• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers

    2022-09-24 08:00:14YiLiu劉毅YuanqiGu顧源琦YuNing寧鈺PengfeiChen陳鵬飛YaoYao姚堯YajunYou游亞軍WenjunHe賀文君andXiujianChou丑修建
    Chinese Physics B 2022年9期
    關(guān)鍵詞:劉毅亞軍鵬飛

    Yi Liu(劉毅) Yuanqi Gu(顧源琦) Yu Ning(寧鈺) Pengfei Chen(陳鵬飛) Yao Yao(姚堯)Yajun You(游亞軍) Wenjun He(賀文君) and Xiujian Chou(丑修建)

    1Taiyuan University of Technology,Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,Taiyuan 030024,China

    2Taiyuan University of Technology,Institute of Optoelectronic Engineering,College of Physics and Optoelectronics,Taiyuan 030024,China

    3Strong Digital Technology Co.,Ltd. (Thinvent),Nanchang 410000,China

    4North University of China,Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education,Taiyuan 030051,China

    5North University of China,College of Mechatronics Engineering,Taiyuan 030051,China

    6North University of China,Science and Technology on Electronic Test and Measurement Laboratory,School of Instrument and Electronics,Taiyuan 030051,China

    Keywords: Brillouin scattering,surface acoustic waves,hybrid acoustic waves,optical microfiber sensing

    1. Introduction

    Stimulated Brillouin scattering(SBS)in optical fiber is a third-order nonlinear effect[1]by photon-phonon coupling.[2]In standard optical fiber, the acoustic waves involved in SBS are bulk acoustic wave(BAW),in which the pump light both excites and interacts longitudinal and shear waves,producing backward-SBS(BSBS)and forward-SBS(FSBS),[3-6]respectively. The deviations between the pump light and the scattering light are Brillouin frequency shifts (BFS). The properties of fiber materials can be adjusted by the action of external physical field (stress, temperature, etc.), leading to corresponding changes in BFS of forward and backward scattering light. SBS has been studied intensely in applications such as forward/backward Brillouin sensors[7-11]and distributed/point fiber sensing.[12-17]Qianet al.realized the sensitive enhancement of a fiber laser sensor by Brillouin slow light.[18]Liuet al.realized a triple Brillouin frequency spacing Brillouin fiber laser sensor for temperature measurement.[19]Desmondet al.proposed a distributed forward Brillouin sensor based on light phase recovery.[20]

    It has been proved that both photons and phonons in optical microfibers are strongly constrained and highly overlapped in space,[21,22]producing new type of BS driven by SAWs and HAWs.[23,24]Generated by the interaction between incident light and the outer surface of the optical microfibers, SAWs’travel velocity are approximately 0.87 to 0.95 times than that of the shear waves along the microfiber surface.[25]While HAWs are generated by the strong coupling of longitudinal and shear waves, and propagate at a medium speed between shear and longitudinal waves are in the microfiber. SAWs and HAWs exist in different positions of the optical microfiber,[26]and have different Brillouin spectrum characteristic.[27]The BFS and Brillouin gain are affected by the structure, material and size of the optical microfibers. The SAW and HAW BS sensing performance of microfiber is expected to break through the limitation of standard optical fiber sensing. Moreover, the SAW BS can be controlled or enhanced by smallcore and high air-filling fraction microstructured fibers[28]and the photo-elastic and moving-boundary effects,[29]and eliminated for one polarization mode at certain core ellipticities.[30]The SAW and HAW BS have been applied to characterize of subwavelength-diameter tapered silica optical fibers,[31]obtain the values of the elastic constants[32-34]and optical sensing and detection.[35-37]

    In this paper, we demonstrate the temperature and strain sensitivities of SAW and HAW BS in optical microfibers,which is potential for new-type Brillouin fiber-optic sensing applications. We numerically simulate the frequencies of SAMs and HAMs using the elastodynamic equation including the electrostrictive stress[38-40]at 1μm diameter. Furthermore, the optical/acoustic distributions at 1μm diameter and the Brillouin spectrum of SAWs/HAWs with 1-1.3μm diameters are calculated, which are basically consistent with the reported results.[23]According to the influences of temperature and strain on material properties, the temperature/strain sensitivities and sensitivity-diameter slopes of the SAMs and HAMs are demonstrated from 1 μm to 1.3 μm diameters. In addition,it is shown that SAW and HAW BS can realize temperature and strain simultaneous sensing and have excellent sensing performance.

    2. Theoretical analysis

    2.1. Elastodynamic equation including electrostrictive stress

    Electrostriction of an acoustic phonon is obtained from the interaction of two incident photons satisfying the previous phase-matching conditions. The exact contribution from each mechanism can be calculated by the elastodynamic equation including the electrostrictive stress to more accurately study and calculate the frequency and displacement distributions of the acoustic wave in optical microfibers. The elastodynamic equation can be written as

    withci jklis the isotropic elastic matrix,χkli j=εimεjnpklmn,χkli jis the fourth-order polarization tensor,ε0andεijare the vacuum dielectric constant and the dielectric tensor of the medium, respectively.pklmnis the fourth-order photoelastic tensor,EkE?lis the dyadic vector of the electric field. The phonon lifetime takes into account the elastic losses assuming a complex elastic tensor whose imaginary part is a constant viscosity tensor times frequency. This loss model is compatible with the usual assumption that theQ×f=5 THz is a constant for a given material, withQthe quality factor andfthe acoustic frequency.

    The Brillouin gain factor and the backward Brillouin gain of acoustic mode can be written as[41]

    2.2. Temperature and strain sensing principles

    The temperature changes will affect the fiber’s four main material properties (refractive index, density, Poisson’s ratio and Young’s modulus) to influence the BFS (i.e., acoustic mode frequency). The effects of temperature and strain on material properties are[41]

    withn0= 1.444,ρ0= 2203 kg/m3,γ0= 0.17,E0=72.553 GPa are the initial refractive index, density, Poisson’s ratio and Young’s modulus of fused silica at 27°C.ΔTis the temperature change value.

    While the strain will induce elastic anisotropy in optical microfibers. The effective elastic tensor can be written as[42]

    withλ=16 GPa andμ=31 GPa are the Lam′e constants of fused silica and°denotes the Hadamard product. ˉεzzis the tensile strain.

    3. Results and discussion

    3.1. SAW and HAW BS in optical microfibers

    The cylindrical waveguide with 1μm diameter is numerically simulated based on a finite-element method.[43]The solid core made of silica is surrounded by air (n=1). With this size, the influence of radiation pressure is almost negligible in principle.[44]The optical power density of the fundamental guided optical mode in the silica bridge forλ=1550 nm is displayed in Fig. 1(a). The calculated effective refractive index is 1.1715. It can be indicated that a small part of the energy of the optical wave will leak out of the optical fiber from an evanescent field,but most of the energy of the optical wave is trapped in the optical fiber.

    The Brillouin spectra of SAWs and HAWs are significantly changed because their propagation speeds are different from that of BAWs. The BFSs of SAWs and HAWs are~6 GHz and~9 GHz, respectively. In addition, the SAWs are extremely sensitive to the fiber surface change, and the HAWs will produce multi-peak Brillouin scattering structures due to the different coupling ratios of longitudinal and shear waves. We numerically simulate the frequencies of SAMs at 5.34 GHz(SAM1)and 5.67 GHz(SAM2),HAMs at 8.48 GHz(HAM1) and 9.16 GHz (HAM2) with 1 μm fiber diameter,which are basically consistent with the reported results.[23]Every normalized acoustic mode displacement and density distribution are shown in Figs.1(b)-1(i),respectively.It can be seen the acoustic mode energy density of the SAWs is limited to the air-silica interface of the optical microfiber,causing mechanical ripples of several picometers. Inside of the microfiber,the acoustic mode density gradually decreases with the distance from the surface. The acoustic mode energy density of the HAWs is still confined in the center of the optical microfiber.

    Fig. 2. (a) Numerical simulation of the Brillouin spectra with optical microfiber diameter varying from 1μm to 1.3μm. (b)The acoustic frequency and Brillouin gain as a function of microfiber diameter.

    Figure 2(a) shows the numerical simulation of the Brillouin spectra with an optical microfiber diameter varying from 1 μm to 1.3 μm. The frequency of SAM1 increases from 5.3452 GHz to 5.5321 GHz and the Brillouin gain decreases from 7.2324 W-1·m-1to 6.2128 W-1·m-1. In contrast, we noticed that SAM2 has a greater frequency variation than SAM1 in Fig. 2(b). The frequency of SAM2 increases from 5.6710 GHz to 6.0858 GHz while the Brillouin gain decreases from 2.9372 W-1·m-1to 4.3159 W-1·m-1.The Brillouin gains of SAMs gradually decrease with diameter increasing, caused by strong effect of the decreased microfibers diameter on the acousto-optic interaction. The frequency of HAM1 decreases from 8.4820 GHz to 7.8046 GHz and the Brillouin gain increases from 9.9569 W-1·m-1to 37.6959 W-1·m-1, while the frequency of HAM2 increases from 9.1623 GHz to 9.5497 GHz and the Brillouin gain decreases from 9.8159 W-1·m-1to 9.5659 W-1·m-1. The phase-matching condition leads to the differences of Brillouin spectra of acoustic frequencies under different diameters. The different trends of two HAMs with diameters result from the different coupling ratios of longitudinal and shear waves under the boundary conditions of the waveguide,causing changes in group sound velocity and BFS. Compared with the Brillouin gain of 0.4 W-1·m-1in single-mode fiber,microfiber sensing has higher signal-to-noise ratio.

    3.2. Temperature and strain sensitivities

    The temperature and strain sensitivities of optical microfibers can be calculated by the variation of BFS with temperature and strain. Due to the polymer cladding,the maximal tensile strain in standard optical fibers is limited to 2%,but naturally the elasticity of silica glass allows going up to 6%.[45]Using Eqs.(3)and(4),the BFS of 1μm diameter optical fiber can be calculated at different temperatures and strains (compared with 0°C and no strain),as shown in Figs.3(a)and 3(b),respectively.It can be found that the BFS of SAMs and HAM2 are almost linear with temperature and strain. The SAM1 and SAM2 have the comparative temperature and strain coefficients with 0.458 MHz/°C(0.432 MHz/°C)and 65.94 MHz/%(73.02 MHz/%). The temperature and strain coefficients of HAM2 are 0.928 MHz/°C and 264.53 MHz/%. The BFS of HAW1 is linear 0.660 MHz/°C with temperature, but nonlinear with strain because of strain-induced elastic anisotropy.The strain sensitivity decreases with the increase of strain,ranging from 82.54 MHz/%to 109.50 MHz/%.

    Fig.3. (a)The temperature and(b)strain sensitivities of each acoustic wave mode are considered as a function of 1μm diameter optical fibers.

    3.3. Temperature and strain sensitivities under different fiber diameters

    The Brillouin resonances have high sensitivity to the geometric parameters of microfibers.[46]The temperature and strain sensitivities of each acoustic mode with a diameter varying from 1 μm to 1.3 μm as shown in Figs. 4(a) and 4(c),respectively. For unit consistency, write the strain sensitivity of 100 MHz/% as 0.01 MHz/με. The insets show the acoustic mode density distribution at 1 μm, 1.16 μm, and 1.3 μm diameters, respectively. In order to study the relationship between temperature/strain sensitivities and diameter change,we plot the temperature/strain sensitivity-diameter slope of each acoustic mode with a fiber diameter varying from 1 μm to 1.3μm as shown in Figs.4(b)and 4(d),respectively. The temperature sensitivity-diameter slopeTd= dT/ddis the derivative of temperature sensitivity to fiber diameterd, and strain sensitivity-diameter slopeSd= dS/ddis the derivative of the strain sensitivity to the fiber diameterd.

    It can be seen in Fig. 4(a) that the temperature sensitivities of the HAMs are significantly greater than that of the SAMs. As the fiber diameter changes from 1 μm to 1.3 μm, the temperature sensitivities of the SAMs gradually increase. The maximum temperature sensitivities of SAM1 and SAM2 are 0.557 MHz/°C and 0.568 MHz/°C at 1.3μm diameter,respectively,whereas those of the HAM1 and HAM2 are 0.744 MHz/°C at 1 μm diameter and 1.082 MHz/°C at 1.14μm diameter,respectively. It can be seen in Fig.4(b)that the temperature sensitivity-diameter slopes of the SAMs both are between 0.05 MHz/°C/μm and 0.25 MHz/°C/μm with diameter, while those of the HAMs are significantly changes.For instance,the temperature sensitivity-diameter slope of the HAM2 is-1.23 MHz/°C/μm at 1.3μm diameter. This means that the change in temperature sensitivity of-1.23 MHz/°C would be corresponding to the variation of one micrometer in fiber diameter.

    It can be seen in Fig.4(c)that the strain sensitivity of the HAM2 is 0.0289 MHz/μεat 1.1μm diameter,which is significantly greater than those of the SAMs and HAM1.As the fiber diameter changes from 1 μm to 1.3 μm, the strain sensitivities of SAMs increase gradually,and the maximum values are 0.008 MHz/μεand 0.0078 MHz/με, respectively. Whereas the strain sensitivity of HAM1 decreases with the increase of diameter. The green areas show the variation of strain sensitivity in the tensile strain of 1%-5%. Figure 4(d)shows the strain sensitivity-diameter slope of the SAMs are both between 1×10-4MHz/με/μm and 5×10-4MHz/με/μm, which is a small fluctuation compared to that of HAMs. For instance,the maximum strain sensitivity-diameter slope of the HAM2 is-0.0096 MHz/με/μm at 1.3μm diameter. The green areas indicate that the strain sensitivity of HAM1 tends to increase uniformly with diameter under 1%-5%tensile strain.

    Fig.4. (a)The temperature sensitivity and(b)sensitivity-diameters of each acoustic wave mode are considered as a function of the fiber diameter.(c)The strain sensitivity and(d)sensitivity-diameters of each acoustic wave mode are considered as a function of the fiber diameter. The insets in(a),(c)show the acoustic mode density distribution at 1μm,1.16μm,and 1.3μm diameters,respectively. The gray areas in(b),(d)highlight the temperature/strain sensitivity-diameter slope 0.05 MHz/°C/μm-0.25 MHz/°C/μm and 1×10-4 MHz/με/μm-5×10-4 MHz/με/μm,respectively.

    3.4. SAW and HAW BS sensing performance

    Four acoustic modes excited at 1 μm diameter optical fiber are linearly related to strain and temperature, and their temperature and strain sensitivities are different. Therefore,the relationship between BFS and temperature/strain sensitivity is established by selecting any two acoustic modes, as shown below to realize simultaneous sensing of temperature and strain:

    withva0andvb0are any two of the acoustic mode frequencies at a temperature of 27°C and no strain, respectively.CTaandCTbare the temperature sensitivities ofva0andvb0.CεaandCεbare the strain sensitivities ofva0andvb0.

    In addition to improving the sensing sensitivities of temperature and strain,reducing the temperature and strain errors will also improve the multi-parameter sensing performance.The measurement errors of temperature and strain are due to the inaccurate determination of acoustic mode frequencies,which ignores the errors within the transfer matrix. Assume that the maximum measurement errors of acoustic mode frequencyδva=va-va0andδvb=vb-vb0are equal, denoted byδv=0.1 MHz.[47]Theδvwill be transferred to the temperature errorδTand strain errorδε, with transfer temperature coefficientβTand strain coefficientβε, which may be expressed as[48]

    withΔ=CTaCεb-CTbCεanot equal to zero.

    Through the above research, it is found that all the four acoustic modes in optical microfibers can realize multiparameter sensing. Temperature and strain errors were calculated by selecting two acoustic modes for comparison, as shown in Table 1. It can be seen the simultaneous sensing of SAW and HAW BS can achieve small temperature and strain errors. In particular, the temperature and strain errors of SAM1-HAM2 and HAM1-HAM2 combinations are as low as 0.47°C and 21.58με,and 0.30°C-0.43°C and 15.09με-19.80με,respectively.

    Table 1. Temperature and strain errors calculated by SAMs and HAMs.

    Since the change of fiber diameter will affect the temperature and strain sensitivity of each acoustic mode,the temperature and strain errors of SAM1-HAM2 and HAM1-HAM2 combinations under different diameters are different,as shown in Fig. 5. The minimum errors of SAM1-HAM2 combination are 0.47°C and 20.96 μεat 1.06 μm, respectively. The minimum errors of HAM1-HAM2 combination are 0.30°C-0.34°C and 14.47με-16.25μεat 1.08μm,respectively.Then their temperature and strain error coefficients increase with the diameter increasing,and the increase amplitude of SAM1-HAM2 combination was greater than that of HAM1-HAM2 combination.

    Table 2 lists the temperature and strain errors based on SBS in different optical fibers. By comparison, the errors of multi-parameter sensing using acoustic modes in optical microfibers are smaller. In addition,when using microfiber sensing,the light field constraint ability is strong,the bending loss is low, and the bending radius can reach micron level, which can realize the manufacture of highly compact photon sensor.Microfiber has a large tensile strain of up to 6%,which is suitable for large strain sensing. And when Brillouin scattering is used in microfiber, it has large Brillouin gain, high signal-tonoise ratio and is easy to detect.

    Table 2. The temperature and strain errors based on SBS in different optical fibers.

    Fig.5. The temperature(a)and strain(b)errors of SAM2-HAM2 and HAM1-HAM2 acoustic mode combinations are considered as a function of the fiber diameter.

    4. Conclusion

    In conclusion, the temperature and strain sensitivities of SAW/HAW BS in optical microfibers with 1 μm-1.3 μm diameters are reported. It is found that the temperature and strain sensitivities of HAMs are as high as 1.082 MHz/°C and 0.0289 MHz/μεrespectively, which are significantly greater than those of the SAMs (0.568 MHz/°C and 0.0109 MHz/με). Such results show that HAW BS is more suitable for high temperature and strain resolutions in microfiber sensing application.[53]Whereas, the temperature and strain sensitivity-diameter slopes of the SAMs range from 0.05 MHz/°C/μm to 0.25 MHz/°C/μm and 0.0001 MHz/με/μm to 0.0005 MHz/με/μm with diameter, which is much smaller than the value about-1.23 MHz/°C/μm and-0.0096 MHz/με/μm of the HAMs at 1.3μm diameter. It suggests that the temperature and strain sensitivities of the SAMs are approximately the same with the slightly non-uniform diameter, indicating that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers. In addition,the applications of SAW and HAW BS in simultaneous sensing are analyzed.The combinations of SAM1-HAM2 and HAM1-HAM2 can obtain small temperature and strain errors. The minimum errors of HAM1-HAM2 combination are 0.30°C-0.34°C and 14.47 με-16.25 με, respectively. These results indicate that microfibers have great potential in point and distributed fiber sensing.

    Acknowledgments

    Project supported by the National Science Fund for Distinguished Young Scholars (Grant Nos. 61705157 and 61805167),the National Natural Science Foundation of China(Grant Nos. 61975142 and 11574228), China Postdoctoral Science Foundation (Grant No. 2020M682113), the Key Research and Development Projects of Shanxi Province, China(Grant No.201903D121124),and Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-112).

    猜你喜歡
    劉毅亞軍鵬飛
    姜亞軍治療焦慮性失眠經(jīng)驗
    吳亞軍:白手起家的女首富
    時代郵刊(2019年24期)2020-01-02 11:04:52
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(2019年9期)2019-10-12 06:33:44
    給自己留一條路
    河北省沙河市第二小學(xué) 劉毅可
    雙11商戰(zhàn),永久、鳳凰奪冠亞軍
    中國自行車(2017年1期)2017-04-16 02:53:45
    A Precritical Analysis of the PoemThe Passionate Shepherd to His Love by Marlowe
    婷婷成人精品国产| 成人黄色视频免费在线看| 大话2 男鬼变身卡| 精品人妻一区二区三区麻豆| 成人无遮挡网站| 一二三四在线观看免费中文在 | 狠狠婷婷综合久久久久久88av| 18在线观看网站| 九色成人免费人妻av| 欧美人与性动交α欧美软件 | 久久久久久伊人网av| 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区国产| 日韩欧美一区视频在线观看| 亚洲av欧美aⅴ国产| 十分钟在线观看高清视频www| 91精品国产国语对白视频| 妹子高潮喷水视频| 黄色配什么色好看| 精品一区二区三区四区五区乱码 | 91成人精品电影| 丰满乱子伦码专区| xxx大片免费视频| xxxhd国产人妻xxx| 妹子高潮喷水视频| 女性生殖器流出的白浆| 日本wwww免费看| 美女xxoo啪啪120秒动态图| 免费日韩欧美在线观看| 久久 成人 亚洲| 国产69精品久久久久777片| 日韩在线高清观看一区二区三区| 国产精品成人在线| 黑人欧美特级aaaaaa片| 久久人人爽人人片av| 日本欧美视频一区| 一级,二级,三级黄色视频| 一级片'在线观看视频| 亚洲精品国产av成人精品| 狠狠精品人妻久久久久久综合| 亚洲在久久综合| 中文欧美无线码| 在线观看国产h片| 少妇 在线观看| 在线观看免费视频网站a站| 满18在线观看网站| 国产片内射在线| 中文乱码字字幕精品一区二区三区| 又黄又粗又硬又大视频| 国产精品一区二区在线观看99| 考比视频在线观看| 精品人妻一区二区三区麻豆| 亚洲国产毛片av蜜桃av| 波野结衣二区三区在线| 久久久久视频综合| 日韩免费高清中文字幕av| 亚洲少妇的诱惑av| 边亲边吃奶的免费视频| 一级片'在线观看视频| 女性被躁到高潮视频| 国产精品久久久av美女十八| 香蕉丝袜av| 日日撸夜夜添| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 精品人妻偷拍中文字幕| 一级毛片电影观看| 久热久热在线精品观看| 国产在线视频一区二区| 成人国语在线视频| 亚洲欧美日韩另类电影网站| www.av在线官网国产| 最黄视频免费看| 国产免费视频播放在线视频| 精品亚洲成国产av| 国产永久视频网站| 男女高潮啪啪啪动态图| 建设人人有责人人尽责人人享有的| 蜜桃在线观看..| 超色免费av| 丰满迷人的少妇在线观看| 热re99久久精品国产66热6| 国产伦理片在线播放av一区| 成人黄色视频免费在线看| av国产精品久久久久影院| 晚上一个人看的免费电影| 大香蕉久久网| 精品久久久久久电影网| 精品一区二区三区视频在线| 欧美激情 高清一区二区三区| 中文欧美无线码| 亚洲,一卡二卡三卡| 国产爽快片一区二区三区| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 欧美人与性动交α欧美软件 | 亚洲精品乱久久久久久| 久久人人爽人人片av| 国产成人一区二区在线| 菩萨蛮人人尽说江南好唐韦庄| 精品国产国语对白av| 精品亚洲成国产av| freevideosex欧美| 国产精品久久久久久av不卡| 亚洲第一av免费看| 大香蕉久久成人网| 18禁裸乳无遮挡动漫免费视频| 少妇人妻久久综合中文| 久久久欧美国产精品| 久热这里只有精品99| 夫妻性生交免费视频一级片| 午夜久久久在线观看| 欧美xxxx性猛交bbbb| 成年女人在线观看亚洲视频| 免费高清在线观看视频在线观看| 免费观看无遮挡的男女| 国产日韩欧美在线精品| 大香蕉久久成人网| 免费观看a级毛片全部| 高清av免费在线| 少妇 在线观看| 99国产精品免费福利视频| 免费在线观看黄色视频的| 一二三四中文在线观看免费高清| 男人添女人高潮全过程视频| 欧美精品一区二区大全| 亚洲欧美精品自产自拍| 国产一级毛片在线| 精品99又大又爽又粗少妇毛片| 精品国产一区二区三区四区第35| 亚洲精品美女久久久久99蜜臀 | 如日韩欧美国产精品一区二区三区| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 久久久久久久亚洲中文字幕| 亚洲精品,欧美精品| 一区二区三区四区激情视频| 亚洲第一av免费看| 久久99蜜桃精品久久| 黄色毛片三级朝国网站| 免费人成在线观看视频色| 国产黄色免费在线视频| 国产成人av激情在线播放| 日韩 亚洲 欧美在线| 大码成人一级视频| 日本-黄色视频高清免费观看| 国产黄频视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲国产最新在线播放| 久久久久久人人人人人| 国产精品国产av在线观看| 只有这里有精品99| 99久久综合免费| 亚洲av在线观看美女高潮| 丝袜脚勾引网站| 亚洲国产最新在线播放| 婷婷色麻豆天堂久久| 香蕉国产在线看| 自拍欧美九色日韩亚洲蝌蚪91| 成人无遮挡网站| 久久人人97超碰香蕉20202| 黄色一级大片看看| 国产白丝娇喘喷水9色精品| 欧美激情国产日韩精品一区| 久久久久久久久久久免费av| 国产女主播在线喷水免费视频网站| 一级,二级,三级黄色视频| 成人手机av| 亚洲av男天堂| 欧美人与性动交α欧美软件 | 亚洲av福利一区| 麻豆精品久久久久久蜜桃| av有码第一页| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 国产精品 国内视频| 啦啦啦中文免费视频观看日本| 欧美成人午夜免费资源| 日韩一本色道免费dvd| xxxhd国产人妻xxx| 考比视频在线观看| 少妇人妻 视频| 日本欧美国产在线视频| 久久久久精品人妻al黑| 久久久久视频综合| 熟妇人妻不卡中文字幕| 波野结衣二区三区在线| 国产国语露脸激情在线看| 少妇的丰满在线观看| 亚洲 欧美一区二区三区| 美女视频免费永久观看网站| 欧美97在线视频| 女人久久www免费人成看片| 蜜臀久久99精品久久宅男| 国产精品一区二区在线不卡| 人妻少妇偷人精品九色| 久久久精品区二区三区| 老女人水多毛片| 久久女婷五月综合色啪小说| 少妇人妻 视频| 国产综合精华液| 91精品伊人久久大香线蕉| 人妻系列 视频| 久久久久精品人妻al黑| 日本-黄色视频高清免费观看| xxx大片免费视频| 国产免费一区二区三区四区乱码| 久热久热在线精品观看| 捣出白浆h1v1| 18在线观看网站| 亚洲精品国产色婷婷电影| 欧美日韩av久久| 亚洲国产看品久久| 制服丝袜香蕉在线| 成人国产麻豆网| 欧美日韩视频高清一区二区三区二| 夜夜骑夜夜射夜夜干| 女的被弄到高潮叫床怎么办| 性高湖久久久久久久久免费观看| 如日韩欧美国产精品一区二区三区| 久久青草综合色| 婷婷成人精品国产| 99国产精品免费福利视频| 欧美亚洲 丝袜 人妻 在线| 黑人猛操日本美女一级片| 亚洲av电影在线观看一区二区三区| 青春草亚洲视频在线观看| 久久99热6这里只有精品| 欧美人与善性xxx| 两性夫妻黄色片 | 大片免费播放器 马上看| 丰满饥渴人妻一区二区三| 久久精品国产a三级三级三级| 精品人妻熟女毛片av久久网站| 久久精品国产自在天天线| 国产精品女同一区二区软件| 18禁在线无遮挡免费观看视频| 亚洲精品日本国产第一区| 欧美97在线视频| 天天躁夜夜躁狠狠久久av| 又大又黄又爽视频免费| av一本久久久久| 国产免费一区二区三区四区乱码| 一级黄片播放器| 久久久欧美国产精品| 国产精品成人在线| 国产一区亚洲一区在线观看| 99久久综合免费| 一个人免费看片子| 成人亚洲欧美一区二区av| 少妇被粗大猛烈的视频| 激情五月婷婷亚洲| 少妇 在线观看| 亚洲人成网站在线观看播放| a级毛片在线看网站| 亚洲精品色激情综合| 欧美日韩国产mv在线观看视频| 高清在线视频一区二区三区| 国产精品一区二区在线观看99| 中文字幕人妻熟女乱码| 搡老乐熟女国产| 国产精品熟女久久久久浪| 日本91视频免费播放| 亚洲av电影在线进入| 美女主播在线视频| 久久久久久久精品精品| 性色av一级| 老女人水多毛片| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| 一二三四中文在线观看免费高清| 欧美3d第一页| 色5月婷婷丁香| 男人操女人黄网站| 美女大奶头黄色视频| 久久久久久伊人网av| 午夜老司机福利剧场| 亚洲欧美色中文字幕在线| 亚洲一码二码三码区别大吗| 国国产精品蜜臀av免费| 国产乱来视频区| 99re6热这里在线精品视频| 成人黄色视频免费在线看| 黄片播放在线免费| 高清毛片免费看| 亚洲成色77777| av片东京热男人的天堂| 亚洲综合精品二区| 丝瓜视频免费看黄片| 免费av不卡在线播放| 少妇人妻 视频| 欧美人与性动交α欧美软件 | 久久这里只有精品19| 亚洲婷婷狠狠爱综合网| 国产乱人偷精品视频| 全区人妻精品视频| 五月玫瑰六月丁香| 毛片一级片免费看久久久久| 欧美日韩亚洲高清精品| 十八禁网站网址无遮挡| 久久久久久久久久久久大奶| 国产日韩一区二区三区精品不卡| 国产欧美日韩一区二区三区在线| 色94色欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲人与动物交配视频| videosex国产| 最新的欧美精品一区二区| 一级毛片电影观看| 丰满饥渴人妻一区二区三| 免费看光身美女| 免费观看a级毛片全部| 国国产精品蜜臀av免费| 男人爽女人下面视频在线观看| av视频免费观看在线观看| av网站免费在线观看视频| 色吧在线观看| 国产黄色视频一区二区在线观看| 看免费成人av毛片| 中文欧美无线码| 在线观看免费高清a一片| av在线老鸭窝| 天天操日日干夜夜撸| 免费久久久久久久精品成人欧美视频 | 十分钟在线观看高清视频www| 久久精品国产综合久久久 | 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 亚洲第一av免费看| 亚洲欧美一区二区三区黑人 | 一级毛片 在线播放| 精品久久久精品久久久| 国产淫语在线视频| 哪个播放器可以免费观看大片| 观看美女的网站| 极品少妇高潮喷水抽搐| 亚洲一区二区三区欧美精品| 色视频在线一区二区三区| 久久精品国产亚洲av天美| 精品国产露脸久久av麻豆| 国产男女内射视频| 亚洲国产欧美日韩在线播放| 中文字幕另类日韩欧美亚洲嫩草| 午夜久久久在线观看| 蜜桃国产av成人99| 99精国产麻豆久久婷婷| 欧美少妇被猛烈插入视频| 精品亚洲乱码少妇综合久久| 天天躁夜夜躁狠狠久久av| 最近中文字幕高清免费大全6| 婷婷成人精品国产| 99视频精品全部免费 在线| 女人精品久久久久毛片| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 午夜日本视频在线| 啦啦啦中文免费视频观看日本| 国产日韩欧美亚洲二区| 亚洲第一区二区三区不卡| 十分钟在线观看高清视频www| 久久久久精品性色| 秋霞伦理黄片| 如日韩欧美国产精品一区二区三区| 久久午夜福利片| 香蕉精品网在线| 男女下面插进去视频免费观看 | 女的被弄到高潮叫床怎么办| 国产成人精品无人区| 国产成人a∨麻豆精品| 老熟女久久久| 亚洲经典国产精华液单| 亚洲内射少妇av| 美女视频免费永久观看网站| 看免费成人av毛片| 一级片'在线观看视频| 啦啦啦啦在线视频资源| 国产成人精品福利久久| 七月丁香在线播放| a 毛片基地| 欧美人与善性xxx| 国产一区二区在线观看av| 五月天丁香电影| 亚洲在久久综合| 亚洲欧洲日产国产| 亚洲国产成人一精品久久久| 边亲边吃奶的免费视频| 18禁在线无遮挡免费观看视频| 亚洲,欧美精品.| 各种免费的搞黄视频| 三级国产精品片| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 亚洲图色成人| 中文天堂在线官网| 美女xxoo啪啪120秒动态图| 乱码一卡2卡4卡精品| 1024视频免费在线观看| 久久 成人 亚洲| 一个人免费看片子| 2022亚洲国产成人精品| 精品少妇内射三级| h视频一区二区三区| 午夜av观看不卡| 中文字幕精品免费在线观看视频 | 七月丁香在线播放| 在线亚洲精品国产二区图片欧美| 亚洲av中文av极速乱| 久久午夜福利片| 国产又色又爽无遮挡免| 日日撸夜夜添| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 大片免费播放器 马上看| 国产午夜精品一二区理论片| 国产一区二区在线观看av| 韩国高清视频一区二区三区| 国产av精品麻豆| 国产视频首页在线观看| 少妇精品久久久久久久| 一区在线观看完整版| 97精品久久久久久久久久精品| 亚洲人成77777在线视频| 亚洲国产精品一区三区| 秋霞伦理黄片| 国产精品秋霞免费鲁丝片| 日韩一区二区三区影片| 免费女性裸体啪啪无遮挡网站| av一本久久久久| 18禁观看日本| 亚洲精品视频女| 99久久精品国产国产毛片| 午夜免费男女啪啪视频观看| 亚洲国产精品专区欧美| 激情视频va一区二区三区| 国产免费福利视频在线观看| 校园人妻丝袜中文字幕| 日韩精品免费视频一区二区三区 | 黑人猛操日本美女一级片| 久久久久久久亚洲中文字幕| av免费观看日本| 最近的中文字幕免费完整| 欧美日韩综合久久久久久| 人人妻人人添人人爽欧美一区卜| 久久久精品免费免费高清| 99久久中文字幕三级久久日本| 国产精品久久久久久精品古装| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| 日韩,欧美,国产一区二区三区| 国产精品免费大片| 亚洲图色成人| 国产一区二区三区av在线| 美女国产高潮福利片在线看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美xxxx性猛交bbbb| 精品国产一区二区三区久久久樱花| 国产精品女同一区二区软件| 亚洲精品久久成人aⅴ小说| 亚洲av.av天堂| 999精品在线视频| 日韩av不卡免费在线播放| 中文字幕精品免费在线观看视频 | 欧美另类一区| 精品亚洲成a人片在线观看| 国产一区二区三区av在线| 欧美成人午夜精品| 亚洲一码二码三码区别大吗| 久久97久久精品| 热99久久久久精品小说推荐| 亚洲av.av天堂| 婷婷成人精品国产| 久久久亚洲精品成人影院| 18禁在线无遮挡免费观看视频| 国产毛片在线视频| 国产男人的电影天堂91| 中文字幕制服av| 18在线观看网站| 老司机影院成人| 久久精品人人爽人人爽视色| 天堂8中文在线网| 午夜免费男女啪啪视频观看| 有码 亚洲区| 国产精品麻豆人妻色哟哟久久| 日韩伦理黄色片| 欧美3d第一页| 免费人妻精品一区二区三区视频| 一二三四在线观看免费中文在 | 久久久久久伊人网av| 免费黄网站久久成人精品| 如日韩欧美国产精品一区二区三区| 国产黄色视频一区二区在线观看| 天堂中文最新版在线下载| 久久精品国产综合久久久 | 午夜免费鲁丝| 色5月婷婷丁香| 多毛熟女@视频| 91成人精品电影| 搡女人真爽免费视频火全软件| 男人舔女人的私密视频| 街头女战士在线观看网站| 黄网站色视频无遮挡免费观看| 视频在线观看一区二区三区| 丝袜脚勾引网站| 欧美精品人与动牲交sv欧美| 日本欧美国产在线视频| 全区人妻精品视频| 美国免费a级毛片| 日韩熟女老妇一区二区性免费视频| 欧美性感艳星| 国产成人一区二区在线| 久久ye,这里只有精品| 精品一品国产午夜福利视频| 亚洲综合色网址| 91成人精品电影| 免费不卡的大黄色大毛片视频在线观看| 国产在线一区二区三区精| www.色视频.com| 91成人精品电影| 菩萨蛮人人尽说江南好唐韦庄| 十八禁高潮呻吟视频| 国产成人免费观看mmmm| 亚洲国产精品国产精品| 日本vs欧美在线观看视频| 极品少妇高潮喷水抽搐| 精品一区二区免费观看| 亚洲av在线观看美女高潮| 菩萨蛮人人尽说江南好唐韦庄| 国产深夜福利视频在线观看| 国产成人91sexporn| 久久久久久人妻| 国产一区二区三区av在线| 国产精品久久久久久精品古装| av在线观看视频网站免费| 久久久久网色| 天天躁夜夜躁狠狠久久av| 国产精品一区www在线观看| 国产女主播在线喷水免费视频网站| 亚洲四区av| 欧美日韩一区二区视频在线观看视频在线| 丝袜美足系列| 波野结衣二区三区在线| 91精品国产国语对白视频| 国产在线免费精品| 中文字幕av电影在线播放| 亚洲久久久国产精品| 男女国产视频网站| 精品一区二区三卡| 五月玫瑰六月丁香| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 免费少妇av软件| 2018国产大陆天天弄谢| 18+在线观看网站| 色视频在线一区二区三区| 国产精品.久久久| 99九九在线精品视频| 制服丝袜香蕉在线| 又黄又粗又硬又大视频| 国产高清不卡午夜福利| 一本大道久久a久久精品| 99视频精品全部免费 在线| 老司机影院成人| 成人毛片60女人毛片免费| 97精品久久久久久久久久精品| 成人手机av| 精品99又大又爽又粗少妇毛片| 极品人妻少妇av视频| 午夜影院在线不卡| 亚洲欧洲日产国产| 熟女av电影| 日日爽夜夜爽网站| 色94色欧美一区二区| 欧美日韩国产mv在线观看视频| 日本黄大片高清| 久久久久精品性色| 亚洲av国产av综合av卡| 午夜精品国产一区二区电影| av免费观看日本| 亚洲图色成人| 久久国内精品自在自线图片| 五月开心婷婷网| 日韩免费高清中文字幕av| 亚洲国产精品一区二区三区在线| 最近2019中文字幕mv第一页| 一级,二级,三级黄色视频| 亚洲av综合色区一区| 久久精品久久久久久噜噜老黄| 伊人久久国产一区二区| 一本色道久久久久久精品综合| 精品一区二区三卡| 久久影院123| 成人亚洲精品一区在线观看| 亚洲婷婷狠狠爱综合网| 肉色欧美久久久久久久蜜桃| 国产亚洲精品久久久com| 母亲3免费完整高清在线观看 | 亚洲欧洲精品一区二区精品久久久 | 亚洲,欧美,日韩| 日本av手机在线免费观看| 波野结衣二区三区在线| 久久国内精品自在自线图片| 22中文网久久字幕| 黄网站色视频无遮挡免费观看| 久久久久精品久久久久真实原创| 天天影视国产精品| 成人影院久久| 亚洲经典国产精华液单| 老司机影院成人| 免费高清在线观看视频在线观看| 欧美日韩亚洲高清精品| 五月玫瑰六月丁香| 人人妻人人爽人人添夜夜欢视频| 亚洲综合精品二区| 免费高清在线观看视频在线观看| 欧美日韩亚洲高清精品|