• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique

    2022-09-24 08:02:04ChengYuHuang黃成玉JinYanWang王金延BinZhang張斌ZhenFu付振FangLiu劉芳MaoJunWang王茂俊MengJunLi李夢軍XinWang王鑫ChenWang汪晨JiaYinHe何佳音andYanDongHe何燕冬
    Chinese Physics B 2022年9期
    關(guān)鍵詞:王鑫佳音張斌

    Cheng-Yu Huang(黃成玉) Jin-Yan Wang(王金延) Bin Zhang(張斌) Zhen Fu(付振)Fang Liu(劉芳) Mao-Jun Wang(王茂俊) Meng-Jun Li(李夢軍) Xin Wang(王鑫)Chen Wang(汪晨) Jia-Yin He(何佳音) and Yan-Dong He(何燕冬)

    1School of Integrated Circuits,Peking University,Beijing 100871,China

    2Beijing Chip Identification Technology Co.,Ltd,Beijing 102200,China

    Keywords: atomic layer deposition Al2O3/GaN MOSFET, normally-off, interface/border traps, thermal oxidation-assisted wet etching

    1. Introduction

    GaN, as wide band gap semiconductor material, has a bright future in the field of power semiconductor devices due to its advantages of high thermal conductivity, high breakdown electric field, and high electron saturation drift velocity. Two-dimensional electron gas(2DEG)with high concentration and high mobility can be formed at the AlGaN/GaN interface due to the strong polarization effect in III-nitrides.However, the traditional AlGaN/GaN high electron mobility transistor (HEMT) is a depletion-mode device, Considering the design of driving circuit. single polar power supply, and the safe operation,it is necessary to realize enhancement mode(E-mode)AlGaN/GaN device. Various techniques have been proposed to realize the normally-off operation of AlGaN/GaN HEMTs.[1-4]Among them, the recessed-gate with insulator gate dielectric is a commonly used structure to realize E-mode GaN device because of its high gate voltage swing, low gate leakage current, and high threshold voltage, which has been widely studied for realizing E-mode GaN HEMTs.[4]

    Our research group has developed a self-terminating thermal oxidation-assisted wet etching technique[5]to realize the E-mode MOSFET structure,the device which is simple to fabricate, easy to control, and possesses reliable performance,has broad market prospects. In this work, based on this technique,the enhancement mode Al2O3/GaN MOSFETs of sapphire substrate and Si substrate were developed, respectively.And the characteristics of the two devices were analyzed.The indicators reflecting the significant improvement in the sapphire substrate device are maximum drain current (Idmax),field-effect mobility (μFEmax), and on-state resistance (Ron).The experimental results show that the difference in device performance depends on the difference in Al2O3/GaN interface state. The interface/border trap density in the Si substrate device is one order of magnitude higher than that in the sapphire substrate device. The border traps in Al2O3dielectric and the interface traps in Al2O3/GaN gave a significant effect on device channel mobility. The quality of GaN grown on Si is not so good as that grown on sapphire.

    2. Device fabrication

    2.1. Sapphire substrate device

    The AlGaN/GaN epitaxial structure studied here were grown on a 3-in(0 0 0 1)sapphire substrate by metal organic chemical vapor deposition(MOCVD)(1 in=2.54 cm). In the AlGaN/GaN epitaxial structure, the GaN buffer layer is 1.5-μm thick, GaN channel layer is 120-nm thick, AlN spacer layer is 1-nm thick,Al0.23Ga0.77N barrier layer is 18-nm thick,and GaN cap layer is 2-nm thick. Its structure is shown in Fig.1(a).

    2.2. Si substrate device

    The epitaxial structure studied here was grown on a 3-in p-type(111)Si substrate by metal-organic chemical vapor deposition (MOCVD). In the epitaxial structure, GaN buffer layer is 1.5-μm thick,GaN channel layer is 120-nm thick,AlN spacer layer is 1-nm thick, Al0.23Ga0.77N barrier layer is 25-nm thick, and GaN cap layer is 2-nm thick. Its structure is shown in Fig.1(b).

    Fig.1. Structure diagram of GaN MOSFET with 25-nm-thick ALD Al2O3,showing(a)sapphire substrate GaN MOSFET with ALD Al2O3 and(b)Si substrate GaN MOSFET with ALD Al2O3.

    Self-terminating thermal oxidation assisted wet etching technique process flows of these two devices were identical.First, the fabrication of devices started with gated recess fabrication, GaN cap layer served as a recess mask.[6]Specifically,650-°C thermal oxidation lasted 50 min,and then 70-°C wet etching in KOH rtook 75 min. And then at 250°C, 18-nm or 25-nm-thick gate dielectric Al2O3layer was deposited by atomic layer deposition(ALD).After removing the dielectric Al2O3at the source and drain positions by buffered oxide etch, Ohmic contact Ti/Al/Ni/Au (20/160/50/100 nm) metal stack was fabricated by e-beam evaporation. Then at 870°C,rapid thermal annealing lasted 30 s. Then,multi-energy F-ion implantation for device isolation was conducted. Finally, a gate region was defined by the lithography technique,and the Ni/Au gate stack was completed by e-beam evaporation.

    3. Results and discussion

    TheID-(VGS-Vth)andID-VDScharacteristics of the GaN MOSFETs with sapphire substrate and Si substrate are shown in Fig.2. The geometrical dimensions of both samples are as follows. A gate-source distanceLGSis 2 μm, a gate lengthLGis 2 μm, a gate-drain distanceLGDis 20 μm, and a gate widthWGis 20 μm. Figure 2(a) shows the transfer characteristics of the GaN MOSFETs with sapphire substrate device and Si substrate device atVds=7 V.TheVgsvoltage increases from-2 V to 7 V for the sapphire substrate device,and from-2 V to 7.5 V for the Si substrate device. The threshold voltage (Vth) is 0.2 V for the sapphire substrate device and 1.5 V for the Si substrate device. The two devices are well pinched off atVGS=0 V.With the upward scanning of gate voltageVGS,drain currentIDof sapphire substrate device rises rapidly,indicating better gate control performance of sapphire substrate device. The maximum drain currentIdmaxis~401 mA/mm and the maximum transconductanceGmis~75 mS/mm for sapphire substrate device, while theIdmaxandGmare~228 mA/mm and~55 mS/mm for the Si substrate device. Thus,it can be seen that comparing with the Si substrate device,the maximum drain current of sapphire substrate device is 1.76 times that of silicon substrate device. The output characteristics of the sapphire substrate device and Si substrate device withVGSscanning from 0 V to 8 V in steps of 2 V are shown in Fig. 2(b). The performance of sapphire substrate device is improved obviously. UnderVGS=8 V andVDS=10 V bias, GaN MOSFET of sapphire substrate has a very high drain current (401 mA/mm), and a very small onresistance(15.2 Ω·mm),in comparison with the the maximum drain current of 228 mA/mm and on-resistance of 21.2 Ω·mm of the Si substrate device.

    It is obvious that the performance of the sapphire substrate device is better than that of Si substrate device. The difference in performance between the sapphire substrate device and Si substrate device is very large. In order to analyze its underlying mechanism, we evaluate the interface trap distribution of the GaN MOSFET with ALD Al2O3gate dielectric by the conductance method.[7]This technique is based on measuring the equivalent parallel conductanceGpof an MOS capacitor as a function of bias voltage and frequency. The MOS capacitor equivalent circuit is shown in Fig.3(a),where theCoxrepresents the capacitance of the gate insulator,andCsrefers to the capacitance of the channel depletion region. TheCitandRitin series describe the capacitance effect of the traps located at the interface between the gate insulator and the GaN buffer layer. TheRittogether with theCitdescribes the time delay(τit)required for the electrons trapped at the interface to form an equilibrium with those in the channel,τit=RitCitbeing the time constant of interface trap,andCitbeing related to the trap density(Dit). Simplified circuit of Fig.3(a)is shown Fig.3(b),whereCpandGpare the equivalent parallel capacitance and conductance respectively.

    Fig.2. The I-V characteristics of the fabricated GaN MOSFET with device dimension of LGS/LG/LGD/WG=2/2/20/20μm: (a)transfer characteristics and(b)output characteristics.

    Fig.3. (a)Equivalent circuit of MOS capacitor with interface trap,and(b)simplified circuit of equivalent circuits of MOS capacitor with interface trap,with Cp and Gp denoting equivalent parallel capacitance and conductance respectively.

    Figure 4 shows the curves ofGp/ω versus ωunder differentVgsfor sapphire substrate device and Si substrate device,

    whereGp/ωnamed the normalized equivalent parallel conductance is the frequency-dependent values ofGpand can be used to calculate the interface trap density,andωis the angular frequency. The measured capacitance and conductance are used to extract the normalized equivalent parallel conductance(Gp/ω). By assuming a single trap level, the relationship ofGp/ω versus ωcan be given below:

    Thefscanning frequencytranges from 1 kHz to 1 MHz in the experiment, the gate bias voltage scanning ranges from-0.5 V to 0.1 V and from 0.8 V to 1.4 V in steps of 0.1 V for the sapphire substrate device and Si substrate device, respectively. The MOS capacitor is biased at the depletion state so that the Fermi level is located within the GaN bandgap for the detection of interface traps. As can be seen from Fig. 4,the peak value ofGp/ωmoves towards high frequency as the bias increases.[8-15]It has similar characteristics to other existing reports. But theGp/ωvalue of Si substrate device is significantly higher than that of sapphire substrate device. For sapphire substrate device, theGp/ωvalue is small when the frequency is below 105s-1, instead,Gp/ωvalue of Si substrate device is still large. Indicating that the deeper level trap of Si substrate device is higher than that of sapphire substrate device.

    Fig. 4. Characteristics curves Gp/ω versus ω of MOS capacitor for (a)sapphire substrate device bias (from -0.5 V to 0.1 V in steps of 0.1 V)and (b) Si substrate device at bias (from 0.8 V to 1.4 V in steps of 0.1 V).Gp/ω is normalized equivalent parallel conductance,with ω being angular frequency.

    As can be seen from Fig.4,the curve obviously has more than one peak value, and the equivalent parallel conductivity model of single-level trap cannot be applied to our system.Hence, in order to quantitatively extract the interface states,theGp/ωcurves are fitted through considering two or three different distributions of trap density levelsDitwith different values of time constantτitby using the following equations:[7]

    whereω=2π fis the radial frequency,Dit1,Dit2,andDit3are the interface trap densities,τit1,τit2,τit3are the time constants of traps. Figure 5 show the experimental and fitting curves of MOS capacitor with sapphire substrate and Si substrate at bias voltages of-0.2 V and 0.9 V,the measurement curves and fitting curves of the two MOS devices are in good consistency with each other. For devices of sapphire substrate,each measured curve can be decomposed into two fitting curves,showing that there are two types of traps at a given bias voltage.For Si substrate device,each measured curve can be decomposed into three fitting curves. It can be seen from Fig.5 that there are at least two peak values in theGp/ωcurve of sapphire substrate device, and at least three peak values in theGp/ωcurve of Si substrate device. TheDitof traps is a function of trap characteristic time constant (τit) and trap energy level as shown in Fig.6. The relationship between the time constants and trap energy level is expressed as

    wherevth= 2.6×107cm/s is the thermal velocity,Nc=2.7×1018cm-3is the effective density states in the GaN conduction band,[15]andσn=1×10-14cm2is the electron capture cross section.

    In Fig. 6, There are two kinds of traps that are continuous distributions of energy level ranging from 0.34 eV to 0.41 eV and from 0.42 eV to 0.46 eV. Both traps should be attributed to common interface states,[10]marked as interface trap in Fig. 6. And the other kinds of traps are very possible to be border trap states, for they exhibit single trap energy level of around 0.48 eV,marked as border trap in Fig.6.Note that the time constant of a border trap is~1.5×10-4s,which is close to our extraction value~1.8×10-4s reported at Al2O3/GaN interface.[13]Moreover, what is observed at SiO2/GaN interface[14,15]is also a similar border trap with a time constant of~1.4×10-4s-3×10-4s. Figure 6 shows the curves of interface trap and border trap extracted from sapphire substrate and Si substrate MOS capacitors, and the increase of measured trap density withVGSincreasing,indicating the apparent differences in trap distribution and density.First, the interface trap concentration of Si substrate device with energy distribution between 0.34 eV and 0.41 eV is nearly one order of magnitude higher than that of sapphire substrate device. The Si substrate device has a wide interface trap distribution,while the sapphire substrate device has no interface trap distribution between 0.4 eV and 0.46 eV. Furthermore,the border trap concentration of Si substrate device is one order of magnitude higher than that of sapphire substrate device.It shows that the quality of GaN grown on Si is inferior to that grown on sapphire substrate.which is likely to be due to the fact that the GaN grown on Si substrate has higher oxygen and nitrogen vacancies.[13,17-20]

    Fig.5.Measured curves and fitting curves of Gp/ω versus ω at VA of-0.2 V and 0.9 V for(a)sapphire substrate device and(b)Si substrate device.

    Fig.6. Trap state density as a function of energy level for both devices.

    It can be seen from Fig.7 that with the gate bias increasing,Si substrate MOS capacitor increases continually and the sapphire substrate MOS capacitor trends to saturate. Therefore,it can be reasonably inferred that the degraded transport performance in the channel of Si substrate device can be attributed to the presence of high density of interface traps and border traps at the Al2O3/GaN interface. The Al2O3/GaN MOS capacitor structure with interface trap and border trap distributions is shown in Fig.8.

    Fig.7. Curves of trap state density of border trap versus Vgs-Vth.

    Fig. 8. Schematic band diagram of Al2O3/GaN MOS capacitor structure with interface trap and border trap distributions.

    In addition,the field effect mobility at low field(μFE)for the sapphire substrate device and the Si substrate device are also extracted in the linear region (Vds=0.1 V) and shown in Fig. 9. When a GaN MIS HEMT device operates in a linear operating region, the drain currentIDScan be expressed as[6,21,22]

    From Eq. (7), the maximum field effect mobility (μFEmax) is calculated to be 176 cm2/V·s for sapphire substrate device and 96 cm2/V·s for Si substrate device. The accumulation capacitance (Cox) is 378 nF/cm2for sapphire substrate and 386 nF/cm2for Si substrate.

    Fig. 9. Curve of extracted field effect mobility (μFE) versus VGS-Vth for sapphire substrate device and for Si substrate device.

    Some authors described the channel mobility on MOSFETs fabricated by wide bandgap semiconductor,[23-26]with consideration of the contributions to the Matthiessen’s rule,made by the bulk mobility factor (μB), the acoustic-phonon scattering (μAC), the surface roughness scattering (μSR), and the Coulomb scattering (μC) due to the presence of interface charges,specifically

    The study of the temperature behavior of the field-effect mobility is a useful method to acquire the information on the insulator/semiconductor interface properties in MOSFETs. Figure 10 shows the experimental results of the field-effect mobilityversus VG-Vthat different measured temperatures(298 K-398 K).As can be seen,the maximum values of these curves decrease as the measured temperature increases.

    Figure 11 shows the peak of the field-effect mobility values as a function of temperature, extracted from Fig. 10. As can be seen, the experimental peak mobility values decrease with the measured temperature increasing. As can be seen from Eq.(8),the limiting factor of the mobility comes from the contributions made by the surface roughness(μSR),the acoustic phonon (μAC), and the Coulomb scattering (μC) contributions.Because the larger value of bulk mobility only has a negligible effect on the total mobility. The sapphire substrate device is mainly responsible for acoustic-phonon scattering,and Si substrate device is mainly responsible for the surface roughness scattering. It should be mentioned that the subthreshold region of theIDS-VDScan be affected by the non-steep change in the gate capacitance. The early ascending part of the curve of field-effect mobilityversusVGS-Vthcan be influenced by the soft gate-capacitance variation. However, forVGS-Vth>1 V the device is in accumulation and the capacitance value is almost constant. Hence, the peak mobility values used in the following are not affect by the capacitance value variation.

    Fig.10. Curves of field-effect mobility(μFE)versus VG-Vth at different temperatures for(a)sapphire substrate device and(b)Si substrate device.

    Fig.11. Peaks of the field-effect mobility values as a function of temperature.

    Figure 12 displays the temperature-dependentC-Vmeasurement results for GaN MOSFET with sapphire substrate and Si substrate, respectively, showing that our model reproduces the characteristic shapes ofC-Vcurves from the MOS capacitors,specifically,a nearly flat part of the voltage above threshold voltage (Vth), a rapid change in the capacitance atVth, and a very small capacitance in the subthreshold region(belowVth). The capacitance for the gate voltage of the voltage above threshold voltage(Vth)is determined by the capacitance of Al2O3layer and is almost bias-independent. The capacitance in the subthreshold region depends on the background doping in the GaN layer. The effect of increasing temperature onC-Vcurve is a reduction of the slope caused by the increased Debye length and the thermal broadening of the Fermi-Dirac distribution.[27]The slope of sapphire substrate device,KSapphire,is greater than that of Si substrate device,KSias shown in Fig. 12. The higher the trap concentration, the lower the slope is. It shows that the trap concentration of the interface of Si substrate device is higher that of sapphire substrate device.

    On the other hand, the increasing in temperature led theC-Vcurves to shift positively by around 0.04 V for sapphire substrate device. But the increasing in temperature results in a negative shift ofC-Vcurves by around 0.2 V for Si substrate device as shown in Fig.13. The temperature-dependent voltage shift is attributed to the depletion and redistribution of carriers.[28]The negative shift of theC-Vcurve of the Si substrate device indicates that the shallow level trapped electrons are detrapping and a positive charge appears. The larger the trap charge concentration, the larger theVthshift is, indicating the excellent Al2O3/GaN interface quality for sapphire substrate device.

    Fig. 12. The VGS-dependent gate capacitance for (a) sapphire substrate device and(b)Si substrate device at various temperatures.

    Fig.13. The Vth shifts versus temperature for sapphire substrate and Si substrate.

    To further study the crystalline quality of the GaN epilayers on sapphire substrate and Si substrate,the crystal quality of GaN is analyzed by high resolution x-ray diffraction measurements.The measurement results of symmetric(002)plane and asymmetric(102)plane of GaN epilayer are shown in Table 1.The full width at half maximum(FWHM)values of the(002)and(102)planes for the GaN of sapphire substrate are 316 arcsec and 613 arcsec,while those for the GaN of Si substrate are 688 arcsec and 941 arcsec respectively. The FWHM value of(002)plane for the GaN of Si substrate is about twice that for the GaN of sapphire substrate,and the FWHM value of(102)plane for the GaN of Si substrate is about one and a half times that for the GaN of sapphire substrate. Because the FWHM value is associated with threading dislocation density in GaN epilayer,this significant difference FWHM value confirms that quality of GaN of sapphire substrate is better than that of GaN of Si substrate.One of the biggest challenges is the large stress caused by the thermal mismatch between GaN epilayer and Si substrate.The large lattice mismatch between GaN and Si will result in high density dislocations. Owing to the existence of oxygen,silicon impurities and nitrogen vacancies,the quality of GaN grown on Si is not good.[29,30]

    Table 1. X-ray diffraction measurement results of GaN epilayer on sapphire and Si.

    By comparing the fabrication of the sapphire substrate device with the fabrication of the Si substrate device, it can be assumed that a self-terminating gate recess technique used for recessed GaN MOSFET fabrication can effectively inhibit the generation of interface and border trap at the Al2O3/GaN interface, thus improving the device performance. The selfterminating thermal oxidation assisted wet etching technique is shown to be effective and feasible. At the same time, the technique is also shown to cause different property changes in gallium nitride materials with different substrates. This finding can be used as a reference for further optimizing the Si substrate devices.

    4. Conclusions

    The improved GaN MOSFET device with sapphire and silicon substrates are developed based on our proposed the thermal oxidation-assisted self-terminating gate recess technique, and two kinds of devices are systematically studied.The experimental results demonstrate that the performance index of the enhanced device on sapphire substrate in terms ofIdmax(~76%),μFEmax(~83%) as well asRon(~39%) is significantly improved in comparison with that of the device on silicon substrate. Moreover,the frequency-dependent conductance measurement is used to evaluate the performance of the device. The results show that the improvement of the device performance on sapphire substrate should be attributed to the significant suppression of self-terminated groove gate technology that significantly inhibits the Al2O3/GaN interface and border trap,and reduces the time constant of interface trap to~1×10-6s-8×10-6s and the time constant of border trap to~1.6×10-4s-3×10-4s, respectively. Our experimental results demonstrate that(i)the Al2O3/GaN interface traps have a significant influence on the performance of device, (ii) the self-terminating gate recess technique can effectively suppress the generation of interface/border traps of at Al2O3/GaN interface,thus improving the performance of the device,(iii)the improving of performances varies according to GaN materials with different substrates.The research results in this work can provid a reference for further optimizing the performances of silicon substrate devices.

    Acknowledgements

    The authors would like to thank the National Key Micrometer/Nanometer Processing Laboratory, Atomic Nanomaterials and Equipment Co. Ltd (ANAME) and the Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO)for help in device fabrication.

    Project supported by the Research on Key Techniques in Reliability of Low Power Sensor Chip for IOTIPS and the Technology Project of Headquarters, State Grid Corporation of China(Grant No.5700-202041397A-0-0-00).

    猜你喜歡
    王鑫佳音張斌
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    再續(xù)華教使命,網(wǎng)絡課堂傳佳音
    華人時刊(2022年15期)2022-10-27 09:05:52
    秦怡:百年風雨,從容笑對
    質(zhì)量守恒定律的應用
    Sawtooth-like oscillations and steady states caused by the m/n = 2/1 double tearing mode
    Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution
    一路有你都是歌
    當代音樂(2021年2期)2021-03-18 09:39:08
    沈佳音 丁逸菲 金燕
    《花之戀》
    當國歌響起
    北方音樂(2019年19期)2019-11-29 07:19:36
    一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 色精品久久人妻99蜜桃| 校园春色视频在线观看| 久久精品亚洲熟妇少妇任你| 精品亚洲成国产av| 一个人免费在线观看的高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久精品国产欧美久久久| 日韩免费高清中文字幕av| ponron亚洲| 国产真人三级小视频在线观看| 午夜免费成人在线视频| 色在线成人网| 久久国产乱子伦精品免费另类| 免费看a级黄色片| 老汉色∧v一级毛片| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩高清在线视频| 999精品在线视频| 久久精品国产清高在天天线| 视频在线观看一区二区三区| av天堂久久9| 欧美 亚洲 国产 日韩一| 丝瓜视频免费看黄片| 亚洲av成人av| 日韩有码中文字幕| 国精品久久久久久国模美| 一区二区三区激情视频| 天堂动漫精品| 在线观看日韩欧美| 看黄色毛片网站| 久久久久久人人人人人| 91精品三级在线观看| 18禁裸乳无遮挡免费网站照片 | 成人永久免费在线观看视频| 大型黄色视频在线免费观看| 国产免费现黄频在线看| 99热网站在线观看| 无限看片的www在线观看| 亚洲伊人色综图| 久久香蕉国产精品| 久久这里只有精品19| 国精品久久久久久国模美| 妹子高潮喷水视频| 1024香蕉在线观看| tocl精华| 成人精品一区二区免费| 涩涩av久久男人的天堂| 亚洲七黄色美女视频| 女人被狂操c到高潮| 午夜91福利影院| 成人国产一区最新在线观看| 99国产综合亚洲精品| 性少妇av在线| 欧美国产精品va在线观看不卡| 色在线成人网| 亚洲av欧美aⅴ国产| 成人三级做爰电影| 久热爱精品视频在线9| avwww免费| 亚洲国产精品一区二区三区在线| 国产激情久久老熟女| 亚洲国产精品合色在线| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| 成人三级做爰电影| 少妇 在线观看| 日韩欧美一区视频在线观看| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 激情在线观看视频在线高清 | 午夜福利一区二区在线看| 91麻豆精品激情在线观看国产 | 女同久久另类99精品国产91| 欧美乱色亚洲激情| 成人永久免费在线观看视频| 久久影院123| 91老司机精品| 国产片内射在线| 怎么达到女性高潮| 日日摸夜夜添夜夜添小说| 色综合婷婷激情| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网| 欧美午夜高清在线| 啦啦啦 在线观看视频| 1024香蕉在线观看| 一本一本久久a久久精品综合妖精| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到| 怎么达到女性高潮| 亚洲伊人色综图| 久久中文字幕一级| 色尼玛亚洲综合影院| 一级a爱视频在线免费观看| 日韩欧美一区二区三区在线观看 | 免费一级毛片在线播放高清视频 | 成人特级黄色片久久久久久久| a级片在线免费高清观看视频| 在线观看免费日韩欧美大片| 淫妇啪啪啪对白视频| 久久婷婷成人综合色麻豆| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| 757午夜福利合集在线观看| 国产真人三级小视频在线观看| 夜夜爽天天搞| 黄色怎么调成土黄色| 欧美日韩亚洲高清精品| 国产有黄有色有爽视频| 男女高潮啪啪啪动态图| 老司机靠b影院| 久久精品人人爽人人爽视色| 老司机福利观看| 成年版毛片免费区| 巨乳人妻的诱惑在线观看| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 一进一出抽搐gif免费好疼 | 高清av免费在线| 欧美精品亚洲一区二区| 欧美黑人欧美精品刺激| 日本vs欧美在线观看视频| 国产成+人综合+亚洲专区| 一区福利在线观看| 高清毛片免费观看视频网站 | 欧美日韩国产mv在线观看视频| 色在线成人网| 两性夫妻黄色片| 欧美最黄视频在线播放免费 | 一区二区日韩欧美中文字幕| 亚洲熟女精品中文字幕| 无限看片的www在线观看| 精品一品国产午夜福利视频| 免费在线观看黄色视频的| 黑人操中国人逼视频| 十八禁高潮呻吟视频| 久久久水蜜桃国产精品网| 中文字幕人妻丝袜制服| 午夜精品久久久久久毛片777| 亚洲成a人片在线一区二区| 黄色丝袜av网址大全| 欧美最黄视频在线播放免费 | 国产精品一区二区在线观看99| 天天操日日干夜夜撸| 精品无人区乱码1区二区| 淫妇啪啪啪对白视频| 亚洲精品一卡2卡三卡4卡5卡| 在线视频色国产色| 国产一区二区激情短视频| 丝袜人妻中文字幕| 老司机午夜福利在线观看视频| 久久精品国产综合久久久| 久久婷婷成人综合色麻豆| 国产不卡av网站在线观看| 国产成人精品无人区| 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 国产成人欧美| 亚洲九九香蕉| 欧美久久黑人一区二区| 精品久久久久久,| 视频在线观看一区二区三区| 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 丝袜人妻中文字幕| 韩国av一区二区三区四区| 亚洲国产看品久久| 日韩有码中文字幕| 久久国产精品影院| 国产免费现黄频在线看| 国产aⅴ精品一区二区三区波| 老熟妇仑乱视频hdxx| 久久人妻福利社区极品人妻图片| 9色porny在线观看| 精品亚洲成国产av| 国产色视频综合| 好看av亚洲va欧美ⅴa在| 国产主播在线观看一区二区| 热99re8久久精品国产| 国产精品乱码一区二三区的特点 | 色在线成人网| 黄片大片在线免费观看| 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| 国产成人免费观看mmmm| 亚洲三区欧美一区| 黄频高清免费视频| 亚洲 欧美一区二区三区| 日本欧美视频一区| 操出白浆在线播放| 少妇 在线观看| 久久久国产精品麻豆| 久久久久国产一级毛片高清牌| 一区二区三区激情视频| 久久久久久久精品吃奶| 日日摸夜夜添夜夜添小说| 好男人电影高清在线观看| 亚洲av欧美aⅴ国产| 国产激情欧美一区二区| 国产蜜桃级精品一区二区三区 | 欧美av亚洲av综合av国产av| 久久精品人人爽人人爽视色| 国产色视频综合| 热99久久久久精品小说推荐| 国产一区二区激情短视频| 电影成人av| 成人国语在线视频| 制服人妻中文乱码| 女人爽到高潮嗷嗷叫在线视频| 精品少妇一区二区三区视频日本电影| 99久久人妻综合| 欧美午夜高清在线| 欧美日韩乱码在线| 后天国语完整版免费观看| 婷婷丁香在线五月| 男男h啪啪无遮挡| 成年版毛片免费区| 黄色女人牲交| 久久性视频一级片| 欧美最黄视频在线播放免费 | 欧美久久黑人一区二区| 热re99久久国产66热| 999久久久精品免费观看国产| 18禁国产床啪视频网站| 18禁裸乳无遮挡免费网站照片 | 在线av久久热| 国产精品98久久久久久宅男小说| 亚洲成av片中文字幕在线观看| 日本wwww免费看| 岛国在线观看网站| 黄片小视频在线播放| 99久久国产精品久久久| a级毛片黄视频| 日本黄色日本黄色录像| 两人在一起打扑克的视频| 麻豆成人av在线观看| 黄色视频不卡| 成年女人毛片免费观看观看9 | 久久精品国产清高在天天线| 中亚洲国语对白在线视频| 黑人巨大精品欧美一区二区mp4| 久热爱精品视频在线9| 午夜免费观看网址| 日本a在线网址| 在线观看免费日韩欧美大片| 大片电影免费在线观看免费| 亚洲精品国产色婷婷电影| 97人妻天天添夜夜摸| 国产欧美日韩一区二区三| 1024视频免费在线观看| 黑人猛操日本美女一级片| 一二三四在线观看免费中文在| 欧美黑人精品巨大| 精品福利永久在线观看| 国产精品免费大片| 精品少妇一区二区三区视频日本电影| 黄片小视频在线播放| 欧美色视频一区免费| 久久 成人 亚洲| www.自偷自拍.com| 热99久久久久精品小说推荐| 热re99久久精品国产66热6| av在线播放免费不卡| 一边摸一边抽搐一进一小说 | 亚洲专区中文字幕在线| 国产av精品麻豆| 精品久久久久久电影网| 亚洲欧美一区二区三区久久| 国产男靠女视频免费网站| 亚洲av美国av| 国产一区二区三区视频了| 国产高清视频在线播放一区| 一个人免费在线观看的高清视频| 久久久久视频综合| 搡老熟女国产l中国老女人| www.自偷自拍.com| 亚洲精品美女久久久久99蜜臀| 电影成人av| 久久久国产一区二区| 午夜两性在线视频| 久久天堂一区二区三区四区| 一级,二级,三级黄色视频| 大码成人一级视频| 中文字幕精品免费在线观看视频| 国产男靠女视频免费网站| 成人免费观看视频高清| 国产精品久久久久久人妻精品电影| 亚洲欧洲精品一区二区精品久久久| 中文字幕制服av| 欧美日韩乱码在线| 欧美精品av麻豆av| 大型黄色视频在线免费观看| 久久久水蜜桃国产精品网| 视频在线观看一区二区三区| 久久影院123| 亚洲 国产 在线| 久久久久久久久久久久大奶| 欧美不卡视频在线免费观看 | 99精国产麻豆久久婷婷| 免费观看精品视频网站| 人妻 亚洲 视频| 欧美一级毛片孕妇| 在线观看一区二区三区激情| 国产97色在线日韩免费| 精品亚洲成国产av| 久久久国产成人精品二区 | 国产成人精品在线电影| 丁香六月欧美| 久久久水蜜桃国产精品网| 久久热在线av| 午夜免费观看网址| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 国产精品 欧美亚洲| 波多野结衣av一区二区av| bbb黄色大片| 国产成人欧美| 在线观看日韩欧美| 亚洲av成人一区二区三| 亚洲中文字幕日韩| 脱女人内裤的视频| 丰满饥渴人妻一区二区三| 国产精品二区激情视频| 天天操日日干夜夜撸| av国产精品久久久久影院| 日本五十路高清| 亚洲国产欧美一区二区综合| 欧美大码av| 黄网站色视频无遮挡免费观看| 日韩欧美一区二区三区在线观看 | 中文字幕精品免费在线观看视频| 久久中文字幕人妻熟女| 亚洲午夜理论影院| 免费高清在线观看日韩| 好看av亚洲va欧美ⅴa在| 久久久久久久午夜电影 | 大型黄色视频在线免费观看| 99久久国产精品久久久| 婷婷精品国产亚洲av在线 | 在线观看免费视频网站a站| 少妇的丰满在线观看| videos熟女内射| aaaaa片日本免费| 纯流量卡能插随身wifi吗| 69精品国产乱码久久久| 丝袜在线中文字幕| 久9热在线精品视频| 999精品在线视频| 欧美乱妇无乱码| 国产精品亚洲一级av第二区| 中国美女看黄片| 一级a爱视频在线免费观看| 久久亚洲真实| 精品少妇一区二区三区视频日本电影| 超色免费av| 变态另类成人亚洲欧美熟女 | 午夜两性在线视频| 不卡av一区二区三区| 国产精品久久久av美女十八| 黄片大片在线免费观看| 日日爽夜夜爽网站| 丁香欧美五月| 亚洲精品自拍成人| 国产99久久九九免费精品| 久久久久久久国产电影| 免费观看人在逋| 黄色怎么调成土黄色| 国产真人三级小视频在线观看| 在线av久久热| av在线播放免费不卡| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| 成熟少妇高潮喷水视频| 少妇被粗大的猛进出69影院| 成人影院久久| 99热只有精品国产| 国精品久久久久久国模美| 久久香蕉国产精品| 9191精品国产免费久久| 日韩视频一区二区在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲av日韩在线播放| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 侵犯人妻中文字幕一二三四区| av超薄肉色丝袜交足视频| 老司机在亚洲福利影院| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 国产av又大| 国产精品久久久久久精品古装| 久久九九热精品免费| 飞空精品影院首页| 极品人妻少妇av视频| 亚洲精品在线观看二区| 777米奇影视久久| av欧美777| 国产精品久久电影中文字幕 | 国产av又大| 国产高清视频在线播放一区| 操美女的视频在线观看| 在线观看一区二区三区激情| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 国产精品电影一区二区三区 | a级毛片黄视频| 亚洲五月天丁香| 麻豆乱淫一区二区| 在线观看日韩欧美| 91成人精品电影| 欧美成人免费av一区二区三区 | 久久精品国产99精品国产亚洲性色 | 可以免费在线观看a视频的电影网站| 啦啦啦免费观看视频1| 大片电影免费在线观看免费| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 欧美激情高清一区二区三区| 国产精品99久久99久久久不卡| 欧美在线一区亚洲| 丰满饥渴人妻一区二区三| 久久香蕉激情| 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 91麻豆精品激情在线观看国产 | 国产欧美日韩一区二区三区在线| 国产成人免费观看mmmm| 在线观看免费视频网站a站| 国产高清国产精品国产三级| 老汉色av国产亚洲站长工具| 亚洲成人手机| 满18在线观看网站| 黄色成人免费大全| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲欧美激情综合另类| 日韩 欧美 亚洲 中文字幕| 夫妻午夜视频| 捣出白浆h1v1| 亚洲欧美一区二区三区久久| 啪啪无遮挡十八禁网站| 亚洲精品国产区一区二| av片东京热男人的天堂| 国产区一区二久久| 黑人操中国人逼视频| 色播在线永久视频| avwww免费| 久久香蕉激情| 老司机在亚洲福利影院| 日韩三级视频一区二区三区| 十分钟在线观看高清视频www| 亚洲精品国产区一区二| 大型av网站在线播放| 黄色a级毛片大全视频| 日韩成人在线观看一区二区三区| 欧美色视频一区免费| 丰满饥渴人妻一区二区三| 黑丝袜美女国产一区| 日日摸夜夜添夜夜添小说| 老汉色av国产亚洲站长工具| 国产aⅴ精品一区二区三区波| 久久天堂一区二区三区四区| 色尼玛亚洲综合影院| 欧美在线黄色| 免费观看a级毛片全部| 激情在线观看视频在线高清 | 91老司机精品| 精品国产一区二区三区四区第35| 操美女的视频在线观看| 国产欧美日韩一区二区三区在线| 人成视频在线观看免费观看| 中文字幕高清在线视频| 在线永久观看黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 99精国产麻豆久久婷婷| 九色亚洲精品在线播放| 久99久视频精品免费| 欧美精品高潮呻吟av久久| 中文字幕最新亚洲高清| 国产成人精品在线电影| 国产精品99久久99久久久不卡| 最新的欧美精品一区二区| 一级a爱视频在线免费观看| 99re6热这里在线精品视频| 久久人妻熟女aⅴ| 午夜日韩欧美国产| 欧美黄色片欧美黄色片| 在线播放国产精品三级| 在线观看免费视频网站a站| 夜夜夜夜夜久久久久| 天天躁夜夜躁狠狠躁躁| 在线观看舔阴道视频| 欧美老熟妇乱子伦牲交| 国产精品欧美亚洲77777| 国产又爽黄色视频| 免费观看a级毛片全部| 久久香蕉精品热| 最近最新中文字幕大全免费视频| 亚洲一区二区三区不卡视频| 国产三级黄色录像| 淫妇啪啪啪对白视频| 天天添夜夜摸| 在线观看免费视频日本深夜| 女警被强在线播放| 欧美黑人精品巨大| 窝窝影院91人妻| 亚洲av熟女| 黄色 视频免费看| 老司机午夜福利在线观看视频| 亚洲,欧美精品.| 天天躁日日躁夜夜躁夜夜| 视频在线观看一区二区三区| 国产精品影院久久| 亚洲欧洲精品一区二区精品久久久| 久久久国产精品麻豆| 午夜激情av网站| 日本一区二区免费在线视频| 久久亚洲精品不卡| 亚洲 欧美一区二区三区| 男女免费视频国产| 欧美 日韩 精品 国产| 大码成人一级视频| 天堂√8在线中文| 老司机亚洲免费影院| 91国产中文字幕| 精品久久久久久,| 久久久久久久久免费视频了| 男女之事视频高清在线观看| 精品国产亚洲在线| 成年女人毛片免费观看观看9 | 一级作爱视频免费观看| 国产成人系列免费观看| 欧美大码av| 久久中文字幕一级| 精品一区二区三区视频在线观看免费 | 1024视频免费在线观看| 亚洲伊人色综图| 搡老乐熟女国产| 久久国产精品大桥未久av| 在线观看免费视频日本深夜| 亚洲免费av在线视频| 1024香蕉在线观看| 久久精品亚洲精品国产色婷小说| 一夜夜www| 激情在线观看视频在线高清 | 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 一本一本久久a久久精品综合妖精| 91老司机精品| 精品国产美女av久久久久小说| 国产成人啪精品午夜网站| 一区二区日韩欧美中文字幕| 日本vs欧美在线观看视频| 天天躁夜夜躁狠狠躁躁| 一级作爱视频免费观看| 欧美亚洲日本最大视频资源| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美日韩在线播放| 精品久久久久久电影网| 国产精品免费一区二区三区在线 | 老汉色av国产亚洲站长工具| 手机成人av网站| 日韩有码中文字幕| 他把我摸到了高潮在线观看| 成人永久免费在线观看视频| 免费观看a级毛片全部| av欧美777| 亚洲av成人一区二区三| 久久精品亚洲av国产电影网| tube8黄色片| 日日夜夜操网爽| 久久精品91无色码中文字幕| 国产野战对白在线观看| 精品少妇久久久久久888优播| 免费人成视频x8x8入口观看| 国产在线一区二区三区精| 久久热在线av| 亚洲av日韩在线播放| 男人舔女人的私密视频| 色尼玛亚洲综合影院| 精品国产一区二区三区久久久樱花| 妹子高潮喷水视频| 免费久久久久久久精品成人欧美视频| 精品久久久久久久毛片微露脸| 天堂俺去俺来也www色官网| 精品午夜福利视频在线观看一区| 久久久国产精品麻豆| 日韩中文字幕欧美一区二区| 老司机福利观看| 露出奶头的视频| 亚洲三区欧美一区| 成人三级做爰电影| 午夜福利在线免费观看网站| 亚洲熟女毛片儿| 亚洲av美国av| 巨乳人妻的诱惑在线观看| 丁香六月欧美| 黄片小视频在线播放| 校园春色视频在线观看| 日韩 欧美 亚洲 中文字幕| 中文字幕最新亚洲高清| 国产精品.久久久| 午夜亚洲福利在线播放| 热re99久久精品国产66热6| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲高清精品| 精品欧美一区二区三区在线| 亚洲av成人av| 久久久久国产精品人妻aⅴ院 | 极品少妇高潮喷水抽搐| 欧美另类亚洲清纯唯美| 国产成人精品在线电影| 建设人人有责人人尽责人人享有的|