, and GaN cap layer is 2-nm thick. Its structure is shown in Fig.1(b).

    Fig.1. Structure diagram of GaN MOSFET with 25-nm-thick ALD Al2O3,showing(a)sapphire substrate GaN MOSFET with ALD Al2O3 and(b)Si substrate GaN MOSFET with ALD Al2O3.

    Self-terminating thermal oxidation assisted wet etching technique process flows of these two devices were identical.First, the fabrication of devices started with gated recess fabrication, GaN cap layer served as a recess mask.[6]Specifically,650-°C thermal oxidation lasted 50 min,and then 70-°C wet etching in KOH rtook 75 min. And then at 250°C, 18-nm or 25-nm-thick gate dielectric Al2O3layer was deposited by atomic layer deposition(ALD).After removing the dielectric Al2O3at the source and drain positions by buffered oxide etch, Ohmic contact Ti/Al/Ni/Au (20/160/50/100 nm) metal stack was fabricated by e-beam evaporation. Then at 870°C,rapid thermal annealing lasted 30 s. Then,multi-energy F-ion implantation for device isolation was conducted. Finally, a gate region was defined by the lithography technique,and the Ni/Au gate stack was completed by e-beam evaporation.

    3. Results and discussion

    TheID-(VGS-Vth)andID-VDScharacteristics of the GaN MOSFETs with sapphire substrate and Si substrate are shown in Fig.2. The geometrical dimensions of both samples are as follows. A gate-source distanceLGSis 2 μm, a gate lengthLGis 2 μm, a gate-drain distanceLGDis 20 μm, and a gate widthWGis 20 μm. Figure 2(a) shows the transfer characteristics of the GaN MOSFETs with sapphire substrate device and Si substrate device atVds=7 V.TheVgsvoltage increases from-2 V to 7 V for the sapphire substrate device,and from-2 V to 7.5 V for the Si substrate device. The threshold voltage (Vth) is 0.2 V for the sapphire substrate device and 1.5 V for the Si substrate device. The two devices are well pinched off atVGS=0 V.With the upward scanning of gate voltageVGS,drain currentIDof sapphire substrate device rises rapidly,indicating better gate control performance of sapphire substrate device. The maximum drain currentIdmaxis~401 mA/mm and the maximum transconductanceGmis~75 mS/mm for sapphire substrate device, while theIdmaxandGmare~228 mA/mm and~55 mS/mm for the Si substrate device. Thus,it can be seen that comparing with the Si substrate device,the maximum drain current of sapphire substrate device is 1.76 times that of silicon substrate device. The output characteristics of the sapphire substrate device and Si substrate device withVGSscanning from 0 V to 8 V in steps of 2 V are shown in Fig. 2(b). The performance of sapphire substrate device is improved obviously. UnderVGS=8 V andVDS=10 V bias, GaN MOSFET of sapphire substrate has a very high drain current (401 mA/mm), and a very small onresistance(15.2 Ω·mm),in comparison with the the maximum drain current of 228 mA/mm and on-resistance of 21.2 Ω·mm of the Si substrate device.

    It is obvious that the performance of the sapphire substrate device is better than that of Si substrate device. The difference in performance between the sapphire substrate device and Si substrate device is very large. In order to analyze its underlying mechanism, we evaluate the interface trap distribution of the GaN MOSFET with ALD Al2O3gate dielectric by the conductance method.[7]This technique is based on measuring the equivalent parallel conductanceGpof an MOS capacitor as a function of bias voltage and frequency. The MOS capacitor equivalent circuit is shown in Fig.3(a),where theCoxrepresents the capacitance of the gate insulator,andCsrefers to the capacitance of the channel depletion region. TheCitandRitin series describe the capacitance effect of the traps located at the interface between the gate insulator and the GaN buffer layer. TheRittogether with theCitdescribes the time delay(τit)required for the electrons trapped at the interface to form an equilibrium with those in the channel,τit=RitCitbeing the time constant of interface trap,andCitbeing related to the trap density(Dit). Simplified circuit of Fig.3(a)is shown Fig.3(b),whereCpandGpare the equivalent parallel capacitance and conductance respectively.

    Fig.2. The I-V characteristics of the fabricated GaN MOSFET with device dimension of LGS/LG/LGD/WG=2/2/20/20μm: (a)transfer characteristics and(b)output characteristics.

    Fig.3. (a)Equivalent circuit of MOS capacitor with interface trap,and(b)simplified circuit of equivalent circuits of MOS capacitor with interface trap,with Cp and Gp denoting equivalent parallel capacitance and conductance respectively.

    Figure 4 shows the curves ofGp/ω versus ωunder differentVgsfor sapphire substrate device and Si substrate device,

    whereGp/ωnamed the normalized equivalent parallel conductance is the frequency-dependent values ofGpand can be used to calculate the interface trap density,andωis the angular frequency. The measured capacitance and conductance are used to extract the normalized equivalent parallel conductance(Gp/ω). By assuming a single trap level, the relationship ofGp/ω versus ωcan be given below:

    Thefscanning frequencytranges from 1 kHz to 1 MHz in the experiment, the gate bias voltage scanning ranges from-0.5 V to 0.1 V and from 0.8 V to 1.4 V in steps of 0.1 V for the sapphire substrate device and Si substrate device, respectively. The MOS capacitor is biased at the depletion state so that the Fermi level is located within the GaN bandgap for the detection of interface traps. As can be seen from Fig. 4,the peak value ofGp/ωmoves towards high frequency as the bias increases.[8-15]It has similar characteristics to other existing reports. But theGp/ωvalue of Si substrate device is significantly higher than that of sapphire substrate device. For sapphire substrate device, theGp/ωvalue is small when the frequency is below 105s-1, instead,Gp/ωvalue of Si substrate device is still large. Indicating that the deeper level trap of Si substrate device is higher than that of sapphire substrate device.

    Fig. 4. Characteristics curves Gp/ω versus ω of MOS capacitor for (a)sapphire substrate device bias (from -0.5 V to 0.1 V in steps of 0.1 V)and (b) Si substrate device at bias (from 0.8 V to 1.4 V in steps of 0.1 V).Gp/ω is normalized equivalent parallel conductance,with ω being angular frequency.

    As can be seen from Fig.4,the curve obviously has more than one peak value, and the equivalent parallel conductivity model of single-level trap cannot be applied to our system.Hence, in order to quantitatively extract the interface states,theGp/ωcurves are fitted through considering two or three different distributions of trap density levelsDitwith different values of time constantτitby using the following equations:[7]

    whereω=2π fis the radial frequency,Dit1,Dit2,andDit3are the interface trap densities,τit1,τit2,τit3are the time constants of traps. Figure 5 show the experimental and fitting curves of MOS capacitor with sapphire substrate and Si substrate at bias voltages of-0.2 V and 0.9 V,the measurement curves and fitting curves of the two MOS devices are in good consistency with each other. For devices of sapphire substrate,each measured curve can be decomposed into two fitting curves,showing that there are two types of traps at a given bias voltage.For Si substrate device,each measured curve can be decomposed into three fitting curves. It can be seen from Fig.5 that there are at least two peak values in theGp/ωcurve of sapphire substrate device, and at least three peak values in theGp/ωcurve of Si substrate device. TheDitof traps is a function of trap characteristic time constant (τit) and trap energy level as shown in Fig.6. The relationship between the time constants and trap energy level is expressed as

    wherevth= 2.6×107cm/s is the thermal velocity,Nc=2.7×1018cm-3is the effective density states in the GaN conduction band,[15]andσn=1×10-14cm2is the electron capture cross section.

    In Fig. 6, There are two kinds of traps that are continuous distributions of energy level ranging from 0.34 eV to 0.41 eV and from 0.42 eV to 0.46 eV. Both traps should be attributed to common interface states,[10]marked as interface trap in Fig. 6. And the other kinds of traps are very possible to be border trap states, for they exhibit single trap energy level of around 0.48 eV,marked as border trap in Fig.6.Note that the time constant of a border trap is~1.5×10-4s,which is close to our extraction value~1.8×10-4s reported at Al2O3/GaN interface.[13]Moreover, what is observed at SiO2/GaN interface[14,15]is also a similar border trap with a time constant of~1.4×10-4s-3×10-4s. Figure 6 shows the curves of interface trap and border trap extracted from sapphire substrate and Si substrate MOS capacitors, and the increase of measured trap density withVGSincreasing,indicating the apparent differences in trap distribution and density.First, the interface trap concentration of Si substrate device with energy distribution between 0.34 eV and 0.41 eV is nearly one order of magnitude higher than that of sapphire substrate device. The Si substrate device has a wide interface trap distribution,while the sapphire substrate device has no interface trap distribution between 0.4 eV and 0.46 eV. Furthermore,the border trap concentration of Si substrate device is one order of magnitude higher than that of sapphire substrate device.It shows that the quality of GaN grown on Si is inferior to that grown on sapphire substrate.which is likely to be due to the fact that the GaN grown on Si substrate has higher oxygen and nitrogen vacancies.[13,17-20]

    Fig.5.Measured curves and fitting curves of Gp/ω versus ω at VA of-0.2 V and 0.9 V for(a)sapphire substrate device and(b)Si substrate device.

    Fig.6. Trap state density as a function of energy level for both devices.

    It can be seen from Fig.7 that with the gate bias increasing,Si substrate MOS capacitor increases continually and the sapphire substrate MOS capacitor trends to saturate. Therefore,it can be reasonably inferred that the degraded transport performance in the channel of Si substrate device can be attributed to the presence of high density of interface traps and border traps at the Al2O3/GaN interface. The Al2O3/GaN MOS capacitor structure with interface trap and border trap distributions is shown in Fig.8.

    Fig.7. Curves of trap state density of border trap versus Vgs-Vth.

    Fig. 8. Schematic band diagram of Al2O3/GaN MOS capacitor structure with interface trap and border trap distributions.

    In addition,the field effect mobility at low field(μFE)for the sapphire substrate device and the Si substrate device are also extracted in the linear region (Vds=0.1 V) and shown in Fig. 9. When a GaN MIS HEMT device operates in a linear operating region, the drain currentIDScan be expressed as[6,21,22]

    From Eq. (7), the maximum field effect mobility (μFEmax) is calculated to be 176 cm2/V·s for sapphire substrate device and 96 cm2/V·s for Si substrate device. The accumulation capacitance (Cox) is 378 nF/cm2for sapphire substrate and 386 nF/cm2for Si substrate.

    Fig. 9. Curve of extracted field effect mobility (μFE) versus VGS-Vth for sapphire substrate device and for Si substrate device.

    Some authors described the channel mobility on MOSFETs fabricated by wide bandgap semiconductor,[23-26]with consideration of the contributions to the Matthiessen’s rule,made by the bulk mobility factor (μB), the acoustic-phonon scattering (μAC), the surface roughness scattering (μSR), and the Coulomb scattering (μC) due to the presence of interface charges,specifically

    The study of the temperature behavior of the field-effect mobility is a useful method to acquire the information on the insulator/semiconductor interface properties in MOSFETs. Figure 10 shows the experimental results of the field-effect mobilityversus VG-Vthat different measured temperatures(298 K-398 K).As can be seen,the maximum values of these curves decrease as the measured temperature increases.

    Figure 11 shows the peak of the field-effect mobility values as a function of temperature, extracted from Fig. 10. As can be seen, the experimental peak mobility values decrease with the measured temperature increasing. As can be seen from Eq.(8),the limiting factor of the mobility comes from the contributions made by the surface roughness(μSR),the acoustic phonon (μAC), and the Coulomb scattering (μC) contributions.Because the larger value of bulk mobility only has a negligible effect on the total mobility. The sapphire substrate device is mainly responsible for acoustic-phonon scattering,and Si substrate device is mainly responsible for the surface roughness scattering. It should be mentioned that the subthreshold region of theIDS-VDScan be affected by the non-steep change in the gate capacitance. The early ascending part of the curve of field-effect mobilityversusVGS-Vthcan be influenced by the soft gate-capacitance variation. However, forVGS-Vth>1 V the device is in accumulation and the capacitance value is almost constant. Hence, the peak mobility values used in the following are not affect by the capacitance value variation.

    Fig.10. Curves of field-effect mobility(μFE)versus VG-Vth at different temperatures for(a)sapphire substrate device and(b)Si substrate device.

    Fig.11. Peaks of the field-effect mobility values as a function of temperature.

    Figure 12 displays the temperature-dependentC-Vmeasurement results for GaN MOSFET with sapphire substrate and Si substrate, respectively, showing that our model reproduces the characteristic shapes ofC-Vcurves from the MOS capacitors,specifically,a nearly flat part of the voltage above threshold voltage (Vth), a rapid change in the capacitance atVth, and a very small capacitance in the subthreshold region(belowVth). The capacitance for the gate voltage of the voltage above threshold voltage(Vth)is determined by the capacitance of Al2O3layer and is almost bias-independent. The capacitance in the subthreshold region depends on the background doping in the GaN layer. The effect of increasing temperature onC-Vcurve is a reduction of the slope caused by the increased Debye length and the thermal broadening of the Fermi-Dirac distribution.[27]The slope of sapphire substrate device,KSapphire,is greater than that of Si substrate device,KSias shown in Fig. 12. The higher the trap concentration, the lower the slope is. It shows that the trap concentration of the interface of Si substrate device is higher that of sapphire substrate device.

    On the other hand, the increasing in temperature led theC-Vcurves to shift positively by around 0.04 V for sapphire substrate device. But the increasing in temperature results in a negative shift ofC-Vcurves by around 0.2 V for Si substrate device as shown in Fig.13. The temperature-dependent voltage shift is attributed to the depletion and redistribution of carriers.[28]The negative shift of theC-Vcurve of the Si substrate device indicates that the shallow level trapped electrons are detrapping and a positive charge appears. The larger the trap charge concentration, the larger theVthshift is, indicating the excellent Al2O3/GaN interface quality for sapphire substrate device.

    Fig. 12. The VGS-dependent gate capacitance for (a) sapphire substrate device and(b)Si substrate device at various temperatures.

    Fig.13. The Vth shifts versus temperature for sapphire substrate and Si substrate.

    To further study the crystalline quality of the GaN epilayers on sapphire substrate and Si substrate,the crystal quality of GaN is analyzed by high resolution x-ray diffraction measurements.The measurement results of symmetric(002)plane and asymmetric(102)plane of GaN epilayer are shown in Table 1.The full width at half maximum(FWHM)values of the(002)and(102)planes for the GaN of sapphire substrate are 316 arcsec and 613 arcsec,while those for the GaN of Si substrate are 688 arcsec and 941 arcsec respectively. The FWHM value of(002)plane for the GaN of Si substrate is about twice that for the GaN of sapphire substrate,and the FWHM value of(102)plane for the GaN of Si substrate is about one and a half times that for the GaN of sapphire substrate. Because the FWHM value is associated with threading dislocation density in GaN epilayer,this significant difference FWHM value confirms that quality of GaN of sapphire substrate is better than that of GaN of Si substrate.One of the biggest challenges is the large stress caused by the thermal mismatch between GaN epilayer and Si substrate.The large lattice mismatch between GaN and Si will result in high density dislocations. Owing to the existence of oxygen,silicon impurities and nitrogen vacancies,the quality of GaN grown on Si is not good.[29,30]

    Table 1. X-ray diffraction measurement results of GaN epilayer on sapphire and Si.

    By comparing the fabrication of the sapphire substrate device with the fabrication of the Si substrate device, it can be assumed that a self-terminating gate recess technique used for recessed GaN MOSFET fabrication can effectively inhibit the generation of interface and border trap at the Al2O3/GaN interface, thus improving the device performance. The selfterminating thermal oxidation assisted wet etching technique is shown to be effective and feasible. At the same time, the technique is also shown to cause different property changes in gallium nitride materials with different substrates. This finding can be used as a reference for further optimizing the Si substrate devices.

    4. Conclusions

    The improved GaN MOSFET device with sapphire and silicon substrates are developed based on our proposed the thermal oxidation-assisted self-terminating gate recess technique, and two kinds of devices are systematically studied.The experimental results demonstrate that the performance index of the enhanced device on sapphire substrate in terms ofIdmax(~76%),μFEmax(~83%) as well asRon(~39%) is significantly improved in comparison with that of the device on silicon substrate. Moreover,the frequency-dependent conductance measurement is used to evaluate the performance of the device. The results show that the improvement of the device performance on sapphire substrate should be attributed to the significant suppression of self-terminated groove gate technology that significantly inhibits the Al2O3/GaN interface and border trap,and reduces the time constant of interface trap to~1×10-6s-8×10-6s and the time constant of border trap to~1.6×10-4s-3×10-4s, respectively. Our experimental results demonstrate that(i)the Al2O3/GaN interface traps have a significant influence on the performance of device, (ii) the self-terminating gate recess technique can effectively suppress the generation of interface/border traps of at Al2O3/GaN interface,thus improving the performance of the device,(iii)the improving of performances varies according to GaN materials with different substrates.The research results in this work can provid a reference for further optimizing the performances of silicon substrate devices.

    Acknowledgements

    The authors would like to thank the National Key Micrometer/Nanometer Processing Laboratory, Atomic Nanomaterials and Equipment Co. Ltd (ANAME) and the Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO)for help in device fabrication.

    Project supported by the Research on Key Techniques in Reliability of Low Power Sensor Chip for IOTIPS and the Technology Project of Headquarters, State Grid Corporation of China(Grant No.5700-202041397A-0-0-00).

    猜你喜歡
    王鑫佳音張斌
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    再續(xù)華教使命,網(wǎng)絡課堂傳佳音
    華人時刊(2022年15期)2022-10-27 09:05:52
    秦怡:百年風雨,從容笑對
    質(zhì)量守恒定律的應用
    Sawtooth-like oscillations and steady states caused by the m/n = 2/1 double tearing mode
    Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution
    一路有你都是歌
    當代音樂(2021年2期)2021-03-18 09:39:08
    沈佳音 丁逸菲 金燕
    《花之戀》
    當國歌響起
    北方音樂(2019年19期)2019-11-29 07:19:36
    两性午夜刺激爽爽歪歪视频在线观看 | av网站在线播放免费| 国产高清国产精品国产三级| 国产老妇伦熟女老妇高清| 一区二区三区激情视频| 欧美在线黄色| 狠狠婷婷综合久久久久久88av| 人成视频在线观看免费观看| 婷婷丁香在线五月| 9191精品国产免费久久| av天堂在线播放| 少妇被粗大的猛进出69影院| 18禁美女被吸乳视频| 免费观看a级毛片全部| 亚洲国产中文字幕在线视频| 757午夜福利合集在线观看| 成人国产一区最新在线观看| 在线天堂中文资源库| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区黑人| 国产亚洲精品久久久久5区| 露出奶头的视频| 欧美激情极品国产一区二区三区| 他把我摸到了高潮在线观看 | 一本—道久久a久久精品蜜桃钙片| 欧美日韩福利视频一区二区| 日本一区二区免费在线视频| 亚洲伊人久久精品综合| 亚洲伊人久久精品综合| 法律面前人人平等表现在哪些方面| 精品卡一卡二卡四卡免费| 亚洲精品在线美女| 深夜精品福利| 欧美乱妇无乱码| 国产激情久久老熟女| 久久精品国产综合久久久| 欧美日韩亚洲高清精品| 国产在线免费精品| 国产成人av教育| 精品国产乱子伦一区二区三区| 侵犯人妻中文字幕一二三四区| 国产又爽黄色视频| 精品国产乱码久久久久久男人| 视频区图区小说| 9色porny在线观看| 精品一区二区三区视频在线观看免费 | www.精华液| 国产在视频线精品| 国产精品久久久av美女十八| 亚洲av电影在线进入| 香蕉国产在线看| √禁漫天堂资源中文www| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成av片中文字幕在线观看| 女性生殖器流出的白浆| 菩萨蛮人人尽说江南好唐韦庄| 日本av手机在线免费观看| 黄色视频在线播放观看不卡| 欧美精品高潮呻吟av久久| 亚洲人成77777在线视频| 一区在线观看完整版| 久久午夜综合久久蜜桃| 精品一区二区三区视频在线观看免费 | 我的亚洲天堂| 每晚都被弄得嗷嗷叫到高潮| 大香蕉久久网| av片东京热男人的天堂| 757午夜福利合集在线观看| 天天影视国产精品| 亚洲黑人精品在线| 美女主播在线视频| 久久久久视频综合| 黄色丝袜av网址大全| 国产99久久九九免费精品| 国精品久久久久久国模美| av国产精品久久久久影院| 午夜91福利影院| 色老头精品视频在线观看| 一边摸一边抽搐一进一出视频| 亚洲专区国产一区二区| 好男人电影高清在线观看| 久久狼人影院| 一二三四社区在线视频社区8| 欧美日韩亚洲综合一区二区三区_| 色精品久久人妻99蜜桃| 后天国语完整版免费观看| 99热网站在线观看| 国产高清国产精品国产三级| 亚洲av片天天在线观看| 久热爱精品视频在线9| 大型黄色视频在线免费观看| 男女无遮挡免费网站观看| 国产精品免费一区二区三区在线 | 每晚都被弄得嗷嗷叫到高潮| 美女午夜性视频免费| 日韩欧美一区二区三区在线观看 | 丝瓜视频免费看黄片| 精品亚洲成国产av| 另类亚洲欧美激情| 免费高清在线观看日韩| 亚洲国产欧美在线一区| 麻豆成人av在线观看| 在线永久观看黄色视频| 91国产中文字幕| 丰满人妻熟妇乱又伦精品不卡| www日本在线高清视频| 免费少妇av软件| 99国产综合亚洲精品| 亚洲人成伊人成综合网2020| 五月天丁香电影| 精品一品国产午夜福利视频| 成人手机av| 日本av手机在线免费观看| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 中文字幕精品免费在线观看视频| 国产不卡一卡二| 99国产精品一区二区蜜桃av | 日韩免费高清中文字幕av| 国产精品影院久久| 免费观看人在逋| 国产麻豆69| 色播在线永久视频| 日韩视频在线欧美| 精品福利永久在线观看| 黑人欧美特级aaaaaa片| 亚洲全国av大片| 久久久水蜜桃国产精品网| 十八禁人妻一区二区| 国产亚洲午夜精品一区二区久久| 手机成人av网站| 久热这里只有精品99| 1024视频免费在线观看| 中文字幕av电影在线播放| 嫩草影视91久久| 日韩熟女老妇一区二区性免费视频| 国产国语露脸激情在线看| 成人精品一区二区免费| 亚洲国产毛片av蜜桃av| 一级,二级,三级黄色视频| 久久国产精品人妻蜜桃| 久久久久久久大尺度免费视频| 成年人免费黄色播放视频| 99riav亚洲国产免费| 国产精品亚洲av一区麻豆| 国产aⅴ精品一区二区三区波| 亚洲 欧美一区二区三区| 亚洲av片天天在线观看| 99国产精品一区二区三区| netflix在线观看网站| 亚洲自偷自拍图片 自拍| 国产视频一区二区在线看| 国产精品免费视频内射| 伊人久久大香线蕉亚洲五| 国产又爽黄色视频| 久久久水蜜桃国产精品网| 在线看a的网站| 欧美乱妇无乱码| 久久久国产一区二区| 人人妻人人添人人爽欧美一区卜| 欧美 亚洲 国产 日韩一| 欧美日韩黄片免| 国产高清激情床上av| 欧美日韩亚洲综合一区二区三区_| 免费人妻精品一区二区三区视频| 国产区一区二久久| 亚洲 欧美一区二区三区| 97人妻天天添夜夜摸| 丝袜喷水一区| 成年人免费黄色播放视频| 亚洲五月色婷婷综合| 亚洲五月色婷婷综合| 亚洲 国产 在线| 黄片小视频在线播放| 久久人妻福利社区极品人妻图片| 成人手机av| 大片电影免费在线观看免费| 色播在线永久视频| 国产在线观看jvid| 亚洲av欧美aⅴ国产| www.熟女人妻精品国产| 自线自在国产av| 老司机影院毛片| 亚洲成国产人片在线观看| 色婷婷久久久亚洲欧美| 人人妻人人爽人人添夜夜欢视频| 性少妇av在线| 丰满少妇做爰视频| 国产又色又爽无遮挡免费看| 精品国产乱码久久久久久男人| 亚洲精华国产精华精| 亚洲精品中文字幕在线视频| 国产精品1区2区在线观看. | 69精品国产乱码久久久| 国产精品秋霞免费鲁丝片| 国产片内射在线| 成人精品一区二区免费| 精品国产亚洲在线| 日韩欧美一区视频在线观看| 天堂中文最新版在线下载| 一级片免费观看大全| 丝袜美腿诱惑在线| 视频在线观看一区二区三区| 亚洲精品乱久久久久久| 啦啦啦中文免费视频观看日本| 亚洲午夜精品一区,二区,三区| 亚洲精品在线观看二区| 国产在线免费精品| 美女扒开内裤让男人捅视频| 18禁观看日本| 久久亚洲真实| 婷婷丁香在线五月| 亚洲欧美一区二区三区久久| 国产亚洲av高清不卡| 久久久国产欧美日韩av| 亚洲成人国产一区在线观看| 一夜夜www| 99精品久久久久人妻精品| 高清在线国产一区| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕在线视频| 一区二区日韩欧美中文字幕| 黑丝袜美女国产一区| 精品国产一区二区久久| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 亚洲av日韩精品久久久久久密| 高清av免费在线| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| av片东京热男人的天堂| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| 精品久久久精品久久久| 国产在线免费精品| 黄片播放在线免费| 国产精品久久久人人做人人爽| 两人在一起打扑克的视频| 久久久久久免费高清国产稀缺| 久久人妻福利社区极品人妻图片| 国产精品 欧美亚洲| 一级黄色大片毛片| 一区二区日韩欧美中文字幕| 国产三级黄色录像| 国产麻豆69| 亚洲av片天天在线观看| 999久久久国产精品视频| 人妻 亚洲 视频| 老鸭窝网址在线观看| 色尼玛亚洲综合影院| 老司机在亚洲福利影院| 一进一出好大好爽视频| 大码成人一级视频| 亚洲国产成人一精品久久久| 嫁个100分男人电影在线观看| 欧美激情久久久久久爽电影 | 国产精品二区激情视频| 中文欧美无线码| 91精品国产国语对白视频| 国产精品麻豆人妻色哟哟久久| 一级片免费观看大全| 天堂8中文在线网| 老熟妇仑乱视频hdxx| 国产成人精品在线电影| 中文字幕色久视频| 免费日韩欧美在线观看| 美女高潮喷水抽搐中文字幕| 国产麻豆69| 精品久久久精品久久久| 热99久久久久精品小说推荐| 久久香蕉激情| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人免费av在线播放| 国产成人精品久久二区二区91| 丰满人妻熟妇乱又伦精品不卡| 九色亚洲精品在线播放| 蜜桃在线观看..| 大香蕉久久成人网| 亚洲情色 制服丝袜| 国产成人欧美| 美女高潮到喷水免费观看| 桃花免费在线播放| 免费日韩欧美在线观看| 久久精品国产亚洲av香蕉五月 | 极品教师在线免费播放| 欧美中文综合在线视频| 飞空精品影院首页| 女人久久www免费人成看片| 最黄视频免费看| 在线观看免费高清a一片| 欧美日韩黄片免| 国产精品九九99| 菩萨蛮人人尽说江南好唐韦庄| 一边摸一边抽搐一进一出视频| 久久精品熟女亚洲av麻豆精品| 久久九九热精品免费| 中文字幕高清在线视频| 日本欧美视频一区| 欧美成狂野欧美在线观看| 50天的宝宝边吃奶边哭怎么回事| 建设人人有责人人尽责人人享有的| 两个人免费观看高清视频| 一区二区三区精品91| 黄色丝袜av网址大全| 国产精品99久久99久久久不卡| 亚洲av美国av| 午夜老司机福利片| 超碰成人久久| 欧美激情 高清一区二区三区| 三级毛片av免费| 下体分泌物呈黄色| av网站免费在线观看视频| 精品国产国语对白av| 午夜福利乱码中文字幕| 久久久国产成人免费| 免费在线观看日本一区| 亚洲国产成人一精品久久久| 久久毛片免费看一区二区三区| 一夜夜www| svipshipincom国产片| 国产又爽黄色视频| 人妻久久中文字幕网| 久久久久久久大尺度免费视频| 日韩欧美一区视频在线观看| 日韩大片免费观看网站| tube8黄色片| 人人妻人人澡人人看| 热99国产精品久久久久久7| 深夜精品福利| 欧美成狂野欧美在线观看| 少妇的丰满在线观看| 在线观看66精品国产| 伊人久久大香线蕉亚洲五| 在线天堂中文资源库| 一本—道久久a久久精品蜜桃钙片| 久久精品国产a三级三级三级| 欧美在线一区亚洲| 少妇猛男粗大的猛烈进出视频| 99国产精品免费福利视频| 亚洲免费av在线视频| 精品一区二区三区视频在线观看免费 | 99国产精品一区二区蜜桃av | 免费看十八禁软件| 啦啦啦中文免费视频观看日本| 少妇精品久久久久久久| 俄罗斯特黄特色一大片| 色综合婷婷激情| avwww免费| 一区在线观看完整版| 国产精品久久久久久精品古装| 国产成人精品在线电影| 伦理电影免费视频| 国产免费av片在线观看野外av| 一区二区三区精品91| 黑人操中国人逼视频| 狠狠精品人妻久久久久久综合| av福利片在线| 国产精品一区二区精品视频观看| 日韩人妻精品一区2区三区| 久久99热这里只频精品6学生| 午夜福利视频在线观看免费| 国产单亲对白刺激| 另类精品久久| 99精品久久久久人妻精品| 高清欧美精品videossex| 免费观看人在逋| 我的亚洲天堂| av有码第一页| 成人18禁高潮啪啪吃奶动态图| 另类亚洲欧美激情| 国产97色在线日韩免费| 丝袜喷水一区| 人人妻人人澡人人看| 亚洲av成人不卡在线观看播放网| 一区二区三区精品91| 在线观看www视频免费| 天堂中文最新版在线下载| 不卡av一区二区三区| 十八禁网站网址无遮挡| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 搡老岳熟女国产| 久久久国产一区二区| 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| a级毛片黄视频| 亚洲国产欧美一区二区综合| 在线观看舔阴道视频| 香蕉丝袜av| 久久久久久久久免费视频了| 国产三级黄色录像| 国产人伦9x9x在线观看| 捣出白浆h1v1| 脱女人内裤的视频| 亚洲精品一二三| 天堂8中文在线网| 亚洲精品久久成人aⅴ小说| 国产精品久久电影中文字幕 | 日韩一区二区三区影片| 黄片大片在线免费观看| 岛国在线观看网站| 啦啦啦 在线观看视频| 亚洲精品国产一区二区精华液| 久久久久久久大尺度免费视频| 嫁个100分男人电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久国产精品大桥未久av| 人妻久久中文字幕网| 日韩欧美一区视频在线观看| 18禁裸乳无遮挡动漫免费视频| 欧美在线黄色| 99久久精品国产亚洲精品| 国产男靠女视频免费网站| 欧美乱妇无乱码| 美国免费a级毛片| 日本精品一区二区三区蜜桃| 女警被强在线播放| 老熟妇仑乱视频hdxx| 亚洲伊人久久精品综合| 在线亚洲精品国产二区图片欧美| 国产区一区二久久| 久久久久久久大尺度免费视频| 午夜福利在线免费观看网站| 热99国产精品久久久久久7| 成人亚洲精品一区在线观看| 亚洲人成电影观看| 免费一级毛片在线播放高清视频 | 亚洲中文字幕日韩| 极品少妇高潮喷水抽搐| 天堂动漫精品| 一本色道久久久久久精品综合| 亚洲国产欧美日韩在线播放| 日韩有码中文字幕| 国产精品98久久久久久宅男小说| 国产1区2区3区精品| tube8黄色片| 国产成人啪精品午夜网站| 午夜精品国产一区二区电影| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美日韩在线播放| 18在线观看网站| 国产一区二区三区视频了| 夜夜爽天天搞| 亚洲国产欧美日韩在线播放| 欧美日韩成人在线一区二区| 一级黄色大片毛片| 欧美日韩视频精品一区| 黑人巨大精品欧美一区二区mp4| 久久久水蜜桃国产精品网| 国产成人精品久久二区二区免费| 美女高潮喷水抽搐中文字幕| 在线观看免费高清a一片| 午夜福利,免费看| 日韩大码丰满熟妇| 中文亚洲av片在线观看爽 | 19禁男女啪啪无遮挡网站| 精品卡一卡二卡四卡免费| 成年人免费黄色播放视频| 欧美久久黑人一区二区| 久久精品人人爽人人爽视色| 精品国内亚洲2022精品成人 | 纯流量卡能插随身wifi吗| 在线看a的网站| 麻豆成人av在线观看| 国内毛片毛片毛片毛片毛片| 黄色怎么调成土黄色| 成在线人永久免费视频| 91麻豆av在线| 国产无遮挡羞羞视频在线观看| 国产精品 国内视频| 亚洲精品在线美女| a在线观看视频网站| 在线 av 中文字幕| 这个男人来自地球电影免费观看| 少妇 在线观看| av福利片在线| 久久久久久人人人人人| 久久精品国产99精品国产亚洲性色 | 国产欧美亚洲国产| 天堂8中文在线网| 热99久久久久精品小说推荐| 91精品国产国语对白视频| 国产欧美日韩精品亚洲av| 国产国语露脸激情在线看| 少妇精品久久久久久久| 国产成人欧美在线观看 | 国产在线观看jvid| 老司机午夜十八禁免费视频| 国产精品影院久久| 丰满人妻熟妇乱又伦精品不卡| h视频一区二区三区| 怎么达到女性高潮| 亚洲成av片中文字幕在线观看| 丰满少妇做爰视频| 成人免费观看视频高清| 欧美日韩精品网址| 亚洲av欧美aⅴ国产| 不卡av一区二区三区| 国产成人影院久久av| 9热在线视频观看99| 久久香蕉激情| 三上悠亚av全集在线观看| 超色免费av| 久久国产精品影院| 丝袜人妻中文字幕| 久久久久久久大尺度免费视频| 成年人黄色毛片网站| 欧美日韩av久久| 精品熟女少妇八av免费久了| 国产无遮挡羞羞视频在线观看| 国产区一区二久久| 午夜福利视频在线观看免费| 制服人妻中文乱码| 欧美黑人精品巨大| 国产在线精品亚洲第一网站| 亚洲精品美女久久av网站| 在线播放国产精品三级| 精品久久久久久久毛片微露脸| 免费在线观看日本一区| 狠狠狠狠99中文字幕| 五月天丁香电影| 久9热在线精品视频| 999久久久精品免费观看国产| 中文字幕另类日韩欧美亚洲嫩草| 精品国产超薄肉色丝袜足j| av超薄肉色丝袜交足视频| av免费在线观看网站| 国产午夜精品久久久久久| 国产单亲对白刺激| 18禁观看日本| tocl精华| 又紧又爽又黄一区二区| 国产免费现黄频在线看| tocl精华| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩另类电影网站| 国产成人系列免费观看| 久久久国产精品麻豆| 成人18禁在线播放| 自线自在国产av| 啪啪无遮挡十八禁网站| 日日爽夜夜爽网站| 久久天堂一区二区三区四区| 99久久99久久久精品蜜桃| 91成年电影在线观看| 亚洲欧美精品综合一区二区三区| 亚洲av日韩精品久久久久久密| 老司机在亚洲福利影院| 亚洲av欧美aⅴ国产| 国产欧美日韩一区二区三区在线| www.精华液| 精品人妻在线不人妻| 亚洲av片天天在线观看| 精品视频人人做人人爽| 欧美中文综合在线视频| 国产主播在线观看一区二区| 午夜日韩欧美国产| 黄色视频,在线免费观看| 日韩一区二区三区影片| 一区在线观看完整版| av欧美777| 国产精品电影一区二区三区 | 精品免费久久久久久久清纯 | 99久久人妻综合| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费视频网站a站| 黄色毛片三级朝国网站| 国产免费现黄频在线看| 中文亚洲av片在线观看爽 | bbb黄色大片| 亚洲午夜精品一区,二区,三区| 亚洲精品自拍成人| 下体分泌物呈黄色| 日韩一卡2卡3卡4卡2021年| 亚洲第一青青草原| 人人妻人人添人人爽欧美一区卜| 天天操日日干夜夜撸| 下体分泌物呈黄色| 日本vs欧美在线观看视频| 999精品在线视频| 法律面前人人平等表现在哪些方面| 人人妻人人澡人人爽人人夜夜| 一区二区三区乱码不卡18| 两性夫妻黄色片| 91字幕亚洲| 久久国产精品人妻蜜桃| 人妻 亚洲 视频| 国产精品一区二区免费欧美| 久久久久久久精品吃奶| 黄色成人免费大全| 一本色道久久久久久精品综合| h视频一区二区三区| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 亚洲中文日韩欧美视频| 国产精品国产av在线观看| 老司机午夜十八禁免费视频| 亚洲五月色婷婷综合| 高清毛片免费观看视频网站 | 男男h啪啪无遮挡| 51午夜福利影视在线观看| 久久久久久人人人人人| 搡老乐熟女国产| 亚洲精品国产精品久久久不卡| 黑人巨大精品欧美一区二区mp4| 精品久久蜜臀av无| 精品人妻熟女毛片av久久网站| 啦啦啦在线免费观看视频4| 一个人免费在线观看的高清视频| 午夜免费鲁丝| 午夜福利免费观看在线|