• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Configurational entropy-induced phase transition in spinel LiMn2O4

    2022-09-24 08:04:02WeiHu胡偉WenWeiLuo羅文崴MuShengWu吳木生BoXu徐波andChuYingOuyang歐陽楚英
    Chinese Physics B 2022年9期
    關(guān)鍵詞:徐波胡偉羅文

    Wei Hu(胡偉) Wen-Wei Luo(羅文崴) Mu-Sheng Wu(吳木生)Bo Xu(徐波) and Chu-Ying Ouyang(歐陽楚英)

    1Department of Physics,Laboratory of Computational Materials Physics,Jiangxi Normal University,Nanchang 330022,China

    2School of Ecology and Environment,Yuzhang Normal University,Nanchang 330103,China

    Keywords: configurational entropy,LiMn2O4,phase transition,Jahn-Teller distortion

    1. Introduction

    Lithium-ion batteries (LIBs) have been widely used in many fields due to their excellent electrochemical performances, such as potable electronic devices, electric vehicles,and smart grid storage over the last few decades.[1-4]The performances of LIBs,i.e., energy density, capacity, rate capability, and cycling life, are closely related to the cathode materials. The spinel-type compound, LiMn2O4, is considered as one of the most promising materials with good electrochemical performance in LIBs due to its good thermal stability and safety, low cost, environmental benign, high energy density,etc.[5-8]At ambient temperature, the crystal structure of LiMn2O4belongs to the cubicFdˉ3mspace group,[9]

    where lithium ions are located at the tetrahedral 8asites,manganese ions at the octahedral 16dsites and oxygen ions at the 32esites.[10]Since the average valence of manganese ions in LiMn2O4is 3.5, the same numbers of Mn3+and Mn4+ions are randomly distributed at the 16dsites. However, upon cooling a first-order phase transition occurs at a temperature of ca 280 K from cubic to tetragonal(I41/amd) phase,[11-16]which hinders this compound from being put into practical application. Yamada and Tanaka[11]observed the splitting of reflections at low temperature by using thermal analysis and powder x-ray diffraction. This indicates that LiMn2O4undergoes phase transition at low temperature. Yamaguchiet al.[15]investigated an x-ray absorption fine structure (XAFS)of LiMn2O4, further confirmed the fact of the phase transition at low temperature, and reported that a phase transition occurs in the vicinity of 280 K by differential scanning calorimetric (DSC) measurement. Piszoraet al.[17]found that this phase transition is related to the Jahn-Teller effect and partial charge ordering of Mn3+and Mn4+ions,but the detailed mechanism has not been reported. The potential profile test of LiMn2O4by Abikoet al.[18]found that LiMn2O4has an additional low voltage plateau and spinel powder is pulverized by lattice stress at low temperatures. Chung and Kim[19,20]reported that the presence of the tetragonal phase of LiMn2O4particle due to a Jahn-Teller effect is one of the reasons for capacity fade by usingin situlaser probe beam deflection technique. Therefore, in order to avoid the performance degradation caused by low temperature phase transition and promote the wide application of LiMn2O4cathode, it has become an urgent topic to study phase transition mechanism of LiMn2O4at the low temperature.

    As is well known,Jahn-Teller(JT)distortion exists in the MnO6octahedron for Mn3+ions,but not for Mn4+ions. Generally speaking,the JT distortion gives rise to the lowering of the symmetry and the observed cubic phase at room temperatures seems not reasonable,as the MnO6framework is tetragonally distorted. Considering the randomly distributed Mn3+ions in the lattice,it is also possible that the orientation of the JT distortion is random,namely,the elongation of the Mn3+O6octahedron is randomly distributed along thex-,y-,andz-axis directions. That is to say, the configuration of LiMn2O4may be related to the distribution of Mn3+ions and the elongation direction of the Mn3+O6octahedron. In this way, the cubic structures can also be exit due to the JT effect of the Mn3+O6octahedron. Furthermore, Piszora[17]reported that the phase transition is induced by the JT distortion and partial charge ordering of Mn3+and Mn4+ions with temperature decreasing,indicated by using powder synchrotron radiation diffraction.On the basis of this analysis, we speculate that the structural phase transition from cubic to tetragonal phase is closely related to the configurational entropy originating from the distribution of the Mn3+and Mn4+ions and the orientation of the JT distortion direction of Mn3+O6octahedron.

    To further verify and understand the mechanism of phase transition, we study the transition between cubic phase and tetragonal phase by including the configurational entropy contribution to the Gibbs free energy from the thermodynamic point of view in this work.The ground state energy is obtained by using the first-principles calculations. It is shown that the average ground state energy of the cubic LiMn2O4(disordered phase)is higher than that of the tetragonal one(more ordered phase)at a temperature of 0 K.When the configurational entropy is included, the Gibbs free energy of the cubic phase lowers with the temperature increasing and finally the phase transition from cubic phase to tetragonal phase happens at a temperature of 267.8 K, which is close to the experimental result.[11,15,18]

    2. Computational method

    To optimize the structures and obtain the ground state energy values of different structures and phases, we performed density functional theory (DFT) calculations by using the Viennaab-initiosimulation package (VASP).[21-23]The method of the projected augmented wave (PAW)[24,25]pseudopotentials was used to describe the ion-electron interactions. The electron exchange and correlation functional were treated within the spin polarized generalized gradient approximation(GGA)in the form of the Perdew-Burke-Ernzerh(PBE)functional.[26]A cutoff energy of 500 eV was selected for the plane wave basis set. In order to account for the strong onsite Coulomb repulsion of Mn-3d electrons, the GGA+Umethod[27,28]was adopted,which could accurately predict the electronic structures of transition metal complexes. Based on previous reports,the effectiveUvalue for d-orbital of Mn ions was set to be 4.5 eV.[29,30]The Monkhorst-Pack scheme[31]with 3×3×3k-points sampling mesh was used for the integration in the irreducible Brillouin zone. The atomic positions and the lattice parameters were fully relaxed, and the final force was less than 0.01 eV/?A for each atom. The calculation workflow was managed by the high-throughput computational platform for battery materials.[1]

    3. Results and discussion

    The spinel-type LiMn2O4consists of 32 O,16 Mn,and 8 Li atoms in a conventional unit cell as shown in Fig. 1. According to the crystal field theory, the Mn-3d orbital will undergo an energy level splitting,producing a double degenerateeg(dx2-y2,dz2)and a triple degeneratet2g(dxy,dyz,dxz)orbitals under an octahedral crystal field as shown in Fig.2.

    Fig.1.Ball and stick models of(a)cubic and(b)tetragonal LiMn2O4,along with lattice parameters(in units of ?A).Comparing with cubic phase,the lattice c of tetragonal phase expands,while lattices a and b shrink. Arrows in the inset indicate the Jahn-Teller distortion direction of Mn3+ions.The red,green,and blue spheres represent O,Li,and Mn atoms,respectively.

    Fig.2. Schematic diagram of energy level splitting for Mn-3d orbital under an octahedral field.

    The projected density of states and corresponding electronic configuration of the Mn3+ion and Mn4+ion in the LiMn2O4are shown in Fig.3. As can be seen, the electronic configuration of the Mn-3d state of the Mn3+ion and Mn4+ion aret32ge1gandt32ge0g, respectively.[32,33]Since theegorbital is directly facing the ligand atom,it is subjected to larger Coulomb repulsion,resulting in the JT distortion of Mn3+ion in MnO6octahedron,forming four short and two long Mn-O bonds in the Mn3+O6octahedron as shown in Table 1. For Mn4+ions, theegorbital is not occupied by electrons, so the bond lengths in the Mn4+O6octahedron are approximately equal. Considering the equivalence of thex,y, andzdirections, the orientation of the JT distortion can be in any direction. If the orientation is randomly distributed along thex,y,andzdirections, the crystal structure behaves as cubic phase.In contrast, if the orientation of the JT distortion is unique in one direction,say,along thezdirection,the lattice constantcwill be larger than that ofaandband thus the crystal structure acts as tetragonal phase. Experimentally, Chung and Kim[19]also observed that the latticecexpands and the lattice a shrinks during the phase transition from cubic to tetragonal phase for LiMn2O4. In order to study the phase transition, we need to construct and simplify these two models.

    Fig.3. Projected densities of states and corresponding electronic configurations of Mn-3d orbitals for(a)Mn4+and(b)Mn3+in LiMn2O4,with Fermi levels set to be 0 eV.

    Table 1. The Mn-O bond length in MnO6 octahedron, where longbonds are highlighted.

    As mentioned above,there are 16 Mn ions in the unit cell of the spinel LiMn2O4. Among them, half of these Mn ions are trivalent Mn ions, and the others are tetravalent ones. On the other hand, the JT effects of Mn3+ions have three possible distortion directions(x,y,andzdirections). Therefore,the total number of possible Mn3+distributions and Mn3+O6orientation configurations in the unit cell of LiMn2O4isC816×38.For each configuration,the ground state energy of the unit cell can be different,and in this work we use an average over several typical models we employed, which will greatly reduce the happenchance of a single configuration. Owing to the vast number of possible configurations and our limited computational resource,we select only 12 configurations(as shown in Fig. 4) to optimize their structures and calculate the ground state energy. The optimized lattice parameters and the corresponding energy values for the selected 12 configurations are listed in Table 2. The average values of the lattice parameters and the ground state energy values of the cubic phase are also listed in Table 3,which are considered to be the lattice parameters and ground state energy of the cubic phase in this work.Likewise, the LiMn2O4in the tetragonal phase is also dealt with by this procedure. Owing to the sole direction of the JT distortion(zaxis in our calculations)for the tetragonal phase,the degree of freedom of the JT distortion is not considered.

    Fig. 4. Jahn-Teller distortion directions of the eight Mn3+O6 for the selected 12 cubic configurations, with horizontal, vertical, and slanted arrows representing the directions along the x,z,and y axes,respectively.

    Table 2. Lattice parameters and total energy values of selected 12 cubic configurations.

    Table 3. Lattice parameters and average ground state energy values of LiMn2O4 unit cell in cubic and tetragonal phases. Herein, the lattice parameters and total energy values are average values of various configurations calculated.

    Therefore, only the configurations with the different Mn3+distributions are considered. Here, three different configurations are used to calculate the average values of lattice parameters and the ground state energy values as listed in Table 3. Likewise,these average values are taken as the average values of the lattice parameters and ground state energy values of the tetragonal phase in this work.

    As is well known, the Gibbs free energyGcan be expressed asG=H-TS, whereHdenotes the enthalpy, andSis the entropy. For solid phase, the contribution of pressure toHcan be ignored. As a result, the change of the Gibbs free energy is influenced by the environment through the entropy. Therefore, only the configurational entropy is taken into account in this work. After the ground state energy is obtained,we need to determine the configurational entropy(Sconf),which is given asSconf=kBlnΩ,whereΩis the number of configurations,kBrepresents the Boltzmann constant. Herein, it should be pointed out that the interaction between Mn ions is ignored. Therefore, for the cubic phase,Ω=C816·38,whereas for the tetragonal phase,Ω=C816. The Gibbs free energy as a function of temperature for the cubic phase and tetragonal phase are shown in Fig. 5. As can be seen, a crossover point at a temperature of 267.8 K can be found. When the temperature is higher than 267.8 K,the cubic phase is more stable than the tetragonal one. When the temperature decreases below 267.8 K,the transition from cubic phase to tetragonal phase is expected. This theoretically predicted phase transition temperature of about 267.8 K for LiMn2O4from cubic to tetragonal phase is close to that observed experimentally (~280 K) by using x-ray absorption spectroscopy by Yamada and Tanaka,[11]Yamaguchiet al.,[15]and Abikoet al.[18]This also shows the important role of configurational entropy in the phase transition process.

    Although the phase transition temperature obtained from our calculations is close to that from experiments, there are still some factors that we did not consider in this study.Firstly,the vibrational entropy induced by the finite temperature is not included in our model. This cannot be an important fact, for the difference in vibrational entropy between the cubic phase and tetragonal phase should be small and the bonding interactions are the same in the compound. Secondly, it is worth noting that the limited configurations chosen in our calculations also influences the accuracy of the ground state energy.Despite these, we believe that the introduction of configurational entropy can qualitatively reveal the nature of transition between cubic phase and tetragonal phase, which is helpful for us to understand the phase transition of the spinel-type LiMn2O4.

    Fig.5. Plot of Gibbs free energy versus temperature of LiMn2O4 unit cell for cubic phase and tetragonal phase. Herein,the ground state energy employed is average value of the corresponding configuration as shown in Table 3.

    4. Conclusions

    In this work, the phase transition of the spinel LiMn2O4between cubic phase and tetragonal phase are studied through DFT calculations combined with thermodynamic analysis.The ground state energy is calculated through DFT for each configuration at zero temperature, while the entropy is evaluated through atomic configurational evaluation. It is found that the ground state energy of the cubic phase with the disordered JT distortion direction of the Mn3+ion is higher than that of the tetragonal phase with the ordered orientation of the JT distortion. On the other hand, the configurational entropy of the cubic phase is higher than that of the tetragonal phase.As a result,the cubic phase is more stable at high temperatures while the tetragonal phase is more stable at relatively low temperature. The phase transition temperature is evaluated to be 267.8 K through combining the calculated total ground state energy with the configurational entropy,which is comparable to the experimental value. These findings help further understand the phase transition of LiMn2O4at low temperature,and serve as a complement to experimental studies. In particular,the failure of LiMn2O4cathode is more clearly recognized at low temperature,which helps broaden the application scope of LiMn2O4.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.12174162,51962010,12064015,and 12064014).

    猜你喜歡
    徐波胡偉羅文
    羅文濤作品
    江蘇蘇派教育集團(tuán) 徐波
    生生不息,固本造新:“生生的智慧與轉(zhuǎn)向”學(xué)術(shù)研討會綜述
    羅文亮(作家)
    Coherent Controlling Single Photon Asymmetric Transmission in the Atom Chirally Coupled Waveguide System?
    2019年高考數(shù)學(xué)模擬試題(四)
    胡偉
    中國篆刻(2017年7期)2017-09-05 10:01:35
    胡偉藝術(shù)作品
    思想者的藝術(shù)表達(dá)——胡偉訪談錄
    霸道書記權(quán)、錢、色的多面人生
    新傳奇(2016年32期)2016-07-09 21:36:08
    人妻一区二区av| 妹子高潮喷水视频| 亚洲人成网站在线观看播放| 欧美日韩视频精品一区| 国产精品免费视频内射| 成人国产麻豆网| 国产一卡二卡三卡精品 | 黄片播放在线免费| 伊人亚洲综合成人网| 日韩中文字幕欧美一区二区 | 一级,二级,三级黄色视频| 伊人久久国产一区二区| 中文字幕最新亚洲高清| 国产精品 国内视频| 国产一区有黄有色的免费视频| 王馨瑶露胸无遮挡在线观看| 成人国产av品久久久| 亚洲四区av| 国产极品天堂在线| 飞空精品影院首页| 精品一区在线观看国产| 九草在线视频观看| 天堂俺去俺来也www色官网| 一级片免费观看大全| 日韩制服丝袜自拍偷拍| 两个人看的免费小视频| 丝袜人妻中文字幕| 国产午夜精品一二区理论片| 美女福利国产在线| 男女下面插进去视频免费观看| 人人妻,人人澡人人爽秒播 | 亚洲欧美成人精品一区二区| 热99国产精品久久久久久7| 各种免费的搞黄视频| 大陆偷拍与自拍| www.自偷自拍.com| 日韩欧美精品免费久久| 国产男女内射视频| 久久久久久久久久久久大奶| 精品少妇黑人巨大在线播放| 久久精品国产a三级三级三级| 亚洲,一卡二卡三卡| 亚洲免费av在线视频| 亚洲精品日韩在线中文字幕| 亚洲男人天堂网一区| 国产在线一区二区三区精| 免费在线观看视频国产中文字幕亚洲 | 色婷婷久久久亚洲欧美| av网站在线播放免费| 91国产中文字幕| 久久女婷五月综合色啪小说| 精品亚洲成a人片在线观看| 一级a爱视频在线免费观看| 久久久精品94久久精品| 69精品国产乱码久久久| 亚洲国产精品一区二区三区在线| 国产伦理片在线播放av一区| av在线app专区| 一级a爱视频在线免费观看| 国产片特级美女逼逼视频| av国产精品久久久久影院| 精品一区二区免费观看| 青草久久国产| 肉色欧美久久久久久久蜜桃| 欧美黄色片欧美黄色片| 国产精品久久久久久久久免| av女优亚洲男人天堂| 亚洲成人手机| 亚洲国产欧美在线一区| 亚洲国产精品一区二区三区在线| 男女午夜视频在线观看| 亚洲五月色婷婷综合| 麻豆精品久久久久久蜜桃| 一级黄片播放器| 高清欧美精品videossex| 丰满乱子伦码专区| 观看av在线不卡| 麻豆av在线久日| 国产免费福利视频在线观看| 精品人妻熟女毛片av久久网站| 美女中出高潮动态图| 自线自在国产av| 久久久精品区二区三区| 夜夜骑夜夜射夜夜干| 久久国产亚洲av麻豆专区| 国产精品 欧美亚洲| 国产成人免费观看mmmm| 日本色播在线视频| 丝袜人妻中文字幕| 欧美精品人与动牲交sv欧美| 午夜福利在线免费观看网站| 亚洲,欧美精品.| 国产精品麻豆人妻色哟哟久久| 咕卡用的链子| 好男人视频免费观看在线| 好男人视频免费观看在线| 亚洲欧洲日产国产| 看十八女毛片水多多多| 亚洲国产毛片av蜜桃av| 999久久久国产精品视频| 侵犯人妻中文字幕一二三四区| 丰满少妇做爰视频| 国产亚洲欧美精品永久| 亚洲色图 男人天堂 中文字幕| 麻豆av在线久日| 人成视频在线观看免费观看| 人人妻人人澡人人爽人人夜夜| 成人午夜精彩视频在线观看| 男女午夜视频在线观看| 另类精品久久| 2021少妇久久久久久久久久久| 欧美久久黑人一区二区| av又黄又爽大尺度在线免费看| 免费高清在线观看视频在线观看| 亚洲一码二码三码区别大吗| 午夜福利免费观看在线| 亚洲精品一二三| 亚洲国产成人一精品久久久| 一区二区三区激情视频| 午夜91福利影院| 亚洲国产欧美网| 国产日韩一区二区三区精品不卡| 国产视频首页在线观看| 精品午夜福利在线看| 精品一区二区免费观看| 视频区图区小说| 国产成人91sexporn| 日日撸夜夜添| 日韩制服骚丝袜av| 亚洲国产av新网站| 免费不卡黄色视频| 极品人妻少妇av视频| e午夜精品久久久久久久| 日本vs欧美在线观看视频| 99久久精品国产亚洲精品| 国产精品亚洲av一区麻豆 | 精品国产超薄肉色丝袜足j| 免费看av在线观看网站| 纯流量卡能插随身wifi吗| 99久久人妻综合| av在线app专区| 国产精品麻豆人妻色哟哟久久| 在线观看一区二区三区激情| 国产精品久久久av美女十八| 午夜影院在线不卡| 精品人妻在线不人妻| 欧美黑人精品巨大| 国产精品久久久人人做人人爽| 熟女av电影| 一本一本久久a久久精品综合妖精| 亚洲国产精品999| 捣出白浆h1v1| 欧美激情极品国产一区二区三区| 欧美日本中文国产一区发布| 亚洲,欧美精品.| 老汉色av国产亚洲站长工具| 捣出白浆h1v1| 80岁老熟妇乱子伦牲交| 国产日韩欧美视频二区| 精品少妇一区二区三区视频日本电影 | 精品国产一区二区三区久久久樱花| 国产精品香港三级国产av潘金莲 | 五月天丁香电影| 欧美国产精品va在线观看不卡| 国产片特级美女逼逼视频| 亚洲精品日本国产第一区| 国产精品久久久久久精品电影小说| 午夜激情av网站| 精品少妇一区二区三区视频日本电影 | 国产日韩一区二区三区精品不卡| 青青草视频在线视频观看| 天美传媒精品一区二区| av国产精品久久久久影院| 午夜免费鲁丝| 久久青草综合色| 国产成人a∨麻豆精品| 亚洲成人手机| 一二三四中文在线观看免费高清| 男男h啪啪无遮挡| 国产精品久久久久成人av| 老司机影院成人| 亚洲欧美中文字幕日韩二区| 国产精品一区二区精品视频观看| 亚洲精品第二区| 一边摸一边做爽爽视频免费| 黄网站色视频无遮挡免费观看| 亚洲精品国产区一区二| 少妇精品久久久久久久| 欧美日韩亚洲高清精品| 另类精品久久| 国产深夜福利视频在线观看| 日日啪夜夜爽| 男人添女人高潮全过程视频| 美女午夜性视频免费| 免费少妇av软件| 搡老岳熟女国产| 一级爰片在线观看| 国产xxxxx性猛交| 一区福利在线观看| 成人午夜精彩视频在线观看| 尾随美女入室| 十八禁网站网址无遮挡| 人人妻人人澡人人爽人人夜夜| 亚洲国产日韩一区二区| 色94色欧美一区二区| 天堂中文最新版在线下载| 亚洲美女黄色视频免费看| 少妇人妻 视频| av片东京热男人的天堂| 亚洲av福利一区| 伦理电影免费视频| 亚洲国产精品一区三区| 国产av国产精品国产| 热re99久久国产66热| 色婷婷久久久亚洲欧美| 国产亚洲av高清不卡| 纯流量卡能插随身wifi吗| 国产深夜福利视频在线观看| 丁香六月天网| 久久精品aⅴ一区二区三区四区| 亚洲视频免费观看视频| 欧美黄色片欧美黄色片| 捣出白浆h1v1| 岛国毛片在线播放| 女性生殖器流出的白浆| 免费观看人在逋| 久久天躁狠狠躁夜夜2o2o | 大陆偷拍与自拍| 午夜福利免费观看在线| 成年美女黄网站色视频大全免费| 亚洲一码二码三码区别大吗| 街头女战士在线观看网站| 一区在线观看完整版| 十分钟在线观看高清视频www| 色婷婷av一区二区三区视频| 日本爱情动作片www.在线观看| 日韩成人av中文字幕在线观看| 日日爽夜夜爽网站| 一本久久精品| 侵犯人妻中文字幕一二三四区| 亚洲精品中文字幕在线视频| 亚洲国产毛片av蜜桃av| 久久精品熟女亚洲av麻豆精品| 18禁国产床啪视频网站| 90打野战视频偷拍视频| 欧美激情高清一区二区三区 | av在线播放精品| 中文字幕高清在线视频| 无限看片的www在线观看| 久久久久国产精品人妻一区二区| 热re99久久精品国产66热6| 国产爽快片一区二区三区| 免费黄频网站在线观看国产| 男女无遮挡免费网站观看| 亚洲精品美女久久久久99蜜臀 | 成年动漫av网址| 男女床上黄色一级片免费看| 国产成人精品在线电影| 成年人免费黄色播放视频| 天堂中文最新版在线下载| 日韩大片免费观看网站| 色播在线永久视频| 一本久久精品| 欧美精品亚洲一区二区| 麻豆精品久久久久久蜜桃| 亚洲av在线观看美女高潮| 在线天堂中文资源库| 男女免费视频国产| 国产国语露脸激情在线看| 久久久久精品国产欧美久久久 | 婷婷色av中文字幕| videos熟女内射| 亚洲男人天堂网一区| 欧美最新免费一区二区三区| 伊人亚洲综合成人网| 久久这里只有精品19| 丰满迷人的少妇在线观看| 丰满少妇做爰视频| 国产精品久久久久久精品古装| 欧美精品高潮呻吟av久久| 精品人妻熟女毛片av久久网站| 亚洲国产精品一区二区三区在线| 在线观看免费午夜福利视频| 色综合欧美亚洲国产小说| 日日摸夜夜添夜夜爱| 在线免费观看不下载黄p国产| 久久久久久久国产电影| 午夜免费男女啪啪视频观看| 叶爱在线成人免费视频播放| 黄片无遮挡物在线观看| 久久久精品94久久精品| 色视频在线一区二区三区| 亚洲一区中文字幕在线| 日韩制服丝袜自拍偷拍| 在线观看免费视频网站a站| 波野结衣二区三区在线| 亚洲天堂av无毛| 久久ye,这里只有精品| 亚洲自偷自拍图片 自拍| 亚洲国产精品国产精品| 精品少妇黑人巨大在线播放| 一区二区三区精品91| 激情五月婷婷亚洲| 国产精品久久久久久精品电影小说| 国产野战对白在线观看| 捣出白浆h1v1| 超色免费av| 激情五月婷婷亚洲| 水蜜桃什么品种好| 精品一区二区三卡| 男女之事视频高清在线观看 | 亚洲,欧美,日韩| 久久精品国产亚洲av高清一级| 最黄视频免费看| 欧美日韩视频高清一区二区三区二| 精品少妇一区二区三区视频日本电影 | 久久久精品区二区三区| 久久天堂一区二区三区四区| 日韩一本色道免费dvd| 国产男女内射视频| 国产 精品1| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人| 国产成人91sexporn| 国产精品秋霞免费鲁丝片| 99国产精品免费福利视频| 欧美成人午夜精品| 一边摸一边做爽爽视频免费| 在线亚洲精品国产二区图片欧美| 国产一区有黄有色的免费视频| 在线观看一区二区三区激情| 日韩精品免费视频一区二区三区| 亚洲国产毛片av蜜桃av| 欧美黑人精品巨大| 亚洲男人天堂网一区| 宅男免费午夜| av有码第一页| 久久人妻熟女aⅴ| 中文欧美无线码| 如日韩欧美国产精品一区二区三区| 啦啦啦在线观看免费高清www| 久久久精品94久久精品| 亚洲精品乱久久久久久| 久久久久精品国产欧美久久久 | 十八禁网站网址无遮挡| 90打野战视频偷拍视频| 中文字幕人妻丝袜一区二区 | 亚洲av在线观看美女高潮| 国产日韩欧美亚洲二区| 亚洲精品一区蜜桃| 韩国av在线不卡| 2021少妇久久久久久久久久久| 久久韩国三级中文字幕| 看免费av毛片| 国产男人的电影天堂91| 亚洲色图 男人天堂 中文字幕| 美女脱内裤让男人舔精品视频| 秋霞伦理黄片| 九九爱精品视频在线观看| av不卡在线播放| 国产片特级美女逼逼视频| 大香蕉久久成人网| 国产又色又爽无遮挡免| 国产成人午夜福利电影在线观看| 国产深夜福利视频在线观看| 在线观看免费日韩欧美大片| 免费看不卡的av| 久久国产精品男人的天堂亚洲| 亚洲国产成人一精品久久久| 国产xxxxx性猛交| 久久精品国产亚洲av涩爱| 久久精品国产亚洲av高清一级| 亚洲精品一二三| 亚洲第一区二区三区不卡| 国产精品偷伦视频观看了| 日韩制服骚丝袜av| 久久久国产一区二区| 亚洲婷婷狠狠爱综合网| 一二三四在线观看免费中文在| 女的被弄到高潮叫床怎么办| 国产毛片在线视频| 精品免费久久久久久久清纯 | 久久性视频一级片| 老鸭窝网址在线观看| 亚洲国产av新网站| 高清av免费在线| 久久国产亚洲av麻豆专区| 亚洲国产欧美网| 欧美国产精品va在线观看不卡| 欧美精品亚洲一区二区| 亚洲专区中文字幕在线 | 中文字幕人妻丝袜制服| 天天操日日干夜夜撸| 国产熟女午夜一区二区三区| 亚洲av男天堂| 一级毛片电影观看| 久久韩国三级中文字幕| 三上悠亚av全集在线观看| 国产在线一区二区三区精| 成人午夜精彩视频在线观看| 亚洲国产日韩一区二区| 亚洲激情五月婷婷啪啪| 免费不卡黄色视频| 成人影院久久| 亚洲欧美激情在线| 免费少妇av软件| 人人妻人人澡人人爽人人夜夜| 母亲3免费完整高清在线观看| 国产精品免费大片| 国产成人av激情在线播放| 亚洲欧美精品综合一区二区三区| a级片在线免费高清观看视频| 99国产精品免费福利视频| 国产精品一区二区在线观看99| av网站免费在线观看视频| 日韩一卡2卡3卡4卡2021年| 久久久久国产一级毛片高清牌| 色视频在线一区二区三区| 又黄又粗又硬又大视频| 亚洲国产精品国产精品| 涩涩av久久男人的天堂| 国产在线视频一区二区| 精品免费久久久久久久清纯 | 亚洲av欧美aⅴ国产| 亚洲精品乱久久久久久| 精品一区二区三区av网在线观看 | 中文字幕亚洲精品专区| 在线精品无人区一区二区三| 亚洲av电影在线进入| 午夜日本视频在线| 中文字幕精品免费在线观看视频| 亚洲av在线观看美女高潮| 中文字幕另类日韩欧美亚洲嫩草| 成人毛片60女人毛片免费| av福利片在线| 亚洲欧洲日产国产| 亚洲色图综合在线观看| 国产亚洲av高清不卡| 天天影视国产精品| av.在线天堂| bbb黄色大片| 黄色毛片三级朝国网站| 男女国产视频网站| 成人漫画全彩无遮挡| 国产免费一区二区三区四区乱码| 国产亚洲av高清不卡| 国产又爽黄色视频| 欧美日韩一区二区视频在线观看视频在线| 成人国产麻豆网| 精品一区二区三区av网在线观看 | 天天躁夜夜躁狠狠久久av| 欧美最新免费一区二区三区| 女性生殖器流出的白浆| 天天添夜夜摸| 精品国产一区二区久久| 久久综合国产亚洲精品| 国产 精品1| 欧美激情极品国产一区二区三区| 日本av免费视频播放| 看免费av毛片| 黑人巨大精品欧美一区二区蜜桃| 九草在线视频观看| 操出白浆在线播放| 日本av手机在线免费观看| 久久99热这里只频精品6学生| 国产精品久久久久久久久免| 国产一卡二卡三卡精品 | 免费高清在线观看日韩| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 免费在线观看视频国产中文字幕亚洲 | 99国产精品免费福利视频| 久久精品国产亚洲av高清一级| 亚洲成国产人片在线观看| 啦啦啦视频在线资源免费观看| 国产精品国产三级国产专区5o| 国产av一区二区精品久久| 亚洲精品日韩在线中文字幕| 啦啦啦在线观看免费高清www| 天天躁日日躁夜夜躁夜夜| 伊人久久国产一区二区| 岛国毛片在线播放| 91aial.com中文字幕在线观看| 男女高潮啪啪啪动态图| 免费黄色在线免费观看| 欧美激情 高清一区二区三区| 午夜福利网站1000一区二区三区| 女人精品久久久久毛片| av国产久精品久网站免费入址| av不卡在线播放| 国产一区有黄有色的免费视频| 亚洲精品aⅴ在线观看| 成人三级做爰电影| 中文乱码字字幕精品一区二区三区| 国产色婷婷99| 男女免费视频国产| 少妇的丰满在线观看| 亚洲精品日本国产第一区| 亚洲精品国产av蜜桃| 久久婷婷青草| 亚洲欧美成人综合另类久久久| 久久人人爽人人片av| 国产精品av久久久久免费| 伦理电影免费视频| av在线app专区| kizo精华| 韩国精品一区二区三区| 制服丝袜香蕉在线| 综合色丁香网| 国产一区有黄有色的免费视频| 国产精品无大码| 九色亚洲精品在线播放| 色网站视频免费| av天堂久久9| 日本欧美视频一区| 国产欧美日韩综合在线一区二区| 少妇人妻精品综合一区二区| 丝袜美腿诱惑在线| av在线播放精品| 欧美变态另类bdsm刘玥| 免费不卡黄色视频| 美女视频免费永久观看网站| 亚洲欧美精品自产自拍| 中文字幕av电影在线播放| 一区二区日韩欧美中文字幕| 最近最新中文字幕免费大全7| 妹子高潮喷水视频| 国产精品 国内视频| 欧美乱码精品一区二区三区| 深夜精品福利| 国产精品三级大全| 97在线人人人人妻| 69精品国产乱码久久久| 亚洲精品成人av观看孕妇| 制服丝袜香蕉在线| 丝袜美足系列| 人妻一区二区av| 777米奇影视久久| 亚洲图色成人| 亚洲色图 男人天堂 中文字幕| 老司机在亚洲福利影院| 大陆偷拍与自拍| 久久青草综合色| 一个人免费看片子| 男的添女的下面高潮视频| 99久久精品国产亚洲精品| 男女国产视频网站| 91精品国产国语对白视频| 国产免费福利视频在线观看| 亚洲av中文av极速乱| 日韩一卡2卡3卡4卡2021年| 久久 成人 亚洲| 亚洲精品久久成人aⅴ小说| 七月丁香在线播放| 午夜福利视频在线观看免费| bbb黄色大片| 999精品在线视频| 国产免费现黄频在线看| 成人18禁高潮啪啪吃奶动态图| 人人妻人人爽人人添夜夜欢视频| 国产亚洲欧美精品永久| 赤兔流量卡办理| 成人三级做爰电影| 欧美变态另类bdsm刘玥| 又粗又硬又长又爽又黄的视频| 亚洲精品久久成人aⅴ小说| 一本色道久久久久久精品综合| 一级爰片在线观看| 久久久精品国产亚洲av高清涩受| 亚洲五月色婷婷综合| 香蕉国产在线看| 国产乱来视频区| 婷婷色综合大香蕉| 久久久精品区二区三区| 99精品久久久久人妻精品| 老熟女久久久| 日韩精品有码人妻一区| 伊人久久国产一区二区| 久久精品久久久久久噜噜老黄| 精品人妻一区二区三区麻豆| 制服诱惑二区| 国产深夜福利视频在线观看| 91国产中文字幕| 熟妇人妻不卡中文字幕| 国产精品成人在线| 国产爽快片一区二区三区| 国产熟女午夜一区二区三区| 精品亚洲乱码少妇综合久久| 在线观看免费午夜福利视频| 老司机亚洲免费影院| 人体艺术视频欧美日本| 午夜日韩欧美国产| 亚洲国产精品一区二区三区在线| 嫩草影院入口| 亚洲av日韩在线播放| 亚洲精品国产av成人精品| 国产精品香港三级国产av潘金莲 | a级片在线免费高清观看视频| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| 日韩中文字幕视频在线看片| 国产精品久久久人人做人人爽| 2018国产大陆天天弄谢| 黄片小视频在线播放| 欧美国产精品一级二级三级| 一区二区三区激情视频| 亚洲人成电影观看| 欧美 日韩 精品 国产| 午夜日本视频在线| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看| 国产精品国产三级国产专区5o| 成人毛片60女人毛片免费| 日本欧美国产在线视频| 在线天堂最新版资源|