• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries

    2022-09-24 08:01:04MeiqianWan萬美茜ZhongyongZhang張忠勇ShangquanZhao趙尚泉andNaigenZhou周耐根
    Chinese Physics B 2022年9期

    Meiqian Wan(萬美茜), Zhongyong Zhang(張忠勇), Shangquan Zhao(趙尚泉), and Naigen Zhou(周耐根)

    School of Physics and Materials Science,Nanchang University,Nanchang 330031,China

    Keywords: β-GeS,anode,alkali metal ion batteries,first-principles

    1. Introduction

    Lithium-ion batteries (LIBs) have achieved significant success among the alkali metal ion batteries(AMIBs), which are dominated the market of energy storage devices, such as portable electronic devices, electric vehicles, and grid-level energy storage.[1-3]However,the scarcity of lithium resources is difficult to meet the growing market demand,and the development of other alternative ion batteries has become an increasingly urgent need.[4-6]Sodium and potassium ion batteries (NIBs and KIBs) have entered the limelight as nextgeneration energy storage devices due to the abundant crustal resources of sodium and potassium elements and the similar working mechanism with LIBs.[7-10]Unexpectedly, the current LIBs commercial electrode graphite show poor storage capacity for NIBs and KIBs due to the energetic instability of the intercalated compounds with the larger radii Na and K.Hence, an important challenge for the successful commercial preparation of NIBs and KIBs is the lack of suitable anode materials with high capacity,rapid diffusion rate and good stability.

    Recently, group-IV monochalcogenides, such as GeS,GeSe, SnS and SnSe, have attracted extensive attention due to their phosphorene-like layered structures with weak interlayer forces,[11-15]and in particular, bulk GeS has good potential as a LIBs anode material with high Li-ion storage capacity. Compared to bulk materials, two-dimensional (2D)materials,with large surface area,fast ion mobility and structural flexibility,are considered promising candidates for nextgeneration electrode materials to meet the higher performance demand.[16-30]Two-dimensional GeS monolayer has many different configurations, among which the orthogonalα-GeS structure (symmetryPcmn) is the most widely studied. Theα-GeS nanosheets were successfully prepared by liquid phase exfoliation in a custom sealed tip ultrasonic system, and subsequent analysis of theα-GeS nanosheet as anodes for LIBs revealed superb electrochemical performance, including high cycle stability of over 1000 cycles and high rate capability of over 10 A·g-1.[31]However, theoretical studies showed that the capacity of 2Dα-GeS as NIBs anode material could only reach 512 mAh·g-1,which is slightly lower than that of C2N(599.72 mAh·g-1)and g-Mg3N2(797 mAh·g-1).[32-34]Note that previous studies show a suitable pore size and appropriate adsorption distance can effectively enhance the alkali metal(AM)adsorption capacity. Compared withα-GeS monolayer,theβ-GeS(symmetryPmn21)has bigger lattice constants and larger pore size,which may exhibit more excellent energy storage performance. Moreover, the binding energy ofβ-GeS andα-GeS are almost the same (the difference is less than 0.025 eV per atom),which suggests that theβ-GeS monolayer may also have the same good stability asα-GeS.[35]However,most of the current researches on GeS nanosheet are mainly focused on theα-GeS monolayer,while little researches have been done on theβ-GeS monolayer. The adsorption mechanism, diffusion energy barrier and theoretical capacity ofβ-GeS monolayer as the anode material of AMIBs are still unknown. At present,β-GeS has not been successfully prepared experimentally,butβ-GeSe,which has the same crystal structure, stacking form and electronic properties as it, has been successfully synthesized recently.[36]With the rapid development of computer technology,theoretical calculations,an important tool in materials science research, can greatly help bridge some of the current experimental and technical gaps and aid in understanding the adsorption mechanisms of AM atoms on novel battery materials. First-principles calculations dealing with the ground state of electrons in material systems can yield some electrochemical properties of electrode materials,such as adsorption energy,diffusion energy barrier,opencircuit voltage and theoretical capacity.[37]

    In the present study,the performance of theβ-GeS monolayer as the anode material for AMIBs have been systematically investigated by the first-principles calculations. The adsorption energy of AM atoms at different sites was calculated to identify the most stable adsorption site. The density of states analysis showed that the electrical conductivity of theβ-GeS can be enhanced after adsorbing AM atoms due to the semiconductor-to-metal transition. Moreover, theβ-GeS monolayer has a low diffusion energy barrier(0.258 eV),high theoretical capacity (1024 mAh·g-1) and low operating voltage (0.211 V) for Na, suggesting thatβ-GeS monolayer can be used as an excellent high-performance anode material for NIBs.

    2. Method

    The theoretical calculations were adopted via the Viennaab initiosimulation package (VASP) based on the density functional theory. Projector augmented wave(PAW)was used to describe the interaction between the ionic real and outermost valence electrons.[38,39]The calculated cut-off energy was set to 520 eV.During the iterative process,the energy convergence threshold was 10-5eV,and the force acting on each atom does not exceed 10-2eV·?A-1. The structure optimization and electron density of states calculations were performed by using the Monkhorst-Packk-point grid settings, which were set to 4×6×1 and 8×12×1, respectively. The semiempirical DFT-D3 method was employed for the correction of interlayer van der Waals forces.[40,41]The interlayer vacuum layer was set greater than 15 ?A to prevent interlayer interaction forces. The phonon dispersion spectrum was calculated according to the finite displacement method in the Phonopy code to determine the dynamic stability.Ab initiomolecular dynamics (AIMD) simulation was performed to confirm the thermal stability of theβ-GeS monolayer. NVT ensemble was considered for the AIMD simulations with the Nos′e-Hoover heat bath method.[42]The climbing image nudged elastic band(CI-NEB) method was used to study the minimum diffusion energy path of alkali metal atoms.[43,44]The atomic and electronic structures were analyzed by using the VESTA code.[45]

    3. Results and discussion

    3.1. Structure and stability of β-GeS monolayer

    We construct theβ-GeS monolayer with the space groupPmn21,and a unit cell contains two Ge atoms and two S atoms.After structural optimization, the calculated lattice constants ofβ-GeS monolayer area=5.680 ?A andb=3.502 ?A, respectively, which are in good agreement with the previous theoretical results (a=5.68 ?A andb=3.51 ?A).[46]Theβ-GeS monolayer is an indirect bandgap semiconductor,and the bandgap calculated in this paper is 1.707 eV(Fig.S1),which is slightly smaller than the 1.77 eV in the Ref. [43]. These differences are because we used the DFT-D3 method instead of the DFT-D2 method in the Ref. [43], which can better describe the interactions between AM atoms andβ-GeS monolayer with greater accuracy. The phonon spectrum of theβ-GeS monolayer exists no negative imaginary frequency in the Brillouin zone, indicating the dynamic stability of theβ-GeS monolayer(Fig.S2). A 3×3 supercell is adopted to examine the thermal stability of theβ-GeS monolayer by performing AIMD simulations. The fluctuations of the total potential energy with simulation time are plotted in Fig. S3, where the total potential energy remains almost constant throughout the simulation period. The above results indicate that theβ-GeS monolayer has good thermal stability.

    The Fermi energy level can have an impact on the potential of as an electrode material.[47]Graphite has a high Fermi energy level(-4.31 eV)with low potential,which is suitable as a negative electrode material. The researchers were able to effectively modulate the electrochemical potential(2.7-3.7 V)by tuning the graphite derivative Fermi energy level (-8.36 to-8.47 eV) through a p-type doping strategy. Theβ-GeS monolayer has a higher Fermi energy level (-3.13 eV) and a narrower band gap, and the electrons introduced after the adsorption of AM atoms will fill in the higher energy level,resulting in a lower electrochemical potential. Thus,theβ-GeS monolayer can exist in a relatively stable energy state and has promising potential as a low potential anode material.

    3.2. Adsorption of AM atoms on β-GeS monolayer

    To explore whether theβ-GeS monolayer can be a suitable anode material for AMIBs,we firstly investigated the adsorption energy(Ead)of a single AM atoms on the 2×2β-GeS supercell. Considering the symmetry of theβ-GeS monolayer structure,eight possible adsorption sites were chosen as shown in Fig.1,which are the top of P-P triangle gravity center(C1and C2sites), the top of upper S-atom position (S1site), the top of lower S-atom position (S2site), the top of upper Geatom position(G1site),the top of lower Ge-atom position(G2site),and the top of hexagonal Ge-S rings center(H1and H2sites). The adsorption energy (Ead) of an AM was calculated by the following formula:

    whereEGeS-AMis the total energy ofβ-GeS after adsorbing AM atoms,EGeSandEAMare the total energies of GeS and an AM atom in its bulk structure, respectively,Nis the number of adsorbed AM atoms. After structural optimization,the AM atoms at C1, G2, H1and S2sites would spontaneously migrate to the adjacent C2site, and the AM atoms at G1and S1sites would finally migrate to the adjacent H2site. Only C2and H2sites are stable adsorption sites for AM atoms,and the corresponding adsorption energies are-0.223 eV and 0.273 eV(Li),-0.255 eV and 0.005 eV(Na),-0.678 eV and-0.465 eV (K), respectively. The adsorption energies of the H2site are positive for Li and Na atoms,indicating that these adsorption processes are non-spontaneous exothermic reactions. And the adsorption energy of the C2site and the H2site are both negative for the case of K atoms, while the C2site is more stable for the K atoms owing to the more negative adsorption energy. An interesting finding is that theEadvalues increase with the increase of the atomic radius,indicating stronger adsorption ofβ-GeS to heavier AM atoms. Thus,the C2site is the most stable adsorption site for Li,Na and K atoms,and the charge transfer and charge density distribution discussed later only consider the C2site adsorption conformations.

    To further understand the adsorption mechanism,the differential charge density method has been used to analyze the charge distribution between AM atoms and theβ-GeS monolayer,which is calculated by the following equation:

    whereρGeSandρGeS-AMare the charge density of theβ-GeS before and after adsorb AM atoms,andρAMis the charge density of isolated AM atoms. The differential charge density for AM atoms adsorption on theβ-GeS monolayer is plotted in Fig.2. There is a clear charge transfer between the AM atoms and theβ-GeS monolayer, the charge depletion regions are mainly concentrated around the AM atoms, while the charge accumulation regions are mainly between the AM atoms and theβ-GeS monolayer. Subsequently,the Bader charge analysis has been used to quantify the charge transfer of AM atoms,and the results show that Li,Na,and K atoms adsorbed on theβ-GeS monolayer are contributed to 0.855, 0.800, and 0.821 electrons,respectively,and existed in the form of cations.

    Fig. 1. Schematic diagram of eight highly symmetric adsorption sites on the surface of β-GeS monolayer,the yellow balls represent the possible sites of AM atoms.

    Fig.2. The differential charge density distribution of β-GeS monolayer after adsorption of alkali metal atoms. (a)Li0.125GeS,(b)Na0.125GeS,(c)K0.125GeS.The blue area represents electron depletion and the yellow area represents electron accumulation.

    Meanwhile,the electronic density of states(DOS)of theβ-GeS monolayer has been studied to identify how the electronic behavior changed. As shown in Fig. 3, the pristineβ-GeS monolayer has no electronic state near the Fermi energy level and exhibits a semiconductor characteristic, which is consistent with the previous band structure calculation. However,theβ-GeS systems after adsorb AM atoms exhibit metallic characteristics,the electrons near the Fermi energy level are mainly provided by Ge atoms and the electrons of the valence band maximum (VBM) are mainly contributed by S atoms.The density composition of the conduction band minimum(CBM)and VBM electronic states are similar before and after the adsorption of AM atoms, and the main difference is that the Fermi energy level moves upwards and crosses the CBM.

    Fig. 3. DOS of (a) β-GeS, (b) Li0.125GeS, (c) Na0.125GeS, and (d)Na0.125GeS.

    This is because after the AM atoms are adsorbed on theβ-GeS monolayer, the AM valence electrons are completely ionized into the conduction band,which increases the number of electrons in the conduction band and raises the Fermi energy level. All the above studies have shown that the adsorption of AM atoms on theβ-GeS monolayer is accompanied by a large number of electrons transfer, which makes the Fermi energy level through the CBM and exhibits metallic properties. The semiconductor-to-metallic transition will enhance the electron conductivity, reduce the internal resistance during electron transfer and improve the overall performance of AMIBs.

    Fig.4.(a)Schematic diagram of two diffusion paths on the β-GeS monolayer,(b)diffusion energy barrier curve of AM on the β-GeS monolayer surface along armchair direction,(c)diffusion energy barrier curve of AM on the β-GeS monolayer surface along the zigzag direction.

    3.3. Diffusion of AM atoms on the β-GeS monolayer

    Fast charging is also a key technology for commercial batteries applications, which is determined by the diffusion barrier of AM atoms on the anode surface. Therefore, we have examined the diffusion of Li, Na, and K atoms on theβ-GeS monolayer, and two diffusion paths are designed between two adjacent C2sites as shown in Fig.4(a): zigzag direction(A→B)and armchair direction(B→C).The diffusion energy barriers are 0.914 eV(Li),0.475 eV(Na)and 0.453 eV(K)along the armchair direction and 0.276 eV(Li),0.258 eV(Na)and 0.208 eV(K)along the zigzag direction,respectively.Compared with Li atoms, the diffusion energy barriers of Na and K atoms are lower,this is because that as the radii of AM atoms increases, the larger the distance between the adsorption site and theβ-GeS monolayer, the smaller the interaction force between the AM atoms and theβ-GeS monolayer,and the easier for diffusion. The diffusion barriers are slightly lower or similar than other reported 2D electrode materials,such as GeP3(Li 0.5 eV,Na 0.27 eV and K 0.287 eV),MoN2(Li 0.78 eV,Na 0.56 eV and K 0.49 eV),SiC3(Li 0.47 eV,Na 0.34 eV and K 0.18 eV).[48-50]

    Considering the large difference in the diffusion energy barriers of alkali metal atoms along the armchair and zigzag directions (>0.22 eV), this can impact the diffusion rate of AM atoms in different directions. The Arrhenius equation is used to quantify the difference in diffusion constants of AM atoms along the armchair and zigzag directions,and calculated as follows:

    whereEaandkBare the diffusion barriers and Boltzmann’s constant, respectively, andTis environmental temperature.According to the Arrhenius equation, the mobility of Li, Na and K along the zigzag direction are estimated about 5.2×1010,4.4×103,1.360×104times faster than that along armchair direction forβ-GeS at the room temperature, respectively, showing a remarkable anisotropic diffusion feature.Theβ-GeS monolayer anode can easily achieve directional diffusion of AM atoms while preventing metal agglomeration.The low diffusion energy barrier and high diffusion constants ofβ-GeS monolayer make it a potentially excellent anode material for fast charge/discharge rates.

    3.4. Theoretical voltage and specific capacity

    The open-circuit voltage and theoretical capacity ofβ-GeS monolayer are futher discussed,because they have a decisive effect on the performance of AMIBs. The open-circuit voltages(OCVs)ofβ-GeS monolayer at different adsorption concentrations of AM atoms under the neglect of volume and entropy can be calculated by the following equation:

    whereE(AMx2GeS)andE(AMx1GeS)denote the total energy of the system forβ-GeS monolayer adsorption concentrations ofx2andx1, respectively.nis the number of AM valence electrons andeis the unit charge.As a suitable anode material,the open circuit voltage should be in the range of 0-1.0 V.Below 0 V will cause a dendritic phenomenon, while above 1.0 V will bring a lower operating voltage of batteries. The open circuit voltage curves and the corresponding optimized structures for different adsorption concentrations of AM atoms are shown in Figs.5(a)-5(c). The adsorption of Li atoms prefers unilateral adsorption, the adsorbed atoms are all located on the same side of theβ-GeS monolayer, and the corresponding stoichiometric ratio at the maximum adsorption capacity is Li0.5GeS.When the adsorption stoichiometry ratio exceeds Li0.5GeS,the strong interaction between Li atoms andβ-GeS monolayers produces severe structural distortion and the Ge-S bond breaks to form Li-S bonds,leading to irreversible destruction of theβ-GeS structure. A similar phenomenon that Ge-Se bond breaks to form Li-Se bonds was observed in the lithiation of GeSe monolayer.[51]Therefore,it means that theβ-GeS monolayer is unsuitable for LIBs anode. As for the Na and K atoms adsorption, the adsorbed atoms prefer simultaneous adsorption on the upper and lower surfaces, and the stoichiometric ratios of the maximum adsorption amounts are Na4GeS and KGeS, respectively. Meanwhile, theβ-GeS has the open-circuit voltage in the ranges are 0.297-0.382 V,0.293-0.177 V,and 0.674-0.168 V for of Li, Na, and K with the corresponding average OCVs of 0.340 V, 0.211 V, and 0.400 V. These average OCVs values are between those of conventional anode materials(e.g., graphite 0.11 V and TiO21.5-1.8 V),and lower than those 2D anode materials such as h-BAs(Li 0.49 V,Na 0.35 V and 0.26 V),and FeSe(Li 0.88 V,Na 0.49 V and 0.38 V).[52-55]The average OCVs of Li,Na and K are in the ideal voltage range of 0.00-1.00 V for theβ-GeS monolayer.

    Fig.5. OVCs of β-GeS monolayer during the intercalation of AM atoms,(a)LixGeS,(b)NaxGeS,(c)KxGeS.(d)The theoretical capacities of AM atoms on the β-GeS monolayer.

    The maximum theoretical capacities(C)of AM atoms can be calculated by

    wherexmaxis the maximum ratio of adsorbed AM atoms,Fis the Faraday constant(26.8 Ah·mol-1)andMGeSis the atomic mass of GeS(104.7 g·mol-1).

    The specific capacity(Fig.5(d))of the 2Dβ-GeS anodes for Li, Na and K atoms are 128 mAh·g-1, 1024 mAh·g-1,256 mAh·g-1, respectively. Theβ-GeS monolayer is not suitable as the anode of Li-ion battery because of low Li storage capacity and poor stability. While, for Na and K atoms, the theoretical capacities are slightly higher than those reported for some 2D materials, such as MXenes(Na<400 mAh·g-1and K<200 mAh·g-1), Mo2C (Na 132 mAh·g-1and K 65 mAh·g-1),MoS2(Na 670 mAh·g-1),α-GeS (Na 512 mAh·g-1and K 256 mAh·g-1) and graphite(Na 35 mAh·g-1and K 279 mAh·g-1).[32,56-61]The sodium storage capacity ofβ-GeS monolayer is twice of that ofα-GeS, which is due to the larger lattice constant and larger pore size ofβ-GeS, the distance between adsorbed atoms is larger,and the repulsive force generated between Na ions will be weakened,which is more favorable to Na atom adsorption.However, the effect of pore size on the K atoms adsorption is not significant,the adsorption energy is smaller for the second layer of K atoms due to the large radius of K atoms and the long distance between K andβ-GeS.As shown in Table 1,like other Ge-based chalcogenides, theβ-GeS monolayer is more suitable as electrode material for NIBs with high theoretical capacity.

    Table 1. The specific capacities and energy barriers of different 2D anode materials for AM ion batteries.

    Moreover, the electron localization functions (ELF) of Na4GeS and KGeS are displayed in Fig. 6, where the value of 0.00 indicates no charge density distribution,while the values of 0.50 and 1.00 indicate fully delocalized and fully localized electrons. For Na4GeS and KGeS,the electrons form a negative electron cloud(NEC)around the Na and K atoms,which can shield the repulsive forces between metal cations and avoid the occurrence of clusters, thus better maintaining the stability of the adsorption system. Compared with current commercial graphite electrodes,β-GeS monolayer has high capacity, low diffusion energy barrier and low open-circuit voltage as anode material for NIBs. From the above described findings, we conclude thatβ-GeS monolayers can be considered as excellent anode materials for NIBs.

    Fig.6.ELF maps sliced in(010)direction of(a)Na4GeS and(b)KGeS.

    4. Conclusion

    We have systematically investigated the performance ofβ-GeS as anode material for AMIBs using the first-principles calculations. The electrical conductivity ofβ-GeS can be enhanced after the adsorption of AM atoms due to the semiconductor-to-metal transition. In addition, the low diffusion energy barrier of AM atoms on theβ-GeS monolayer provides a rapid charge/discharge rate for AIMBs applications.Moreover, we found theβ-GeS monolayer with larger pores has twice Na storage capacity(1024 mAh·g-1)than that ofα-GeS. Considering the low diffusion barrier (0.258 eV), high capacity and low average OCV (0.211 V) for Na, theβ-GeS monolayer can be used as a high performance NIBs anode material.

    Acknowledgements

    Project supported by the the National Natural Science Foundation of China (Grant Nos. 52062035 and 51861023)and the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province, China (Grant No.20213BCJ22056).

    岛国在线免费视频观看| 国产黄色视频一区二区在线观看 | 欧美性感艳星| 亚洲欧美日韩高清专用| 国产精品一区二区免费欧美| 少妇高潮的动态图| 看非洲黑人一级黄片| 久久精品综合一区二区三区| 国产淫片久久久久久久久| 又爽又黄a免费视频| 看免费成人av毛片| 亚洲美女视频黄频| 两个人视频免费观看高清| 亚洲成a人片在线一区二区| 亚洲av中文字字幕乱码综合| 你懂的网址亚洲精品在线观看 | 国产片特级美女逼逼视频| 天天躁日日操中文字幕| av在线播放精品| 亚洲av.av天堂| 亚洲av中文av极速乱| 精品一区二区三区av网在线观看| aaaaa片日本免费| 插阴视频在线观看视频| 性色avwww在线观看| 人妻少妇偷人精品九色| 国产69精品久久久久777片| 极品教师在线视频| 日本三级黄在线观看| 国产成人a区在线观看| 国产精品野战在线观看| 老熟妇乱子伦视频在线观看| 少妇丰满av| 狠狠狠狠99中文字幕| 久久99热6这里只有精品| 亚洲成av人片在线播放无| 中文字幕av成人在线电影| 亚洲熟妇熟女久久| 日本撒尿小便嘘嘘汇集6| 免费一级毛片在线播放高清视频| 欧美+亚洲+日韩+国产| 国产黄a三级三级三级人| 精品欧美国产一区二区三| 最近最新中文字幕大全电影3| .国产精品久久| 久久这里只有精品中国| 亚洲最大成人手机在线| 一级毛片aaaaaa免费看小| 身体一侧抽搐| a级毛片a级免费在线| 亚洲国产精品成人久久小说 | 国内精品美女久久久久久| 国产成年人精品一区二区| 最近手机中文字幕大全| 青春草视频在线免费观看| 国产精品一区二区性色av| 亚洲熟妇中文字幕五十中出| 日本欧美国产在线视频| 日韩欧美在线乱码| 五月伊人婷婷丁香| 国产高清有码在线观看视频| 午夜久久久久精精品| 三级男女做爰猛烈吃奶摸视频| 亚洲美女视频黄频| 俺也久久电影网| 国产aⅴ精品一区二区三区波| av福利片在线观看| 香蕉av资源在线| 一级毛片我不卡| 中文在线观看免费www的网站| 免费无遮挡裸体视频| 日韩精品有码人妻一区| 一级毛片我不卡| a级毛片a级免费在线| 亚洲内射少妇av| a级毛片a级免费在线| 亚洲精品国产成人久久av| 乱人视频在线观看| 午夜福利视频1000在线观看| av女优亚洲男人天堂| 国产精华一区二区三区| 美女cb高潮喷水在线观看| 精品一区二区三区视频在线| 国产成人aa在线观看| 女的被弄到高潮叫床怎么办| 乱码一卡2卡4卡精品| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲网站| 女的被弄到高潮叫床怎么办| 免费观看精品视频网站| 亚洲色图av天堂| 国产精品av视频在线免费观看| 亚洲av熟女| 精品99又大又爽又粗少妇毛片| 婷婷精品国产亚洲av| 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 欧美高清成人免费视频www| 人人妻人人澡欧美一区二区| 天天躁日日操中文字幕| 日日摸夜夜添夜夜添小说| 男女啪啪激烈高潮av片| 搡老妇女老女人老熟妇| 中文在线观看免费www的网站| 国产一级毛片七仙女欲春2| 长腿黑丝高跟| 秋霞在线观看毛片| 国语自产精品视频在线第100页| 久久久成人免费电影| 美女cb高潮喷水在线观看| 99热精品在线国产| www日本黄色视频网| 卡戴珊不雅视频在线播放| 亚洲不卡免费看| 小说图片视频综合网站| 精品久久久久久久久av| 欧美成人精品欧美一级黄| 伦理电影大哥的女人| 99久久精品热视频| 美女 人体艺术 gogo| 日日摸夜夜添夜夜添av毛片| 日韩制服骚丝袜av| 一进一出抽搐动态| 婷婷精品国产亚洲av| 久久久久久伊人网av| 99久久无色码亚洲精品果冻| 美女 人体艺术 gogo| 国产视频内射| 级片在线观看| 99热这里只有是精品50| 日韩在线高清观看一区二区三区| 黄色配什么色好看| 国产黄片美女视频| 国产精品一区二区性色av| 村上凉子中文字幕在线| 免费av毛片视频| 亚洲性夜色夜夜综合| 午夜免费激情av| 女人被狂操c到高潮| 亚洲国产精品国产精品| 日日摸夜夜添夜夜添av毛片| 亚洲人成网站在线播放欧美日韩| av在线观看视频网站免费| 免费av毛片视频| 日本免费a在线| 天天躁日日操中文字幕| 国产精品伦人一区二区| 国产成人精品久久久久久| 男女边吃奶边做爰视频| 亚洲久久久久久中文字幕| 亚洲第一区二区三区不卡| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 亚洲一区二区三区色噜噜| 中文字幕熟女人妻在线| 内地一区二区视频在线| 中文字幕av成人在线电影| 亚洲av第一区精品v没综合| 亚洲图色成人| 久久精品91蜜桃| 国国产精品蜜臀av免费| 亚洲第一电影网av| 欧美又色又爽又黄视频| 亚洲欧美清纯卡通| 久久久久久久久中文| 免费看a级黄色片| 91久久精品国产一区二区成人| 老女人水多毛片| 日韩一本色道免费dvd| 69人妻影院| 国产 一区 欧美 日韩| 22中文网久久字幕| 亚洲高清免费不卡视频| 成人一区二区视频在线观看| 亚洲美女视频黄频| 成年免费大片在线观看| 身体一侧抽搐| 国产成人a∨麻豆精品| 精品久久久噜噜| av在线观看视频网站免费| 亚洲婷婷狠狠爱综合网| 国产午夜精品论理片| 国产成人91sexporn| 国产麻豆成人av免费视频| 看免费成人av毛片| 久久久久久大精品| 男女那种视频在线观看| 一级a爱片免费观看的视频| 国模一区二区三区四区视频| 中文字幕av在线有码专区| 午夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久久久久久久| 亚洲成人精品中文字幕电影| 亚洲熟妇中文字幕五十中出| 免费观看人在逋| 国产精品亚洲一级av第二区| 精品人妻偷拍中文字幕| www日本黄色视频网| 少妇的逼好多水| 色播亚洲综合网| 精品人妻熟女av久视频| 人妻丰满熟妇av一区二区三区| 午夜日韩欧美国产| 身体一侧抽搐| 香蕉av资源在线| 一个人免费在线观看电影| 国产美女午夜福利| 中文在线观看免费www的网站| 内射极品少妇av片p| 我的老师免费观看完整版| 亚洲av美国av| 久久久久九九精品影院| 精品久久久久久久久久免费视频| 成年女人看的毛片在线观看| 少妇的逼好多水| 99在线视频只有这里精品首页| 国产成人a区在线观看| 又黄又爽又免费观看的视频| 不卡一级毛片| 一进一出好大好爽视频| 夜夜爽天天搞| 国产人妻一区二区三区在| 在线播放国产精品三级| 国产精品99久久久久久久久| 免费av不卡在线播放| 18禁黄网站禁片免费观看直播| 天堂√8在线中文| 美女cb高潮喷水在线观看| 国产综合懂色| 身体一侧抽搐| 波多野结衣高清作品| 一个人观看的视频www高清免费观看| 51国产日韩欧美| 亚洲无线在线观看| 中文字幕熟女人妻在线| 美女cb高潮喷水在线观看| 成熟少妇高潮喷水视频| 国产在视频线在精品| 久久久久国产网址| www日本黄色视频网| 丝袜美腿在线中文| 国产91av在线免费观看| 人妻制服诱惑在线中文字幕| 国产男靠女视频免费网站| 亚洲欧美成人综合另类久久久 | 成人综合一区亚洲| 欧美绝顶高潮抽搐喷水| 日本黄色片子视频| 国产探花在线观看一区二区| 国产精品一区二区三区四区免费观看 | 99久久无色码亚洲精品果冻| 美女 人体艺术 gogo| 亚洲图色成人| 亚洲欧美日韩高清在线视频| 日韩成人伦理影院| av视频在线观看入口| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| 亚洲精品日韩在线中文字幕 | 天堂影院成人在线观看| 亚洲人成网站在线播放欧美日韩| 久久久久久久久大av| 91在线精品国自产拍蜜月| 人妻久久中文字幕网| 亚洲国产日韩欧美精品在线观看| 1000部很黄的大片| 一区福利在线观看| 最近视频中文字幕2019在线8| 1024手机看黄色片| 久久久欧美国产精品| 日本五十路高清| 综合色丁香网| 少妇熟女欧美另类| 国产亚洲精品av在线| 亚洲成人中文字幕在线播放| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 91在线观看av| 99久久久亚洲精品蜜臀av| 变态另类丝袜制服| 韩国av在线不卡| 女同久久另类99精品国产91| 男女视频在线观看网站免费| 亚洲欧美日韩东京热| 色综合站精品国产| 男女那种视频在线观看| 99久久中文字幕三级久久日本| 国产精品久久久久久久久免| 少妇人妻一区二区三区视频| 成人鲁丝片一二三区免费| 精品人妻偷拍中文字幕| 成人性生交大片免费视频hd| 亚洲一区二区三区色噜噜| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看| 听说在线观看完整版免费高清| 国产精品电影一区二区三区| 97超视频在线观看视频| 午夜久久久久精精品| 一a级毛片在线观看| 麻豆av噜噜一区二区三区| 12—13女人毛片做爰片一| 性色avwww在线观看| 成年版毛片免费区| 99久久无色码亚洲精品果冻| 看十八女毛片水多多多| 91久久精品国产一区二区成人| 欧美日韩国产亚洲二区| 俄罗斯特黄特色一大片| 亚洲精华国产精华液的使用体验 | 国产成人影院久久av| 黄色一级大片看看| а√天堂www在线а√下载| 日韩在线高清观看一区二区三区| 露出奶头的视频| 青春草视频在线免费观看| 高清日韩中文字幕在线| 国产在视频线在精品| 亚洲欧美成人综合另类久久久 | 少妇人妻精品综合一区二区 | 美女免费视频网站| 男人狂女人下面高潮的视频| 成人三级黄色视频| 91精品国产九色| 在线观看午夜福利视频| 欧美最新免费一区二区三区| 毛片一级片免费看久久久久| 老熟妇乱子伦视频在线观看| 最近视频中文字幕2019在线8| 国产精品永久免费网站| 一个人看的www免费观看视频| 久久中文看片网| 亚洲欧美中文字幕日韩二区| av专区在线播放| 免费看a级黄色片| 精品免费久久久久久久清纯| 日本黄色片子视频| 伦理电影大哥的女人| 日韩三级伦理在线观看| 国产美女午夜福利| 伊人久久精品亚洲午夜| 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 久久久久久久久中文| 97人妻精品一区二区三区麻豆| 久久韩国三级中文字幕| 国产精品一区二区免费欧美| 久久久久久九九精品二区国产| а√天堂www在线а√下载| 国产综合懂色| 久久精品人妻少妇| 69人妻影院| 亚洲天堂国产精品一区在线| 日产精品乱码卡一卡2卡三| 简卡轻食公司| 97碰自拍视频| 国产亚洲欧美98| 免费看a级黄色片| 国产日本99.免费观看| 嫩草影视91久久| 能在线免费观看的黄片| 又粗又爽又猛毛片免费看| 午夜爱爱视频在线播放| 波多野结衣高清无吗| 熟女人妻精品中文字幕| 日产精品乱码卡一卡2卡三| 韩国av在线不卡| 神马国产精品三级电影在线观看| 韩国av在线不卡| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲网站| 国产精品福利在线免费观看| 欧美成人免费av一区二区三区| 国产一区二区三区av在线 | 尾随美女入室| 日韩成人av中文字幕在线观看 | 男人的好看免费观看在线视频| 精品不卡国产一区二区三区| 18禁在线无遮挡免费观看视频 | 一进一出抽搐动态| av中文乱码字幕在线| 国产亚洲欧美98| 国产午夜精品久久久久久一区二区三区 | 国产av麻豆久久久久久久| 少妇的逼好多水| 久久久久久久久久久丰满| 国产午夜精品久久久久久一区二区三区 | 另类精品久久| 日本黄大片高清| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 欧美另类一区| 国产淫语在线视频| 各种免费的搞黄视频| 狠狠精品人妻久久久久久综合| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 熟女av电影| 精品一区在线观看国产| 久热这里只有精品99| 18禁裸乳无遮挡动漫免费视频| 久久久久久久国产电影| 只有这里有精品99| 男人爽女人下面视频在线观看| 亚洲av二区三区四区| 啦啦啦视频在线资源免费观看| 国产精品人妻久久久久久| 视频区图区小说| 国产乱来视频区| 两个人的视频大全免费| 亚洲高清免费不卡视频| 色5月婷婷丁香| 国产男人的电影天堂91| av天堂久久9| 91精品国产国语对白视频| 午夜影院在线不卡| 国产极品粉嫩免费观看在线 | 欧美精品人与动牲交sv欧美| av天堂久久9| 亚洲国产成人一精品久久久| 永久网站在线| 亚洲av电影在线观看一区二区三区| 又黄又爽又刺激的免费视频.| 亚洲一区二区三区欧美精品| 亚洲成人手机| 高清视频免费观看一区二区| 精品久久久久久久久av| 丁香六月天网| 极品人妻少妇av视频| 国产亚洲一区二区精品| 两个人的视频大全免费| 亚洲婷婷狠狠爱综合网| 内射极品少妇av片p| 91久久精品国产一区二区三区| 一级爰片在线观看| 亚洲国产精品专区欧美| 欧美 日韩 精品 国产| 国产精品国产三级专区第一集| 亚洲国产色片| 天堂中文最新版在线下载| 能在线免费看毛片的网站| 制服丝袜香蕉在线| 久久精品国产亚洲网站| 日韩精品有码人妻一区| 免费少妇av软件| 男女国产视频网站| 免费大片黄手机在线观看| 久久午夜福利片| 三级国产精品欧美在线观看| 亚洲天堂av无毛| 国产精品偷伦视频观看了| 乱系列少妇在线播放| 亚洲电影在线观看av| 青青草视频在线视频观看| 国产精品麻豆人妻色哟哟久久| 久久国产乱子免费精品| 国产精品一区www在线观看| 黑丝袜美女国产一区| 国产免费视频播放在线视频| 亚洲美女搞黄在线观看| 久久狼人影院| 又大又黄又爽视频免费| 色视频www国产| 在线观看av片永久免费下载| 插阴视频在线观看视频| 99re6热这里在线精品视频| 爱豆传媒免费全集在线观看| 乱人伦中国视频| 午夜av观看不卡| 午夜激情福利司机影院| 大话2 男鬼变身卡| 性色avwww在线观看| 十八禁高潮呻吟视频 | 精品一区在线观看国产| 中文字幕久久专区| 最近最新中文字幕免费大全7| 自线自在国产av| 一区二区三区精品91| 人妻少妇偷人精品九色| 欧美三级亚洲精品| 国产免费一区二区三区四区乱码| 日韩一区二区视频免费看| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 中文乱码字字幕精品一区二区三区| 午夜影院在线不卡| 日本av免费视频播放| 美女福利国产在线| 高清在线视频一区二区三区| 亚洲真实伦在线观看| 五月天丁香电影| 九九在线视频观看精品| av国产精品久久久久影院| 日韩在线高清观看一区二区三区| 97在线视频观看| 精品一品国产午夜福利视频| 18禁裸乳无遮挡动漫免费视频| 精品亚洲乱码少妇综合久久| 又大又黄又爽视频免费| 特大巨黑吊av在线直播| 黄片无遮挡物在线观看| 久久精品久久久久久久性| 欧美日韩一区二区视频在线观看视频在线| 噜噜噜噜噜久久久久久91| 高清在线视频一区二区三区| av播播在线观看一区| 久久99热6这里只有精品| 国产永久视频网站| 一区二区三区乱码不卡18| 国产精品一区二区在线观看99| 一区二区三区四区激情视频| 欧美日本中文国产一区发布| 日韩成人av中文字幕在线观看| 内射极品少妇av片p| 人人妻人人添人人爽欧美一区卜| 熟女av电影| 久久综合国产亚洲精品| 亚洲久久久国产精品| av天堂久久9| 老司机影院毛片| 51国产日韩欧美| 亚洲美女视频黄频| 赤兔流量卡办理| 亚洲成人手机| 婷婷色麻豆天堂久久| 亚洲图色成人| 国产视频首页在线观看| 欧美日韩综合久久久久久| 一级黄片播放器| 日韩制服骚丝袜av| 另类亚洲欧美激情| 亚洲国产最新在线播放| 久久99精品国语久久久| 久久久国产欧美日韩av| 国产综合精华液| 精品熟女少妇av免费看| 国产一级毛片在线| 午夜激情久久久久久久| 大香蕉久久网| 国产美女午夜福利| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 春色校园在线视频观看| 国产一区二区三区av在线| 亚洲国产毛片av蜜桃av| 日韩成人av中文字幕在线观看| 欧美xxⅹ黑人| 18禁动态无遮挡网站| 九色成人免费人妻av| 国产精品.久久久| 狂野欧美激情性bbbbbb| 国产成人91sexporn| a级片在线免费高清观看视频| 99九九在线精品视频 | 老司机影院成人| 久久精品国产自在天天线| 一级毛片aaaaaa免费看小| 卡戴珊不雅视频在线播放| 日韩av不卡免费在线播放| av线在线观看网站| 亚洲av电影在线观看一区二区三区| 高清午夜精品一区二区三区| 亚洲精品中文字幕在线视频 | 伊人久久国产一区二区| 99九九线精品视频在线观看视频| 成年美女黄网站色视频大全免费 | 国产欧美亚洲国产| 国产美女午夜福利| 久久久久久伊人网av| 国产成人一区二区在线| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 亚洲精品中文字幕在线视频 | 在线观看美女被高潮喷水网站| a级片在线免费高清观看视频| 免费大片18禁| 国产成人freesex在线| 嫩草影院新地址| 欧美激情国产日韩精品一区| 噜噜噜噜噜久久久久久91| 十八禁网站网址无遮挡 | 欧美日本中文国产一区发布| 少妇裸体淫交视频免费看高清| 日韩电影二区| 成人国产av品久久久| 国产成人精品久久久久久| 六月丁香七月| 国产欧美亚洲国产| 久久99热这里只频精品6学生| av福利片在线观看| 亚洲精品日本国产第一区| 国产亚洲5aaaaa淫片| 久久久久久久国产电影| 久久久久视频综合| 国产又色又爽无遮挡免| 中文字幕av电影在线播放| 免费观看av网站的网址| 亚洲精品第二区| 26uuu在线亚洲综合色| 久久久久久久亚洲中文字幕| 日韩强制内射视频| 久久鲁丝午夜福利片| 一本久久精品| 日韩av在线免费看完整版不卡| 18禁动态无遮挡网站| 久久久久视频综合| 91精品一卡2卡3卡4卡| 午夜福利视频精品| 国产免费一级a男人的天堂| 人妻系列 视频| 一区二区av电影网| 精品一品国产午夜福利视频|