• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Second harmonic generation from precise diamond blade diced ridge waveguides

    2022-09-24 08:00:14HuiXu徐慧ZiqiLi李子琦ChiPang逄馳RangLi李讓GenglinLi李庚霖ShAkhmadalievShengqiangZhou周生強(qiáng)QingmingLu路慶明YuechenJia賈曰辰andFengChen陳峰
    Chinese Physics B 2022年9期
    關(guān)鍵詞:陳峰李子

    Hui Xu(徐慧) Ziqi Li(李子琦) Chi Pang(逄馳) Rang Li(李讓) Genglin Li(李庚霖) Sh. AkhmadalievShengqiang Zhou(周生強(qiáng)) Qingming Lu(路慶明) Yuechen Jia(賈曰辰) and Feng Chen(陳峰)

    1School of Physics,State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    2Division of Physics and Applied Physics,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore 637371,Singapore

    3Institute of Ion Beam and Materials Research,Helmholtz-Zentrum Dresden-Rossendorf,Dresden 01314,Germany

    4School of Chemistry and Chemical Engineering,Shandong University,Jinan 250100,China

    Keywords: optical waveguides,Nd:GdCOB crystal,second harmonic generation

    1. Introduction

    Optical waveguides, as one of the essential components of integrated photonics, can confine light fields in extremely small volumes.[1,2]As a result, the light intensity obtained from the waveguide volume is much higher than that in the bulk.[3-5]This feature provides meaningful advantages in nonlinear optical applications, where various nonlinear phenomena can be generated from the waveguide structure at a relatively low optical power. For example, frequency conversion processes based on waveguides feature higher conversion efficiencies and more flexible mode selection compared with those based on bulks.[4]Combining the versatility of multifunctional crystals with the compact geometries of waveguide structures, crystalline waveguides can be used to construct multifunctional optical devices with small footprints,such as on-chip lasers, compact optical modulators and nonlinear wavelength converters.[6,7]In practice,channel or ridge waveguides with light field confinement in two dimensions(2D) are preferred to one-dimensional (1D) planar waveguides due to their better optical confinement and more flexible geometry.[8]

    Ion implantation, as an important method for material modification, has been applied to a variety of crystals.[9-15]By bombarding the target crystal surface with energetic ion beams, localized lattice damage and refractive index modification appear at near-surface regions, resulting in the formation of an optical waveguide.[16-18]Up to now, this technique has been applied to the preparation of waveguides in dozens of crystalline materials.[8,16]Optical waveguides manufactured by ion implantation are generally 1D planar structures. Additional surface microfabrication is therefore needed to obtain 2D waveguide structures. Of the techniques used for surface microfabrication, femtosecond laser direct writing (FsLDW) and precise diamond blade dicing are the most common. Both techniques have been utilized to manufacture ridge waveguides based on ion-irradiated Nd:YAG planar waveguides.[19-23]However,compared with the ridge waveguides fabricated by FsLDW, those prepared by precise diamond blade dicing feature lower scattering losses and a higher optical quality owing to their smoother side walls.[19,24-26]

    Combining the lasing and luminescence characteristics of Nd3+ions with the nonlinear optical properties of a GdCa4O(BO3)3(GdCOB) matrix, it is shown that neodymium-doped GdCOB (Nd:GdCOB) has attractive optical properties as an excellent laser gain medium and an efficient self-frequency doubling(SFD)crystal.[27-31]In previous works, planar and channel waveguides have been fabricated in Nd:GdCOB crystals by ion irradiation[32]and FsLDW,[33]and second harmonic generation(SHG)has also been achieved using these waveguide structures. However, up to now,Nd:GdCOB ridge waveguides produced by ion irradiation and precise diamond dicing have not been reported.

    In this work, we demonstrate the fabrication of Nd:GdCOB ridge waveguides by combining ion beam irradiation with precise diamond blade dicing techniques. We performed SHG at 532 nm in both ridge and planar waveguides using 1064 nm pulsed fundamental waves.

    2. Experiments

    The 8 at.% Nd-doped GdCOB crystal used in this work was cut to satisfy type-I phase matching conditions (θ=161.5°,φ=0°)with dimensions of 11 mm×9 mm×2.2 mm.The crystal facets of 11 mm×9 mm and 11 mm×2.2 mm were well polished to an optical grade. As Fig.1(a)shows,the surface of the sample was irradiated by carbon(C5+)ions with an energy of 15 MeV at a fluence of 2×1014ions·cm-2. As a result,a planar waveguide with a thickness of~10μm(according to the microscopic image and the ion irradiation calculations,as presented in the next section)was achieved. Ion irradiation was accomplished using the 3 MV tandem accelerator at Helmholtz-Zentrum Dresden-Rossendorf,Germany. To reduce the channel effect,the incident ion beam was deviated by 7°from the normal to the sample surface. After that,based on the planar configuration,we constructed ridge waveguides using diamond blade dicing(see Fig.1(b)). During this process,several air grooves perpendicular to the crystal surface with a size of approximately 11 mm×2.2 mm were produced with the blade (DISCO Corp., P1A851 SD3000R10B10)[34]installed on a precision dicing machine(Jingchuang Advanced,AR3000). The rotation and movement velocities were set to 20000 rpm and 0.05 mm·s-1, respectively. With vertical optical confinement provided by the ion-induced change in refractive index and lateral optical confinement offered by two neighboring grooves,ridge waveguides with widths of 10μm(WG1), 20 μm (WG2), 25 μm (WG3), and 30 μm (WG4)were formed. Both irradiation and precise diamond blade dicing are high-precision and repeatable waveguide construction techniques,[35-37]so that the waveguides are constructed with good stability.

    Fig. 1. Schematic illustrations of (a) 15 MeV C5+ ion irradiation and (b)precise diamond blade dicing for Nd:GdCOB ridge waveguide fabrication.

    After fabrication, micro-Raman measurements were carried out using a spectrometer (Horiba/Jobin Yvon HR800)to investigate the microstructural modification of Nd:GdCOB crystal. With a detected range of 50 cm-1-1500 cm-1,a laser beam at 473 nm was focused on the waveguide cross sections and bulk at room temperature.

    Micro-second harmonic(μ-SH)spectroscopic analysis of the sample was performed to evaluate the nonlinear properties of the waveguides using a confocal microscopy testing platform. A laser beam(with a pulse duration of~20 ns,a pulse energy of~2 μJ and a pulse repetition rate of~5 MHz) at 1030 nm produced by a microjoule ultrafast fiber laser system (ANTAUS-10W-2u/5M) was coupled to the sample with a 100× objective [numerical aperture (NA)=0.3]. The reflected μ-SH signal was collected by the same objective, and after passing through several mirrors and lenses the signal was detected by a spectrometer.

    As shown in Fig. 2(a), we performed SHG characterization experiments based on an end-face coupling arrangement.After the 1064 nm light beam was emitted from the pulsed laser (with a pulse width of~11.05 ns, a pulse energy of~80μJ and a repetition rate of~5 kHz),its power and polarization were adjusted by a neutral density filter and a half-wave plate, respectively. A microscope objective(25×, NA=0.4)was used for optical in-coupling. The SHG and residual fundamental signal outputs from the waveguides were collected by another microscope objective. In order to detect the SHG signal, we used a spectrometer and a powermeter behind an optical low-pass filter,which has a transmittance of~98%at 532 nm and a reflectivity of>99%at 1064 nm. Figures 2(b)-2(e)present the fundamental modes along transverse magnetic(TM)and second harmonic(SH)modes along transverse electric(TE)directions in planar and WG3 ridge waveguides(all the ridge waveguides show similar modal distributions). Both fundamental and SH waves are well confined in the waveguiding regions, showing nearly single-mode profiles, which are very beneficial for SHG.

    Fig. 2. (a) The end-face coupling arrangement for SHG characterization of Nd:GdCOB waveguides. The mode field distribution of planar and WG3 ridge waveguides at 1064 nm[(b),(d)]and at 532 nm[(c),(e)](OLPF,optical low-pass filter).

    3. Results and discussion

    The nuclear(Sn)and electronic(Se)stopping power profiles of 15 MeV C5+ions in Nd:GdOCB were calculated using the SRIM-2008(Stopping and Range of Ions in Matter 2008)code, and the results are shown in Fig. 3(a). A non-zeroSeis observed within the ion penetration range of 0μm-10μm,peaking at approximately 1.7 keV·nm-1with a depth value of~6.7 μm. In contrast, theSnvalue remains zero within the first 9 μm below the surface and reaches a maximum of 0.16 keV·nm-1around 10 μm beneath the surface. Therefore,the electronic damage is considered to be the main cause for the change in refractive index in the ion-irradiated area,whereas the nuclear damage at the end of the ion trajectory is responsible for the creation of the optical barrier. Moreover,the formation of the waveguide layer is a collective effect of bothSnandSe. The maximum modification of refractive index in the waveguide region is about 0.003 estimated by the formula

    whereΘmis the maximum incident angle at which the laser beam cannot be focused into the waveguide by the microscope objective andn=1.7184 is the refractive index of the Nd:GdCOB crystal.[32]Therefore, taking the stopping power profiles as references, we reconstructed the refractive index distribution(see Fig.3(a)). Figures 3(b)and 3(e)demonstrate the microscopic images of the planar waveguide and the WG2 ridge waveguide, respectively. The thickness of the modified layer is observed to be around 10μm,which is in fairly good agreement with the calculation performed using the SRIM-2008 code.[38]We imported the index profile into Rsoft Beam PROP 8.0[39]and simulated the near-field modal distribution.Taking a planar waveguide and WG2 ridge waveguide as examples, figures 3(c) and 3(f) display the simulated near-field distributions at 1064 nm,which are very similar to the experimental results imaged by a CCD camera in the end-face coupling setup (see Figs. 3(d) and 3(g)), suggesting the reasonability of the reconstructed refractive index profile.

    Fig.3. (a)The curves of the electronic stopping power(blue line)and the nuclear stopping power(red line)distribution,as well as the refractive index profile of the waveguide(green line),as functions of the depth. Parts(b)and(e)show microscopic images of the cross sections of planar and WG2 ridge waveguides,respectively.Experimental[(c),(f)]and simulation[(d),(g)]results of the modal profiles of planar and WG2 ridge waveguides along the TE direction at 1064 nm.

    Fig.4. Output power of(a)planar and(b)WG3 ridge waveguides as a function of all-angle 1064 nm laser transmission with a constant launched power of 17.4 mW under continuous wave configuration.

    To investigate the polarization-dependent properties of the waveguides, the all-angle optical transmission of the fabricated waveguide at 1064 nm was measured. As one can see from Fig. 4, for both planar and WG3 ridge waveguides (all the ridge waveguides show similar results), the output power reaches its maxima(0.86 mW and 0.62 mW)along TE polarization(0°and 180°)while decreasing to its minima(0.22 mW and 0.16 mW) along TM polarization (90°and 270°). However,the SHG process occurs under a TMω →TE2ωprocess in Nd:GdCOB waveguides, so the polarization-dependent effect has a negative impact on the frequency-doubled output power and conversion efficiency of SHG.

    Fig.5. Micro-Raman spectra obtained from the WG3 ridge waveguide(red dotted line)and the bulk(blue line)of the Nd:GdCOB crystal.

    Fig. 6. (a) The emitted intensity of μ-SH spectra when the laser beam (at 1030 nm) is focused at the WG3 ridge waveguide (red line), the planar waveguide (green line) and the bulk (gray line). (b) The laser spectra of the fundamental beam at 1064 nm(red line)and second harmonic generation at 532 nm(green line)in the WG3 ridge waveguide.

    Micro-Raman spectra of Nd:GdCOB at the substrate and C5+ion implantation regions are presented in Fig.5. The Raman peak number and position show no differences between the bulk and waveguide areas. However,the Raman intensity in the waveguide increases with respect to the bulk,which may be a result of the lattice expansion attributed to electronic collisions during ion irradiation.[40-42]It is also possible that C5+ion implantation has caused more point defects in the crystal,leading to a slight broadening of the Raman peak half-width.

    Theμ-SH responses of the ridge and planar waveguides,as well as the bulk area, were investigated, as shown in Fig. 6(a). From the SH intensity profiles, the intensity distributions for the bulk,planar and ridge waveguides have similar shapes,with their peaks at the same position.However,the SH signal in the WG3 ridge waveguide(all the ridge waveguides show similar results) is enhanced significantly, at around ten times greater than that in the bulk. It is evident that the nonlinear properties of the Nd:GdCOB crystal are well retained and further greatly enhanced in the waveguide. As shown in Fig. 6(b), the spectra measured by the pulsed laser pump of the fundamental(at 1064 nm)and SH(at 532 nm)waves from the WG3 ridge waveguide clearly depict the nonlinear process of SHG in Nd:GdCOB waveguides. The 1064 nm fundamental and SH waves are determined to be TM-and TE-polarized,respectively. This verifies that the SHG process occurs under the TMω →TE2ωprocess,which is in good accordance with the phase matching configuration of the bulk.

    Figure 7 illustrates the second harmonic powers (average power)and the conversion efficiencies as functions of the 1064 nm fundamental pump power for planar and WG4 ridge waveguides (WG4 has the best frequency doubling performance of any of the ridge waveguides)under the pulsed configuration. The measured data points are marked with solid circles (blue for the SH powers and red for the conversion efficiencies). For the planar waveguide, the maximum average power output of the SH light is~1.04 mW with a pump power of~112 mW, resulting in a conversion efficiency ofη ≈8.32 %·W-1. The maximum average output power of the SH light for the WG4 ridge waveguide is~2.80 mW,which is around two times larger than that of the planar waveguide. The conversion efficiency reaches a maximum value of~22.36 %·W-1, leading to a significantly enhanced performance. An annealing treatment at 260°C for about 30 min was carried out in order to observe the changes in related nonlinear properties. However,this thermal operation has a negligible influence on the SHG performance of the waveguides.The data on maximum SHG output power (Pmax), the conversion efficiency (ηmax) and the propagation losses (α) for all ridge waveguides are summarized in Table 1, and the related properties of the planar waveguide are also included for reference. With an increase in the width of the ridge waveguide,the corresponding maximum SHG power and conversion efficiency will be enhanced. The similar dependence of the SHG properties on the ridge width can also be found in previously reported KTiOPO4ridge waveguides.[26]Furthermore,ridge waveguides show better performance than planar waveguides in frequency doubling, mainly due to the more compact structure of ridge waveguides, which leads to a stronger light intensity confined in a limited volume. The propagation losses of the ridge waveguides decrease with increase in ridge width. All ridge waveguides have higher propagation losses than planar waveguide,mainly due to the relatively high waveguide side-wall roughness caused by the dicing process.By optimizing the dicing parameters, such as the blade type and its rotation velocity,the roughness of the waveguide sidewall can be lowered,thereby reducing the propagation loss of the fabricated ridge waveguide.[43]In addition, reduction of the waveguide side-wall roughness can be also realized using ion beam milling.[44]The frequency doubling efficiency will be improved if waveguide losses are optimized, and a selffrequency-doubling effect can be expected.

    Table 1. The maximum output SH powers(Pmax),the maximum conversion efficiencies(ηmax)and propagation losses(α)of the Nd:GdCOB planar and ridge waveguides.

    Fig.7. Second harmonic power and the corresponding conversion efficiency as functions of the fundamental pump power in(a)planar and(b)WG4 ridge waveguides.

    4. Conclusion

    We have fabricated ridge waveguides in Nd:GdCOB crystals through a combination of carbon ion irradiation and precise diamond blade dicing. Based on an end-face coupling setup,the optical waveguiding properties of both Nd:GdCOB ridge waveguides and planar waveguide were experimentally investigated. The simulated modal profiles agree well with the measurements, suggesting the rationality of the constructed index profile based on stopping powers. From the micro-Raman spectrum, lattice expansion occurs during carbon ion implantation with more point defects.Throughμ-SH analysis,the nonlinear properties of the Nd:GdCOB crystal have been found to be fully preserved and greatly enhanced within the waveguides. SHG at 532 nm based on type I phase matching has been observed under a 1064 nm pulsed laser configuration. The maximum SH power of~2.80 mW was obtained in the WG4 ridge waveguide, and the corresponding conversion efficiency was~22.36 %·W-1. For planar waveguide,the maximum SH power was~1.04 mW with a conversion efficiency of 8.32%·W-1.Our work demonstrates that carbon ion irradiation combined with precise diamond blade dicing can be used to fabricate efficient nonlinear waveguides, providing potential applications in integrated photonics.

    Acknowledgments

    The authors thank Dr Y.Cheng for waveguide fabrication and Professor H.Yu forμ-SH analysis.

    Project supported by the Taishan Scholars Youth Expert Program of Shandong Province and the Qilu Young Scholar Program of Shandong University,China.

    猜你喜歡
    陳峰李子
    陳峰:求真務(wù)實(shí),以勇于創(chuàng)新鑄就科學(xué)品質(zhì)
    泳池惡作劇青春抱恙:隱身女神讓愛(ài)“雄起”
    Entanglement witnesses of four-qubit tripartite separable quantum states*
    一次難忘的生日
    秋天
    李子有多少
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    單身吧
    桃之夭夭B(2019年10期)2019-12-14 14:06:42
    我的糊涂媽媽
    無(wú)解≠增根
    久久国产精品大桥未久av | 亚洲成人中文字幕在线播放| 国产精品人妻久久久久久| 亚洲av成人精品一区久久| 乱码一卡2卡4卡精品| 黄色欧美视频在线观看| 一级毛片aaaaaa免费看小| 久久精品熟女亚洲av麻豆精品| 国产精品人妻久久久久久| 岛国毛片在线播放| 最近中文字幕2019免费版| 插逼视频在线观看| 午夜福利在线观看免费完整高清在| 午夜福利在线观看免费完整高清在| 免费观看a级毛片全部| 青春草亚洲视频在线观看| 男人和女人高潮做爰伦理| 涩涩av久久男人的天堂| 网址你懂的国产日韩在线| 街头女战士在线观看网站| 一边亲一边摸免费视频| 乱系列少妇在线播放| 日韩视频在线欧美| 国产爱豆传媒在线观看| 有码 亚洲区| 老司机影院成人| 久久久a久久爽久久v久久| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| 日本爱情动作片www.在线观看| 少妇 在线观看| h视频一区二区三区| av.在线天堂| 国内揄拍国产精品人妻在线| 嫩草影院入口| 97在线人人人人妻| 一个人看的www免费观看视频| 少妇人妻一区二区三区视频| 久久国产亚洲av麻豆专区| 日本黄色片子视频| 亚洲精品一二三| 亚洲成色77777| h日本视频在线播放| 你懂的网址亚洲精品在线观看| 男人舔奶头视频| 成人黄色视频免费在线看| av免费观看日本| 婷婷色综合大香蕉| 国产精品免费大片| 黑人高潮一二区| 欧美另类一区| 少妇裸体淫交视频免费看高清| 国产精品一区二区在线不卡| 舔av片在线| 国产精品欧美亚洲77777| 高清不卡的av网站| 最后的刺客免费高清国语| 99热全是精品| 蜜桃久久精品国产亚洲av| 日韩一区二区视频免费看| 国产精品99久久久久久久久| 人人妻人人澡人人爽人人夜夜| 三级经典国产精品| 国产爱豆传媒在线观看| 欧美亚洲 丝袜 人妻 在线| 99视频精品全部免费 在线| 男的添女的下面高潮视频| 少妇被粗大猛烈的视频| 成人国产av品久久久| 最黄视频免费看| 黑人猛操日本美女一级片| 91精品国产国语对白视频| 51国产日韩欧美| 国产在线一区二区三区精| 在线播放无遮挡| 精品国产一区二区三区久久久樱花 | 日韩中字成人| 国产免费一区二区三区四区乱码| 免费黄频网站在线观看国产| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 亚洲美女搞黄在线观看| 老司机影院毛片| 少妇人妻久久综合中文| 亚洲欧美中文字幕日韩二区| 日日摸夜夜添夜夜添av毛片| 精华霜和精华液先用哪个| 久久 成人 亚洲| 五月天丁香电影| 欧美成人午夜免费资源| 欧美激情国产日韩精品一区| 午夜福利网站1000一区二区三区| 久久综合国产亚洲精品| 熟妇人妻不卡中文字幕| 国产精品一区二区性色av| 大片电影免费在线观看免费| 国产精品一二三区在线看| 日本爱情动作片www.在线观看| 王馨瑶露胸无遮挡在线观看| 大片免费播放器 马上看| 一区二区三区乱码不卡18| 18禁在线无遮挡免费观看视频| 午夜福利影视在线免费观看| 欧美精品亚洲一区二区| 亚洲av在线观看美女高潮| 久久久久国产网址| 三级经典国产精品| 午夜福利在线观看免费完整高清在| 永久免费av网站大全| 欧美精品人与动牲交sv欧美| 午夜日本视频在线| 国产伦精品一区二区三区视频9| 亚洲国产欧美人成| 97热精品久久久久久| 日本黄色片子视频| 精品一区二区三卡| 亚洲色图av天堂| 国产午夜精品久久久久久一区二区三区| 大码成人一级视频| 久久韩国三级中文字幕| 久久人人爽人人片av| 日韩电影二区| 日本免费在线观看一区| freevideosex欧美| 久久青草综合色| 中文字幕亚洲精品专区| 国产高潮美女av| 男女边吃奶边做爰视频| 极品教师在线视频| 大话2 男鬼变身卡| 97在线视频观看| 国产视频内射| 欧美最新免费一区二区三区| 国产男人的电影天堂91| 亚洲精品成人av观看孕妇| 伦精品一区二区三区| 日韩伦理黄色片| 亚洲精品国产av成人精品| 中文字幕久久专区| 免费高清在线观看视频在线观看| 国产av国产精品国产| 亚洲av在线观看美女高潮| 国产精品一区二区性色av| 在线观看国产h片| 一级av片app| 夫妻性生交免费视频一级片| 国产男人的电影天堂91| 久热久热在线精品观看| 午夜福利在线观看免费完整高清在| 一级毛片电影观看| 日日啪夜夜爽| 国产高潮美女av| 欧美日韩视频高清一区二区三区二| 丝瓜视频免费看黄片| 色网站视频免费| 自拍欧美九色日韩亚洲蝌蚪91 | h视频一区二区三区| 中文欧美无线码| 嫩草影院入口| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 国产精品国产三级国产专区5o| 日本黄色日本黄色录像| 在线观看三级黄色| 亚洲精品国产av蜜桃| 欧美日韩一区二区视频在线观看视频在线| 日本av手机在线免费观看| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 亚洲高清免费不卡视频| 亚洲人成网站高清观看| 只有这里有精品99| 亚洲精品国产av成人精品| 18+在线观看网站| 精品国产乱码久久久久久小说| 日韩免费高清中文字幕av| h视频一区二区三区| 哪个播放器可以免费观看大片| 日韩免费高清中文字幕av| 18+在线观看网站| 亚洲欧美成人综合另类久久久| 五月天丁香电影| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 国产无遮挡羞羞视频在线观看| .国产精品久久| 欧美国产精品一级二级三级 | 麻豆成人av视频| 亚洲综合色惰| 性色av一级| 波野结衣二区三区在线| 久久ye,这里只有精品| 成年av动漫网址| 91久久精品电影网| 一区二区三区免费毛片| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 一级av片app| 欧美xxⅹ黑人| 女人十人毛片免费观看3o分钟| 国产日韩欧美在线精品| 亚洲美女视频黄频| a级毛色黄片| 你懂的网址亚洲精品在线观看| 我要看日韩黄色一级片| 男女无遮挡免费网站观看| 中文欧美无线码| 免费观看的影片在线观看| kizo精华| 国产亚洲欧美精品永久| 嘟嘟电影网在线观看| 身体一侧抽搐| 亚洲,一卡二卡三卡| 亚洲av成人精品一区久久| 国产真实伦视频高清在线观看| 中文字幕精品免费在线观看视频 | 国模一区二区三区四区视频| 十八禁网站网址无遮挡 | 婷婷色综合www| 亚洲性久久影院| 色吧在线观看| 欧美 日韩 精品 国产| 天堂中文最新版在线下载| 深爱激情五月婷婷| 秋霞伦理黄片| 亚洲国产av新网站| 韩国av在线不卡| 国产有黄有色有爽视频| 亚洲精品久久午夜乱码| 亚洲精品一二三| 十分钟在线观看高清视频www | 97在线人人人人妻| 黄片wwwwww| 国产精品久久久久久精品电影小说 | 国产亚洲欧美精品永久| 毛片一级片免费看久久久久| 亚洲丝袜综合中文字幕| 亚洲一级一片aⅴ在线观看| 韩国高清视频一区二区三区| 久久久久久九九精品二区国产| 国产免费视频播放在线视频| 欧美老熟妇乱子伦牲交| 亚洲欧洲日产国产| 亚洲av成人精品一区久久| 欧美日韩精品成人综合77777| 精品人妻熟女av久视频| 久久女婷五月综合色啪小说| 久久影院123| 涩涩av久久男人的天堂| 亚洲欧美成人综合另类久久久| 久久人人爽人人片av| 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| tube8黄色片| 免费观看a级毛片全部| 毛片女人毛片| 黄色日韩在线| 91在线精品国自产拍蜜月| 美女中出高潮动态图| 草草在线视频免费看| 免费在线观看成人毛片| 久久久亚洲精品成人影院| 18禁裸乳无遮挡免费网站照片| 色5月婷婷丁香| 大码成人一级视频| 国产乱人偷精品视频| 国产精品偷伦视频观看了| 老司机影院成人| 国产精品一区二区在线观看99| 亚洲av电影在线观看一区二区三区| tube8黄色片| 日韩精品有码人妻一区| 亚洲精品成人av观看孕妇| 亚洲第一区二区三区不卡| 亚洲精品久久午夜乱码| 国产精品99久久久久久久久| 国产精品欧美亚洲77777| 久久久a久久爽久久v久久| 精品国产乱码久久久久久小说| 免费在线观看成人毛片| 高清黄色对白视频在线免费看 | 精品亚洲乱码少妇综合久久| 美女主播在线视频| 色视频www国产| av在线蜜桃| 美女内射精品一级片tv| 黄色一级大片看看| 久久青草综合色| 亚洲欧美成人精品一区二区| 国产亚洲最大av| 成人美女网站在线观看视频| 免费不卡的大黄色大毛片视频在线观看| 极品教师在线视频| 久久国产乱子免费精品| 麻豆精品久久久久久蜜桃| 国产免费福利视频在线观看| 毛片女人毛片| 国产男女超爽视频在线观看| 大片免费播放器 马上看| 一个人看视频在线观看www免费| 2018国产大陆天天弄谢| 黄色欧美视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 日本免费在线观看一区| 国产成人a∨麻豆精品| 内射极品少妇av片p| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 亚洲精品色激情综合| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区国产| 在线观看av片永久免费下载| 麻豆成人午夜福利视频| 亚洲欧美精品自产自拍| 97热精品久久久久久| 亚洲中文av在线| 深爱激情五月婷婷| 97超碰精品成人国产| 一边亲一边摸免费视频| 一级毛片aaaaaa免费看小| 免费不卡的大黄色大毛片视频在线观看| 高清毛片免费看| 日韩中字成人| 精品99又大又爽又粗少妇毛片| 国产精品成人在线| 超碰97精品在线观看| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区| 一级毛片黄色毛片免费观看视频| 观看美女的网站| 欧美日本视频| 亚洲av福利一区| 在线观看人妻少妇| 各种免费的搞黄视频| 国产91av在线免费观看| 国产精品秋霞免费鲁丝片| 久久99热6这里只有精品| 亚洲av中文av极速乱| 麻豆成人午夜福利视频| 日韩人妻高清精品专区| 欧美精品亚洲一区二区| 亚洲av中文av极速乱| 欧美精品亚洲一区二区| 亚洲精品日韩在线中文字幕| 少妇人妻精品综合一区二区| 亚洲av国产av综合av卡| 国产中年淑女户外野战色| 两个人的视频大全免费| 日韩亚洲欧美综合| 人妻夜夜爽99麻豆av| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 亚洲精品第二区| 亚洲精品自拍成人| 韩国高清视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品第二区| 亚洲精品视频女| a 毛片基地| 亚洲精品aⅴ在线观看| 中文乱码字字幕精品一区二区三区| 寂寞人妻少妇视频99o| 亚洲综合精品二区| 免费观看av网站的网址| 午夜福利影视在线免费观看| 男女免费视频国产| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 狂野欧美激情性bbbbbb| 男人舔奶头视频| 少妇人妻精品综合一区二区| 国产精品偷伦视频观看了| 日本黄色片子视频| 国产一区二区在线观看日韩| 99久久人妻综合| 精品国产三级普通话版| 97在线人人人人妻| 免费不卡的大黄色大毛片视频在线观看| 国产高清三级在线| 国产精品免费大片| 亚洲欧美成人精品一区二区| 久久久久久久精品精品| 国产精品一区二区三区四区免费观看| 91精品伊人久久大香线蕉| 色综合色国产| 王馨瑶露胸无遮挡在线观看| 人人妻人人澡人人爽人人夜夜| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| av不卡在线播放| 欧美xxⅹ黑人| 51国产日韩欧美| 免费高清在线观看视频在线观看| 久热久热在线精品观看| 九九久久精品国产亚洲av麻豆| 久久久久久人妻| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 亚州av有码| 欧美97在线视频| 2018国产大陆天天弄谢| 亚洲精品一二三| 天堂8中文在线网| 一个人看视频在线观看www免费| 国产高清有码在线观看视频| 亚洲色图av天堂| 丰满少妇做爰视频| 国产高潮美女av| 国产精品一区www在线观看| 色网站视频免费| 欧美日韩视频高清一区二区三区二| 亚洲丝袜综合中文字幕| 深夜a级毛片| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看| 亚洲,欧美,日韩| 2022亚洲国产成人精品| 六月丁香七月| 夜夜爽夜夜爽视频| 内射极品少妇av片p| 观看av在线不卡| 啦啦啦视频在线资源免费观看| 日韩一区二区视频免费看| 日韩大片免费观看网站| 久久久久久久大尺度免费视频| 三级经典国产精品| 成人18禁高潮啪啪吃奶动态图 | 亚洲天堂av无毛| 乱系列少妇在线播放| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| 国产成人午夜福利电影在线观看| av又黄又爽大尺度在线免费看| 高清毛片免费看| 日本午夜av视频| a 毛片基地| 日本-黄色视频高清免费观看| 毛片一级片免费看久久久久| 99国产精品免费福利视频| 久久久精品94久久精品| 在线观看一区二区三区激情| 视频区图区小说| 成人二区视频| 只有这里有精品99| 国产中年淑女户外野战色| 国产永久视频网站| 国内精品宾馆在线| 亚洲av欧美aⅴ国产| 午夜激情福利司机影院| 国产一区二区三区av在线| 高清毛片免费看| 五月玫瑰六月丁香| 尾随美女入室| 久久国产亚洲av麻豆专区| 国产精品久久久久久久电影| 午夜激情福利司机影院| 久久久久精品久久久久真实原创| 在线观看一区二区三区激情| 成人18禁高潮啪啪吃奶动态图 | 成年av动漫网址| 亚州av有码| 国产又色又爽无遮挡免| 91精品国产国语对白视频| 精品熟女少妇av免费看| 狂野欧美白嫩少妇大欣赏| 精品人妻视频免费看| 最近中文字幕2019免费版| 在线观看美女被高潮喷水网站| 久久久久久久久久久免费av| 99久国产av精品国产电影| 日韩人妻高清精品专区| 在线亚洲精品国产二区图片欧美 | 草草在线视频免费看| 中文字幕久久专区| 天美传媒精品一区二区| 九九在线视频观看精品| 国产精品99久久99久久久不卡 | 日韩一本色道免费dvd| 久热久热在线精品观看| 免费不卡的大黄色大毛片视频在线观看| 午夜视频国产福利| 91在线精品国自产拍蜜月| 国产有黄有色有爽视频| 久久久久性生活片| 亚洲国产av新网站| 国产av一区二区精品久久 | 日韩欧美一区视频在线观看 | 久久99蜜桃精品久久| 国产成人精品婷婷| 精品一区二区三卡| 精品久久久久久久久av| 亚洲人成网站高清观看| 亚洲美女视频黄频| 国产乱人偷精品视频| 五月玫瑰六月丁香| h视频一区二区三区| 激情 狠狠 欧美| 日韩国内少妇激情av| 欧美成人a在线观看| 全区人妻精品视频| av不卡在线播放| 久久久久久九九精品二区国产| 亚洲精品成人av观看孕妇| 久久久午夜欧美精品| 建设人人有责人人尽责人人享有的 | 欧美日韩一区二区视频在线观看视频在线| 高清欧美精品videossex| 欧美日韩一区二区视频在线观看视频在线| 久久久色成人| 交换朋友夫妻互换小说| 久久久久性生活片| 汤姆久久久久久久影院中文字幕| 热re99久久精品国产66热6| 在线观看免费日韩欧美大片 | 一级片'在线观看视频| 老师上课跳d突然被开到最大视频| 亚洲一级一片aⅴ在线观看| 久久国产精品男人的天堂亚洲 | 美女内射精品一级片tv| 色综合色国产| 欧美成人a在线观看| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| av福利片在线观看| 成人无遮挡网站| 欧美xxⅹ黑人| 国产淫片久久久久久久久| 欧美精品人与动牲交sv欧美| 少妇 在线观看| av在线观看视频网站免费| 青春草国产在线视频| 免费人妻精品一区二区三区视频| 99热全是精品| 深夜a级毛片| 中文字幕免费在线视频6| 99久久精品热视频| 又黄又爽又刺激的免费视频.| 欧美精品国产亚洲| 久热这里只有精品99| 97在线视频观看| 色5月婷婷丁香| 日本一二三区视频观看| 少妇人妻一区二区三区视频| 成人综合一区亚洲| av在线播放精品| 成人毛片a级毛片在线播放| 国产精品久久久久久久久免| 少妇的逼好多水| 看十八女毛片水多多多| 亚洲精品成人av观看孕妇| 色婷婷av一区二区三区视频| 国产成人午夜福利电影在线观看| 性色avwww在线观看| 国产亚洲5aaaaa淫片| 尤物成人国产欧美一区二区三区| 国产亚洲最大av| 欧美最新免费一区二区三区| 国产精品一二三区在线看| 各种免费的搞黄视频| 国产成人freesex在线| 日韩亚洲欧美综合| 国内揄拍国产精品人妻在线| 国产又色又爽无遮挡免| 亚洲精品国产av成人精品| 国产乱人视频| 建设人人有责人人尽责人人享有的 | 国产精品无大码| 18禁动态无遮挡网站| 99热国产这里只有精品6| 男人狂女人下面高潮的视频| 草草在线视频免费看| 精品亚洲成a人片在线观看 | 高清毛片免费看| 国产精品国产三级国产av玫瑰| 在线观看一区二区三区激情| 男女边吃奶边做爰视频| 91精品一卡2卡3卡4卡| 高清av免费在线| 中文字幕久久专区| 亚洲欧洲日产国产| 国产精品99久久久久久久久| 成人18禁高潮啪啪吃奶动态图 | 国产伦精品一区二区三区视频9| 国产成人a区在线观看| 久久久精品94久久精品| 色5月婷婷丁香| 91久久精品国产一区二区成人| 亚洲精品第二区| 久久精品久久久久久噜噜老黄| 亚洲第一av免费看| 国产高清国产精品国产三级 | 人人妻人人添人人爽欧美一区卜 | 一级片'在线观看视频| 网址你懂的国产日韩在线| 天堂俺去俺来也www色官网| 中文精品一卡2卡3卡4更新| 黄色一级大片看看| 久久久久性生活片| 国产成人精品婷婷| 免费av不卡在线播放| 国产无遮挡羞羞视频在线观看| 久久久久视频综合| 亚洲色图av天堂| 久久精品久久久久久久性| 精品久久久久久久久av| 美女脱内裤让男人舔精品视频| 欧美成人精品欧美一级黄| 国产亚洲最大av| 日本黄大片高清| 久久精品国产a三级三级三级| 青青草视频在线视频观看| 免费观看av网站的网址| 成年av动漫网址| 免费大片18禁|