• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers

    2022-09-24 08:00:14YiLiu劉毅YuanqiGu顧源琦YuNing寧鈺PengfeiChen陳鵬飛YaoYao姚堯YajunYou游亞軍WenjunHe賀文君andXiujianChou丑修建
    Chinese Physics B 2022年9期
    關(guān)鍵詞:劉毅亞軍鵬飛

    Yi Liu(劉毅) Yuanqi Gu(顧源琦) Yu Ning(寧鈺) Pengfei Chen(陳鵬飛) Yao Yao(姚堯)Yajun You(游亞軍) Wenjun He(賀文君) and Xiujian Chou(丑修建)

    1Taiyuan University of Technology,Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,Taiyuan 030024,China

    2Taiyuan University of Technology,Institute of Optoelectronic Engineering,College of Physics and Optoelectronics,Taiyuan 030024,China

    3Strong Digital Technology Co.,Ltd. (Thinvent),Nanchang 410000,China

    4North University of China,Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education,Taiyuan 030051,China

    5North University of China,College of Mechatronics Engineering,Taiyuan 030051,China

    6North University of China,Science and Technology on Electronic Test and Measurement Laboratory,School of Instrument and Electronics,Taiyuan 030051,China

    Keywords: Brillouin scattering,surface acoustic waves,hybrid acoustic waves,optical microfiber sensing

    1. Introduction

    Stimulated Brillouin scattering(SBS)in optical fiber is a third-order nonlinear effect[1]by photon-phonon coupling.[2]In standard optical fiber, the acoustic waves involved in SBS are bulk acoustic wave(BAW),in which the pump light both excites and interacts longitudinal and shear waves,producing backward-SBS(BSBS)and forward-SBS(FSBS),[3-6]respectively. The deviations between the pump light and the scattering light are Brillouin frequency shifts (BFS). The properties of fiber materials can be adjusted by the action of external physical field (stress, temperature, etc.), leading to corresponding changes in BFS of forward and backward scattering light. SBS has been studied intensely in applications such as forward/backward Brillouin sensors[7-11]and distributed/point fiber sensing.[12-17]Qianet al.realized the sensitive enhancement of a fiber laser sensor by Brillouin slow light.[18]Liuet al.realized a triple Brillouin frequency spacing Brillouin fiber laser sensor for temperature measurement.[19]Desmondet al.proposed a distributed forward Brillouin sensor based on light phase recovery.[20]

    It has been proved that both photons and phonons in optical microfibers are strongly constrained and highly overlapped in space,[21,22]producing new type of BS driven by SAWs and HAWs.[23,24]Generated by the interaction between incident light and the outer surface of the optical microfibers, SAWs’travel velocity are approximately 0.87 to 0.95 times than that of the shear waves along the microfiber surface.[25]While HAWs are generated by the strong coupling of longitudinal and shear waves, and propagate at a medium speed between shear and longitudinal waves are in the microfiber. SAWs and HAWs exist in different positions of the optical microfiber,[26]and have different Brillouin spectrum characteristic.[27]The BFS and Brillouin gain are affected by the structure, material and size of the optical microfibers. The SAW and HAW BS sensing performance of microfiber is expected to break through the limitation of standard optical fiber sensing. Moreover, the SAW BS can be controlled or enhanced by smallcore and high air-filling fraction microstructured fibers[28]and the photo-elastic and moving-boundary effects,[29]and eliminated for one polarization mode at certain core ellipticities.[30]The SAW and HAW BS have been applied to characterize of subwavelength-diameter tapered silica optical fibers,[31]obtain the values of the elastic constants[32-34]and optical sensing and detection.[35-37]

    In this paper, we demonstrate the temperature and strain sensitivities of SAW and HAW BS in optical microfibers,which is potential for new-type Brillouin fiber-optic sensing applications. We numerically simulate the frequencies of SAMs and HAMs using the elastodynamic equation including the electrostrictive stress[38-40]at 1μm diameter. Furthermore, the optical/acoustic distributions at 1μm diameter and the Brillouin spectrum of SAWs/HAWs with 1-1.3μm diameters are calculated, which are basically consistent with the reported results.[23]According to the influences of temperature and strain on material properties, the temperature/strain sensitivities and sensitivity-diameter slopes of the SAMs and HAMs are demonstrated from 1 μm to 1.3 μm diameters. In addition,it is shown that SAW and HAW BS can realize temperature and strain simultaneous sensing and have excellent sensing performance.

    2. Theoretical analysis

    2.1. Elastodynamic equation including electrostrictive stress

    Electrostriction of an acoustic phonon is obtained from the interaction of two incident photons satisfying the previous phase-matching conditions. The exact contribution from each mechanism can be calculated by the elastodynamic equation including the electrostrictive stress to more accurately study and calculate the frequency and displacement distributions of the acoustic wave in optical microfibers. The elastodynamic equation can be written as

    withci jklis the isotropic elastic matrix,χkli j=εimεjnpklmn,χkli jis the fourth-order polarization tensor,ε0andεijare the vacuum dielectric constant and the dielectric tensor of the medium, respectively.pklmnis the fourth-order photoelastic tensor,EkE?lis the dyadic vector of the electric field. The phonon lifetime takes into account the elastic losses assuming a complex elastic tensor whose imaginary part is a constant viscosity tensor times frequency. This loss model is compatible with the usual assumption that theQ×f=5 THz is a constant for a given material, withQthe quality factor andfthe acoustic frequency.

    The Brillouin gain factor and the backward Brillouin gain of acoustic mode can be written as[41]

    2.2. Temperature and strain sensing principles

    The temperature changes will affect the fiber’s four main material properties (refractive index, density, Poisson’s ratio and Young’s modulus) to influence the BFS (i.e., acoustic mode frequency). The effects of temperature and strain on material properties are[41]

    withn0= 1.444,ρ0= 2203 kg/m3,γ0= 0.17,E0=72.553 GPa are the initial refractive index, density, Poisson’s ratio and Young’s modulus of fused silica at 27°C.ΔTis the temperature change value.

    While the strain will induce elastic anisotropy in optical microfibers. The effective elastic tensor can be written as[42]

    withλ=16 GPa andμ=31 GPa are the Lam′e constants of fused silica and°denotes the Hadamard product. ˉεzzis the tensile strain.

    3. Results and discussion

    3.1. SAW and HAW BS in optical microfibers

    The cylindrical waveguide with 1μm diameter is numerically simulated based on a finite-element method.[43]The solid core made of silica is surrounded by air (n=1). With this size, the influence of radiation pressure is almost negligible in principle.[44]The optical power density of the fundamental guided optical mode in the silica bridge forλ=1550 nm is displayed in Fig. 1(a). The calculated effective refractive index is 1.1715. It can be indicated that a small part of the energy of the optical wave will leak out of the optical fiber from an evanescent field,but most of the energy of the optical wave is trapped in the optical fiber.

    The Brillouin spectra of SAWs and HAWs are significantly changed because their propagation speeds are different from that of BAWs. The BFSs of SAWs and HAWs are~6 GHz and~9 GHz, respectively. In addition, the SAWs are extremely sensitive to the fiber surface change, and the HAWs will produce multi-peak Brillouin scattering structures due to the different coupling ratios of longitudinal and shear waves. We numerically simulate the frequencies of SAMs at 5.34 GHz(SAM1)and 5.67 GHz(SAM2),HAMs at 8.48 GHz(HAM1) and 9.16 GHz (HAM2) with 1 μm fiber diameter,which are basically consistent with the reported results.[23]Every normalized acoustic mode displacement and density distribution are shown in Figs.1(b)-1(i),respectively.It can be seen the acoustic mode energy density of the SAWs is limited to the air-silica interface of the optical microfiber,causing mechanical ripples of several picometers. Inside of the microfiber,the acoustic mode density gradually decreases with the distance from the surface. The acoustic mode energy density of the HAWs is still confined in the center of the optical microfiber.

    Fig. 2. (a) Numerical simulation of the Brillouin spectra with optical microfiber diameter varying from 1μm to 1.3μm. (b)The acoustic frequency and Brillouin gain as a function of microfiber diameter.

    Figure 2(a) shows the numerical simulation of the Brillouin spectra with an optical microfiber diameter varying from 1 μm to 1.3 μm. The frequency of SAM1 increases from 5.3452 GHz to 5.5321 GHz and the Brillouin gain decreases from 7.2324 W-1·m-1to 6.2128 W-1·m-1. In contrast, we noticed that SAM2 has a greater frequency variation than SAM1 in Fig. 2(b). The frequency of SAM2 increases from 5.6710 GHz to 6.0858 GHz while the Brillouin gain decreases from 2.9372 W-1·m-1to 4.3159 W-1·m-1.The Brillouin gains of SAMs gradually decrease with diameter increasing, caused by strong effect of the decreased microfibers diameter on the acousto-optic interaction. The frequency of HAM1 decreases from 8.4820 GHz to 7.8046 GHz and the Brillouin gain increases from 9.9569 W-1·m-1to 37.6959 W-1·m-1, while the frequency of HAM2 increases from 9.1623 GHz to 9.5497 GHz and the Brillouin gain decreases from 9.8159 W-1·m-1to 9.5659 W-1·m-1. The phase-matching condition leads to the differences of Brillouin spectra of acoustic frequencies under different diameters. The different trends of two HAMs with diameters result from the different coupling ratios of longitudinal and shear waves under the boundary conditions of the waveguide,causing changes in group sound velocity and BFS. Compared with the Brillouin gain of 0.4 W-1·m-1in single-mode fiber,microfiber sensing has higher signal-to-noise ratio.

    3.2. Temperature and strain sensitivities

    The temperature and strain sensitivities of optical microfibers can be calculated by the variation of BFS with temperature and strain. Due to the polymer cladding,the maximal tensile strain in standard optical fibers is limited to 2%,but naturally the elasticity of silica glass allows going up to 6%.[45]Using Eqs.(3)and(4),the BFS of 1μm diameter optical fiber can be calculated at different temperatures and strains (compared with 0°C and no strain),as shown in Figs.3(a)and 3(b),respectively.It can be found that the BFS of SAMs and HAM2 are almost linear with temperature and strain. The SAM1 and SAM2 have the comparative temperature and strain coefficients with 0.458 MHz/°C(0.432 MHz/°C)and 65.94 MHz/%(73.02 MHz/%). The temperature and strain coefficients of HAM2 are 0.928 MHz/°C and 264.53 MHz/%. The BFS of HAW1 is linear 0.660 MHz/°C with temperature, but nonlinear with strain because of strain-induced elastic anisotropy.The strain sensitivity decreases with the increase of strain,ranging from 82.54 MHz/%to 109.50 MHz/%.

    Fig.3. (a)The temperature and(b)strain sensitivities of each acoustic wave mode are considered as a function of 1μm diameter optical fibers.

    3.3. Temperature and strain sensitivities under different fiber diameters

    The Brillouin resonances have high sensitivity to the geometric parameters of microfibers.[46]The temperature and strain sensitivities of each acoustic mode with a diameter varying from 1 μm to 1.3 μm as shown in Figs. 4(a) and 4(c),respectively. For unit consistency, write the strain sensitivity of 100 MHz/% as 0.01 MHz/με. The insets show the acoustic mode density distribution at 1 μm, 1.16 μm, and 1.3 μm diameters, respectively. In order to study the relationship between temperature/strain sensitivities and diameter change,we plot the temperature/strain sensitivity-diameter slope of each acoustic mode with a fiber diameter varying from 1 μm to 1.3μm as shown in Figs.4(b)and 4(d),respectively. The temperature sensitivity-diameter slopeTd= dT/ddis the derivative of temperature sensitivity to fiber diameterd, and strain sensitivity-diameter slopeSd= dS/ddis the derivative of the strain sensitivity to the fiber diameterd.

    It can be seen in Fig. 4(a) that the temperature sensitivities of the HAMs are significantly greater than that of the SAMs. As the fiber diameter changes from 1 μm to 1.3 μm, the temperature sensitivities of the SAMs gradually increase. The maximum temperature sensitivities of SAM1 and SAM2 are 0.557 MHz/°C and 0.568 MHz/°C at 1.3μm diameter,respectively,whereas those of the HAM1 and HAM2 are 0.744 MHz/°C at 1 μm diameter and 1.082 MHz/°C at 1.14μm diameter,respectively. It can be seen in Fig.4(b)that the temperature sensitivity-diameter slopes of the SAMs both are between 0.05 MHz/°C/μm and 0.25 MHz/°C/μm with diameter, while those of the HAMs are significantly changes.For instance,the temperature sensitivity-diameter slope of the HAM2 is-1.23 MHz/°C/μm at 1.3μm diameter. This means that the change in temperature sensitivity of-1.23 MHz/°C would be corresponding to the variation of one micrometer in fiber diameter.

    It can be seen in Fig.4(c)that the strain sensitivity of the HAM2 is 0.0289 MHz/μεat 1.1μm diameter,which is significantly greater than those of the SAMs and HAM1.As the fiber diameter changes from 1 μm to 1.3 μm, the strain sensitivities of SAMs increase gradually,and the maximum values are 0.008 MHz/μεand 0.0078 MHz/με, respectively. Whereas the strain sensitivity of HAM1 decreases with the increase of diameter. The green areas show the variation of strain sensitivity in the tensile strain of 1%-5%. Figure 4(d)shows the strain sensitivity-diameter slope of the SAMs are both between 1×10-4MHz/με/μm and 5×10-4MHz/με/μm, which is a small fluctuation compared to that of HAMs. For instance,the maximum strain sensitivity-diameter slope of the HAM2 is-0.0096 MHz/με/μm at 1.3μm diameter. The green areas indicate that the strain sensitivity of HAM1 tends to increase uniformly with diameter under 1%-5%tensile strain.

    Fig.4. (a)The temperature sensitivity and(b)sensitivity-diameters of each acoustic wave mode are considered as a function of the fiber diameter.(c)The strain sensitivity and(d)sensitivity-diameters of each acoustic wave mode are considered as a function of the fiber diameter. The insets in(a),(c)show the acoustic mode density distribution at 1μm,1.16μm,and 1.3μm diameters,respectively. The gray areas in(b),(d)highlight the temperature/strain sensitivity-diameter slope 0.05 MHz/°C/μm-0.25 MHz/°C/μm and 1×10-4 MHz/με/μm-5×10-4 MHz/με/μm,respectively.

    3.4. SAW and HAW BS sensing performance

    Four acoustic modes excited at 1 μm diameter optical fiber are linearly related to strain and temperature, and their temperature and strain sensitivities are different. Therefore,the relationship between BFS and temperature/strain sensitivity is established by selecting any two acoustic modes, as shown below to realize simultaneous sensing of temperature and strain:

    withva0andvb0are any two of the acoustic mode frequencies at a temperature of 27°C and no strain, respectively.CTaandCTbare the temperature sensitivities ofva0andvb0.CεaandCεbare the strain sensitivities ofva0andvb0.

    In addition to improving the sensing sensitivities of temperature and strain,reducing the temperature and strain errors will also improve the multi-parameter sensing performance.The measurement errors of temperature and strain are due to the inaccurate determination of acoustic mode frequencies,which ignores the errors within the transfer matrix. Assume that the maximum measurement errors of acoustic mode frequencyδva=va-va0andδvb=vb-vb0are equal, denoted byδv=0.1 MHz.[47]Theδvwill be transferred to the temperature errorδTand strain errorδε, with transfer temperature coefficientβTand strain coefficientβε, which may be expressed as[48]

    withΔ=CTaCεb-CTbCεanot equal to zero.

    Through the above research, it is found that all the four acoustic modes in optical microfibers can realize multiparameter sensing. Temperature and strain errors were calculated by selecting two acoustic modes for comparison, as shown in Table 1. It can be seen the simultaneous sensing of SAW and HAW BS can achieve small temperature and strain errors. In particular, the temperature and strain errors of SAM1-HAM2 and HAM1-HAM2 combinations are as low as 0.47°C and 21.58με,and 0.30°C-0.43°C and 15.09με-19.80με,respectively.

    Table 1. Temperature and strain errors calculated by SAMs and HAMs.

    Since the change of fiber diameter will affect the temperature and strain sensitivity of each acoustic mode,the temperature and strain errors of SAM1-HAM2 and HAM1-HAM2 combinations under different diameters are different,as shown in Fig. 5. The minimum errors of SAM1-HAM2 combination are 0.47°C and 20.96 μεat 1.06 μm, respectively. The minimum errors of HAM1-HAM2 combination are 0.30°C-0.34°C and 14.47με-16.25μεat 1.08μm,respectively.Then their temperature and strain error coefficients increase with the diameter increasing,and the increase amplitude of SAM1-HAM2 combination was greater than that of HAM1-HAM2 combination.

    Table 2 lists the temperature and strain errors based on SBS in different optical fibers. By comparison, the errors of multi-parameter sensing using acoustic modes in optical microfibers are smaller. In addition,when using microfiber sensing,the light field constraint ability is strong,the bending loss is low, and the bending radius can reach micron level, which can realize the manufacture of highly compact photon sensor.Microfiber has a large tensile strain of up to 6%,which is suitable for large strain sensing. And when Brillouin scattering is used in microfiber, it has large Brillouin gain, high signal-tonoise ratio and is easy to detect.

    Table 2. The temperature and strain errors based on SBS in different optical fibers.

    Fig.5. The temperature(a)and strain(b)errors of SAM2-HAM2 and HAM1-HAM2 acoustic mode combinations are considered as a function of the fiber diameter.

    4. Conclusion

    In conclusion, the temperature and strain sensitivities of SAW/HAW BS in optical microfibers with 1 μm-1.3 μm diameters are reported. It is found that the temperature and strain sensitivities of HAMs are as high as 1.082 MHz/°C and 0.0289 MHz/μεrespectively, which are significantly greater than those of the SAMs (0.568 MHz/°C and 0.0109 MHz/με). Such results show that HAW BS is more suitable for high temperature and strain resolutions in microfiber sensing application.[53]Whereas, the temperature and strain sensitivity-diameter slopes of the SAMs range from 0.05 MHz/°C/μm to 0.25 MHz/°C/μm and 0.0001 MHz/με/μm to 0.0005 MHz/με/μm with diameter, which is much smaller than the value about-1.23 MHz/°C/μm and-0.0096 MHz/με/μm of the HAMs at 1.3μm diameter. It suggests that the temperature and strain sensitivities of the SAMs are approximately the same with the slightly non-uniform diameter, indicating that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers. In addition,the applications of SAW and HAW BS in simultaneous sensing are analyzed.The combinations of SAM1-HAM2 and HAM1-HAM2 can obtain small temperature and strain errors. The minimum errors of HAM1-HAM2 combination are 0.30°C-0.34°C and 14.47 με-16.25 με, respectively. These results indicate that microfibers have great potential in point and distributed fiber sensing.

    Acknowledgments

    Project supported by the National Science Fund for Distinguished Young Scholars (Grant Nos. 61705157 and 61805167),the National Natural Science Foundation of China(Grant Nos. 61975142 and 11574228), China Postdoctoral Science Foundation (Grant No. 2020M682113), the Key Research and Development Projects of Shanxi Province, China(Grant No.201903D121124),and Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-112).

    猜你喜歡
    劉毅亞軍鵬飛
    姜亞軍治療焦慮性失眠經(jīng)驗
    吳亞軍:白手起家的女首富
    時代郵刊(2019年24期)2020-01-02 11:04:52
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(2019年9期)2019-10-12 06:33:44
    給自己留一條路
    河北省沙河市第二小學(xué) 劉毅可
    雙11商戰(zhàn),永久、鳳凰奪冠亞軍
    中國自行車(2017年1期)2017-04-16 02:53:45
    A Precritical Analysis of the PoemThe Passionate Shepherd to His Love by Marlowe
    中国三级夫妇交换| 妹子高潮喷水视频| 巨乳人妻的诱惑在线观看| 午夜免费男女啪啪视频观看| 国产熟女欧美一区二区| 日韩制服骚丝袜av| 嫩草影院入口| 日本91视频免费播放| 大香蕉久久网| 超色免费av| 久久久久国产一级毛片高清牌| av国产精品久久久久影院| 亚洲精品成人av观看孕妇| 巨乳人妻的诱惑在线观看| 精品国产露脸久久av麻豆| 日韩不卡一区二区三区视频在线| 亚洲 欧美一区二区三区| 建设人人有责人人尽责人人享有的| 成年动漫av网址| 国产av精品麻豆| 亚洲美女视频黄频| 丰满少妇做爰视频| 波多野结衣av一区二区av| 人人妻人人澡人人爽人人夜夜| 哪个播放器可以免费观看大片| 制服人妻中文乱码| 国产一级毛片在线| av有码第一页| 制服诱惑二区| 日日摸夜夜添夜夜爱| 免费看av在线观看网站| 老汉色av国产亚洲站长工具| 69精品国产乱码久久久| 嫩草影院入口| 在线观看一区二区三区激情| 国产福利在线免费观看视频| 免费av中文字幕在线| 国产片特级美女逼逼视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利网站1000一区二区三区| 免费av中文字幕在线| 国产 精品1| 国产淫语在线视频| 久久99一区二区三区| 少妇的丰满在线观看| 人妻人人澡人人爽人人| 国产精品久久久av美女十八| 最近中文字幕2019免费版| 国产麻豆69| 丝袜美足系列| 成年av动漫网址| 国产在线免费精品| 99热网站在线观看| 国产精品久久久久成人av| 丁香六月天网| 美女大奶头黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲在久久综合| 国产精品无大码| 天堂8中文在线网| 天堂俺去俺来也www色官网| 免费看不卡的av| 午夜日本视频在线| av国产精品久久久久影院| 晚上一个人看的免费电影| 亚洲精品美女久久av网站| 观看av在线不卡| 国产av国产精品国产| 久热久热在线精品观看| 午夜福利在线免费观看网站| 日韩中文字幕视频在线看片| 一级a爱视频在线免费观看| 两个人免费观看高清视频| 母亲3免费完整高清在线观看 | 涩涩av久久男人的天堂| 成人毛片a级毛片在线播放| 最近最新中文字幕免费大全7| 欧美精品av麻豆av| 久久久久国产一级毛片高清牌| 一二三四中文在线观看免费高清| 男人爽女人下面视频在线观看| 久久精品国产综合久久久| 国产成人精品婷婷| 夫妻午夜视频| 丰满乱子伦码专区| 美女福利国产在线| 一二三四在线观看免费中文在| 中文字幕亚洲精品专区| 久热这里只有精品99| 欧美最新免费一区二区三区| 丝袜人妻中文字幕| 亚洲综合色惰| 美女xxoo啪啪120秒动态图| 免费日韩欧美在线观看| 999久久久国产精品视频| 赤兔流量卡办理| 叶爱在线成人免费视频播放| 两性夫妻黄色片| av免费在线看不卡| 亚洲欧美精品综合一区二区三区 | 日韩大片免费观看网站| 麻豆精品久久久久久蜜桃| 人妻一区二区av| 美女主播在线视频| 日本欧美国产在线视频| 免费在线观看完整版高清| 亚洲天堂av无毛| 日日摸夜夜添夜夜爱| 精品亚洲乱码少妇综合久久| 国产精品 国内视频| 搡老乐熟女国产| 久久久久久免费高清国产稀缺| 久久久久国产网址| 国产精品人妻久久久影院| 美女国产高潮福利片在线看| a级片在线免费高清观看视频| 91aial.com中文字幕在线观看| 一二三四中文在线观看免费高清| 精品视频人人做人人爽| 汤姆久久久久久久影院中文字幕| 精品少妇内射三级| 久久婷婷青草| 亚洲天堂av无毛| 9191精品国产免费久久| 精品人妻在线不人妻| 欧美日韩成人在线一区二区| videossex国产| 国产免费又黄又爽又色| 国产 一区精品| 91精品伊人久久大香线蕉| 在线观看人妻少妇| 国产精品偷伦视频观看了| 久久99热这里只频精品6学生| 国产在线一区二区三区精| 永久网站在线| 黄色怎么调成土黄色| 国产深夜福利视频在线观看| 亚洲精品日韩在线中文字幕| 国产成人av激情在线播放| 18禁观看日本| 免费观看av网站的网址| 日韩成人av中文字幕在线观看| 国产深夜福利视频在线观看| 丝袜人妻中文字幕| 国精品久久久久久国模美| 丁香六月天网| 国产一区二区三区av在线| 国产成人a∨麻豆精品| 丝袜喷水一区| 香蕉国产在线看| 亚洲国产欧美网| 国产xxxxx性猛交| 只有这里有精品99| 丰满少妇做爰视频| 国产成人一区二区在线| 最近最新中文字幕免费大全7| 人妻少妇偷人精品九色| 久久久久久久久久久免费av| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 免费高清在线观看日韩| 久久久久人妻精品一区果冻| 女人高潮潮喷娇喘18禁视频| 国产精品国产三级专区第一集| 91在线精品国自产拍蜜月| 亚洲少妇的诱惑av| 一区二区三区精品91| 男男h啪啪无遮挡| 天天影视国产精品| av福利片在线| 中文乱码字字幕精品一区二区三区| 国产不卡av网站在线观看| av福利片在线| 国产精品久久久久久精品电影小说| 人妻一区二区av| 美女国产视频在线观看| 午夜激情av网站| 亚洲精品美女久久av网站| 爱豆传媒免费全集在线观看| 国产一级毛片在线| 日韩人妻精品一区2区三区| xxx大片免费视频| 欧美日韩精品网址| 色94色欧美一区二区| av网站在线播放免费| 亚洲av综合色区一区| 人体艺术视频欧美日本| 久久久精品94久久精品| 女人高潮潮喷娇喘18禁视频| 亚洲熟女精品中文字幕| 国语对白做爰xxxⅹ性视频网站| av线在线观看网站| 色94色欧美一区二区| 久久久久国产网址| 大片免费播放器 马上看| 亚洲一区中文字幕在线| 午夜精品国产一区二区电影| a级片在线免费高清观看视频| 久久久久久久久久久久大奶| 午夜激情久久久久久久| 成年人午夜在线观看视频| tube8黄色片| 日本免费在线观看一区| 18禁裸乳无遮挡动漫免费视频| 午夜老司机福利剧场| www.自偷自拍.com| 久久女婷五月综合色啪小说| 精品一区二区三区四区五区乱码 | 欧美精品高潮呻吟av久久| 午夜福利在线观看免费完整高清在| 国产国语露脸激情在线看| 下体分泌物呈黄色| 久久国产精品大桥未久av| 国产亚洲最大av| 久久精品国产亚洲av天美| 久久免费观看电影| 亚洲av免费高清在线观看| 亚洲在久久综合| 自拍欧美九色日韩亚洲蝌蚪91| 老汉色∧v一级毛片| 在线看a的网站| 日韩成人av中文字幕在线观看| 国产免费又黄又爽又色| 久久久久久伊人网av| 侵犯人妻中文字幕一二三四区| 国产精品一区二区在线观看99| 国产精品欧美亚洲77777| 老熟女久久久| 欧美老熟妇乱子伦牲交| 亚洲av综合色区一区| 啦啦啦啦在线视频资源| 精品一区二区三卡| 在线看a的网站| 久久精品亚洲av国产电影网| 久久久精品国产亚洲av高清涩受| 国产成人91sexporn| 中文字幕av电影在线播放| 如何舔出高潮| 麻豆av在线久日| 亚洲国产欧美网| 黄片小视频在线播放| 亚洲av男天堂| 久久人人97超碰香蕉20202| 成人毛片60女人毛片免费| 丰满乱子伦码专区| 国产精品嫩草影院av在线观看| 亚洲国产av新网站| 日韩成人av中文字幕在线观看| 亚洲精品成人av观看孕妇| 久久精品aⅴ一区二区三区四区 | 视频在线观看一区二区三区| 国产亚洲最大av| 国产成人aa在线观看| 国产色婷婷99| 永久网站在线| 一级毛片电影观看| 久久久久国产精品人妻一区二区| tube8黄色片| 欧美精品人与动牲交sv欧美| 日本av手机在线免费观看| 久久精品久久久久久久性| 中文字幕人妻丝袜一区二区 | 国产精品人妻久久久影院| 亚洲精品国产一区二区精华液| 亚洲情色 制服丝袜| 青春草国产在线视频| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| 亚洲精品第二区| 大香蕉久久网| 又粗又硬又长又爽又黄的视频| 精品少妇一区二区三区视频日本电影 | 国产男女内射视频| 国产日韩欧美视频二区| 欧美 日韩 精品 国产| 中文字幕人妻丝袜制服| 97在线视频观看| 飞空精品影院首页| 色网站视频免费| 欧美中文综合在线视频| 国产无遮挡羞羞视频在线观看| 久久女婷五月综合色啪小说| 亚洲av福利一区| 欧美日韩精品网址| 国产成人一区二区在线| 菩萨蛮人人尽说江南好唐韦庄| 9191精品国产免费久久| 少妇精品久久久久久久| 午夜日本视频在线| 热re99久久国产66热| 成人午夜精彩视频在线观看| 欧美精品一区二区免费开放| 欧美另类一区| 纯流量卡能插随身wifi吗| 免费女性裸体啪啪无遮挡网站| 中国三级夫妇交换| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| www.精华液| 曰老女人黄片| 日韩在线高清观看一区二区三区| 中文天堂在线官网| 国产日韩一区二区三区精品不卡| 欧美亚洲日本最大视频资源| 国产在线视频一区二区| 亚洲欧美成人综合另类久久久| 热re99久久国产66热| 丝袜喷水一区| 天天操日日干夜夜撸| 91久久精品国产一区二区三区| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免| 视频区图区小说| 天天躁日日躁夜夜躁夜夜| 两个人免费观看高清视频| 成人国产麻豆网| 欧美日韩国产mv在线观看视频| 日韩视频在线欧美| 人成视频在线观看免费观看| 搡老乐熟女国产| 三上悠亚av全集在线观看| 国产精品 国内视频| 国产av国产精品国产| 久久婷婷青草| 国产黄色免费在线视频| 两个人看的免费小视频| 日日啪夜夜爽| 国产高清不卡午夜福利| 一级毛片 在线播放| av女优亚洲男人天堂| 国产精品国产av在线观看| 少妇人妻久久综合中文| 国产精品国产三级国产专区5o| 性高湖久久久久久久久免费观看| 久久久精品国产亚洲av高清涩受| 亚洲综合精品二区| 美女午夜性视频免费| 日本wwww免费看| 韩国高清视频一区二区三区| 99国产综合亚洲精品| 又粗又硬又长又爽又黄的视频| 久久久久网色| 国产在线免费精品| 久久午夜综合久久蜜桃| 亚洲精品国产av蜜桃| 满18在线观看网站| xxxhd国产人妻xxx| 极品少妇高潮喷水抽搐| 亚洲精品美女久久久久99蜜臀 | 欧美人与性动交α欧美软件| 国产又爽黄色视频| 国产精品一国产av| 亚洲精品国产av成人精品| 精品国产一区二区三区四区第35| 伊人亚洲综合成人网| 黄色怎么调成土黄色| 久久久久久久国产电影| 看十八女毛片水多多多| 国产成人av激情在线播放| 在线观看人妻少妇| 国产黄色免费在线视频| 国产精品久久久久久av不卡| 一级爰片在线观看| 欧美日韩成人在线一区二区| 黄色毛片三级朝国网站| 乱人伦中国视频| 国产成人精品无人区| 久久久久人妻精品一区果冻| 九九爱精品视频在线观看| 麻豆av在线久日| 人妻人人澡人人爽人人| 巨乳人妻的诱惑在线观看| 久久久精品区二区三区| 亚洲中文av在线| 黑人欧美特级aaaaaa片| 亚洲国产毛片av蜜桃av| 如日韩欧美国产精品一区二区三区| 欧美人与性动交α欧美软件| 人人妻人人澡人人爽人人夜夜| 在线观看美女被高潮喷水网站| 国产乱人偷精品视频| 日本-黄色视频高清免费观看| 啦啦啦视频在线资源免费观看| 日韩欧美一区视频在线观看| 欧美bdsm另类| 麻豆乱淫一区二区| 久久久久久久久久人人人人人人| 制服人妻中文乱码| 免费少妇av软件| 国产精品成人在线| 夜夜骑夜夜射夜夜干| 午夜福利,免费看| 26uuu在线亚洲综合色| 最近2019中文字幕mv第一页| 捣出白浆h1v1| 中文精品一卡2卡3卡4更新| 欧美亚洲日本最大视频资源| 久久久久久久久久久久大奶| av卡一久久| a级片在线免费高清观看视频| 2018国产大陆天天弄谢| 久久精品国产鲁丝片午夜精品| 日韩av在线免费看完整版不卡| 国产成人免费无遮挡视频| 国产成人午夜福利电影在线观看| av网站在线播放免费| 在线观看人妻少妇| 亚洲av中文av极速乱| 午夜91福利影院| 久久久国产精品麻豆| 国产成人av激情在线播放| 久久国产精品男人的天堂亚洲| 免费观看在线日韩| 啦啦啦中文免费视频观看日本| a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 欧美亚洲 丝袜 人妻 在线| 毛片一级片免费看久久久久| 久热这里只有精品99| 视频区图区小说| 色婷婷久久久亚洲欧美| 日韩,欧美,国产一区二区三区| 欧美精品国产亚洲| 黑人巨大精品欧美一区二区蜜桃| 男女啪啪激烈高潮av片| 亚洲精品久久午夜乱码| 精品人妻在线不人妻| 一边亲一边摸免费视频| 午夜影院在线不卡| 又大又黄又爽视频免费| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| videossex国产| 久久精品国产亚洲av涩爱| 中文字幕色久视频| 黑人巨大精品欧美一区二区蜜桃| 久久99一区二区三区| 天美传媒精品一区二区| 日韩精品免费视频一区二区三区| 国产精品偷伦视频观看了| a级毛片黄视频| 性高湖久久久久久久久免费观看| 一边亲一边摸免费视频| 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片| 人妻少妇偷人精品九色| 一级片免费观看大全| 亚洲国产精品成人久久小说| 久久女婷五月综合色啪小说| 久久影院123| 免费在线观看完整版高清| 欧美精品国产亚洲| 亚洲精品一区蜜桃| 日韩中字成人| 97人妻天天添夜夜摸| 精品国产乱码久久久久久男人| 亚洲国产欧美网| 午夜福利,免费看| 中文精品一卡2卡3卡4更新| 精品酒店卫生间| 日本wwww免费看| www.自偷自拍.com| 免费观看a级毛片全部| a 毛片基地| 亚洲在久久综合| 欧美精品av麻豆av| 一区二区日韩欧美中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人97超碰香蕉20202| 久久精品久久久久久噜噜老黄| 国产精品99久久99久久久不卡 | 另类亚洲欧美激情| 高清av免费在线| 亚洲第一av免费看| 中国三级夫妇交换| 成年av动漫网址| 亚洲熟女精品中文字幕| 五月天丁香电影| 中文字幕另类日韩欧美亚洲嫩草| 热re99久久国产66热| 五月开心婷婷网| 久久热在线av| 亚洲三级黄色毛片| 成人国语在线视频| 91成人精品电影| 99热国产这里只有精品6| 一边摸一边做爽爽视频免费| 国产福利在线免费观看视频| 国产在视频线精品| 成人亚洲精品一区在线观看| 丰满迷人的少妇在线观看| 一区福利在线观看| 免费不卡的大黄色大毛片视频在线观看| 18禁动态无遮挡网站| 久久99精品国语久久久| 国产 精品1| 日韩人妻精品一区2区三区| 黄色视频在线播放观看不卡| 国产成人精品久久二区二区91 | 成人国语在线视频| 欧美精品高潮呻吟av久久| 各种免费的搞黄视频| 欧美av亚洲av综合av国产av | 少妇人妻 视频| 国产一级毛片在线| 亚洲色图 男人天堂 中文字幕| 国产一级毛片在线| 如日韩欧美国产精品一区二区三区| 久久久久久人人人人人| 日韩伦理黄色片| 久久久久久人妻| 欧美日韩一级在线毛片| 欧美成人精品欧美一级黄| 青草久久国产| 欧美亚洲日本最大视频资源| 国产精品一国产av| 亚洲国产欧美日韩在线播放| 国产一区二区三区av在线| 国产一级毛片在线| 最黄视频免费看| 久久久久久人妻| 少妇人妻久久综合中文| 日本91视频免费播放| 亚洲一级一片aⅴ在线观看| 免费少妇av软件| 国产亚洲欧美精品永久| 成年动漫av网址| 精品一区在线观看国产| a级片在线免费高清观看视频| 亚洲情色 制服丝袜| 精品少妇黑人巨大在线播放| 亚洲色图综合在线观看| 成人免费观看视频高清| 9191精品国产免费久久| 欧美激情高清一区二区三区 | 三级国产精品片| av在线观看视频网站免费| 丝袜在线中文字幕| 少妇人妻 视频| 丝袜喷水一区| 亚洲内射少妇av| a级片在线免费高清观看视频| 国产综合精华液| 成人亚洲欧美一区二区av| 精品少妇一区二区三区视频日本电影 | 国产成人精品无人区| 国产成人aa在线观看| 大香蕉久久成人网| 在线免费观看不下载黄p国产| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 午夜福利在线观看免费完整高清在| 美国免费a级毛片| 黑丝袜美女国产一区| 日本欧美国产在线视频| 国产成人精品久久二区二区91 | 久久久久久久精品精品| 大香蕉久久网| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜制服| 老司机影院成人| 国产黄色免费在线视频| 老汉色∧v一级毛片| 亚洲美女视频黄频| 久久久国产欧美日韩av| 一边亲一边摸免费视频| 国产成人午夜福利电影在线观看| 青青草视频在线视频观看| 国产成人精品福利久久| 好男人视频免费观看在线| 日本-黄色视频高清免费观看| 午夜激情av网站| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 久久久久久伊人网av| 精品一区二区三卡| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀 | 国产精品偷伦视频观看了| 少妇精品久久久久久久| 亚洲精品av麻豆狂野| 母亲3免费完整高清在线观看 | 99香蕉大伊视频| 久热这里只有精品99| 人妻人人澡人人爽人人| av免费观看日本| 精品人妻在线不人妻| 午夜老司机福利剧场| 亚洲熟女精品中文字幕| 久热这里只有精品99| 性色avwww在线观看| 日本色播在线视频| 一区福利在线观看| 久久精品国产综合久久久| 两性夫妻黄色片| h视频一区二区三区| 丰满少妇做爰视频| 亚洲天堂av无毛| 亚洲精品久久成人aⅴ小说| 欧美日韩国产mv在线观看视频| 亚洲色图 男人天堂 中文字幕| 日韩一区二区视频免费看| 人妻人人澡人人爽人人| 欧美人与性动交α欧美精品济南到 | 国产福利在线免费观看视频| www.自偷自拍.com| 青青草视频在线视频观看| 男的添女的下面高潮视频| 极品少妇高潮喷水抽搐| 亚洲 欧美一区二区三区| 亚洲av国产av综合av卡| 天天躁狠狠躁夜夜躁狠狠躁| 91精品国产国语对白视频| 国产精品偷伦视频观看了|