• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    400~1 300 nm 波段的鹵鎢燈光譜輻照度衰減模型

    2022-09-07 06:54:56張亞超夏志偉
    中國光學(xué) 2022年4期
    關(guān)鍵詞:精密機(jī)械輻照度中國科學(xué)院

    張亞超,葉 新,夏志偉,隋 龍,方 偉

    (中國科學(xué)院 長春光學(xué)精密機(jī)械與物理研究所, 吉林 長春 130033)

    1 Introduction

    In the 21st century, climate change has became a topic of global concern. Global climate change research has put forward unprecedented requirements for the radiation measurement uncertainty of remote sensing satellites. The ASIC3(Achieving Satellite International Corporation for Climate Change) states that the measurement uncertainty of the remote sensing satellites has to remain better than 0.3% at the reflected solar wavebands to accurately predict global climate change[1].

    However, the radiometric calibration of the satellite optical remote sensors at reflected solar wavebands is usually performed by the standard halogen tungsten lamp, the solar-diffuser calibrator or vicarious calibration. At present, the minimum and maximum spectral irradiance uncertainty of standard halogen tungsten lamp is 0.47% at wavebands of 1 600 nm (k=2) and 1.16% at wavebands of 400 nm (k=2) during its lifetime[2]. Therefore, standard halogen tungsten lamps cannot satisfy a measurement uncertainty of 1% (k=2) at whole reflected solar wavebands. Moreover, radiometric calibration uncertainty is only about 5% at reflected solar wavebands by solar-diffuser calibrator and vicarious calibration[3-7]. Therefore, the current radiometric calibration methods hardly satisfy the high-precision radiometric calibration requirements in the field of climate research.

    An alternative method to improve the accuracy of radiometric calibration is to trace the spectral radiance of the lamp-diffuser calibrator to the onboard space cryogenic absolute radiometer.However, it is impossible to do this at each operating waveband of the remote sensor in orbit. Therefore, it is necessary to reconstruct the spectral radiance of the entire operating waveband range from the spectral radiances of several operating wavebands. In addition, the reconstruction uncertainty must be better than 0.3% to realize the target measurement uncertainty of 1% of reflected solar spectral radiation.

    At present, the spectral radiance (irradiance) of the light source is reconstructed according to its spectral radiance (irradiance) model. For example,the spectral irradiance of a halogen tungsten lamp can be reconstructed with an uncertainty of approximately 0.25% according to its spectral irradiance model[8]. However, the spectral radiance of the lamp-diffuser calibrator cannot be described by a simple but precise model, as such a model has not yet been reconstructed for the diffuser reflector.Therefore, it is difficult to reconstruct the spectral radiance of the lamp-diffuser calibrator with an uncertainty of 0.3% using the present reconstruction method.

    It is well known that the degradation characteristics of the diffuser reflectors in the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS)can be described by an analytical model[9]. Therefore, it is reasonable to believe that the degradation characteristics of the other on-board diffuser reflectors can also be described in this way. The spectral radiance degradation characteristics of the lampdiffuser calibrator can correspondingly be described by an analytical model if the spectral irradiance degradation characteristics of the halogen tungsten lamp can be described by an analytical model. In addition, the spectral radiance degradation curve of the lamp-diffuser calibrator can be reconstructed with high accuracy according to its spectral radiance degradation model. The high-precision spectral radiance of the lamp-diffuser calibrator can subsequently be calculated by the product of the reconstructed spectral radiance degradation curve and the spectral radiance calibrated before launch.

    In summary, it is necessary to research the high-precision spectral irradiance degradation model of a halogen tungsten lamp to reconstruct the spectral radiance of the on-board lamp-diffuser calibrator with an uncertainty better than 0.3%. In this paper, the following work was performed to construct the spectral irradiance degradation model of a halogen tungsten lamp from the Chinese Radiometric Benchmark of Reflected Solar Band project.First, the spectral irradiance degradation model of a halogen tungsten lamp with undetermined order was derived according to the blackbody radiation law and Weierstrass theorem in Section 2. Next, the spectral irradiance degradation curve was measured and the criterion to determine the model order was given, according to which the model order was determined in Section 3. The conclusion is presented in Section 4.

    2 Derivation of spectral irradiance degradation model

    Because the spectral irradiance degradation curve of a halogen tungsten lamp is the ratio of its spectral irradiances at different moments, the spectral irradiance degradation model is closely related to its spectral irradiance model. The physical model of the halogen tungsten lamp irradiance is expressed in Eq.(1):

    whereB(T) is a geometrical factor of the lamp filament that takes into account the measurement distance and the dimensions of the filament; λ is the wavelength in a vacuum;Tis the temperature of the filament; εW(λ,T) is the nominal spectral emissivity of tungsten; εΔ(λ) is the spectral emissivity correction factor for the emissivity of the lamp;hˉ is the Planck constant;cis the velocity of light in a vacuum; andkis the Boltzmann constant[10]. The residual correction factor accounts for the effects of all factors in addition to the nominal spectral emissivity of tungsten. These include the transmittance of the quartz bulb, the transmittance of the filling gas,the difference in the properties of tungsten used in the lamp filament and in the nominal emissivity determination, and the light recycling effect in the coiled filament[11-12].

    In this paper, the product of the geometric factorB(T), the nominal spectral emissivity of tungsten εW(λ,T), and the spectral emissivity correction factor εΔ(λ) is referred to as the spectral emissivity of the halogen tungsten lamp ε(λ,T). Therefore, the spectral irradiance of the halogen tungsten lamp can be expressed as the product of the Planck functionH(λ,T)and the spectral emissivity, as shown in Eq.(2):

    If the increments of the Planck function and spectral emissivity are expressed as ΔH(λ,T) and Δε(λ,T), respectively, when the filament temperature changes fromTtoT+ΔT, the spectral irradiance degradation model of the halogen tungsten lamp can be expressed as Eq. (3):

    When λ is less than 1300 nm,the P(lanc)k functionH(λ,T)is reduced to Eq.(4)as exp?1 is satisfied:

    whereC1andC2are the first and second radiation constants, respectively. The increment of the Planck function can be expressed as Eq. (5) derived from Eq. (4) by the differential operation.

    Because the spectral emissivity degradation model of a halogen tungsten lamp is affected by the spectral emissivity of tungsten, the spectral transmittance of the quartz lamp shell, the spectral transmittance of the halogen gas, and the filament morphology, it is difficult to achieve the analytical expression through theoretical derivation. However,any continuous function can be approximated by an algebraic polynomial function according to the Weierstrass theorem. Therefore, the spectral emissivity degradation model of a halogen tungsten lamp can be approximated by the polynomial function shown in Eq. (6):

    whereaiis an undetermined coefficient. Therefore,the spectral irradiance degradation model of the halogen tungsten lamp can be expressed as Eq. (7)according to Eqs.(4)-(6).

    Since the temperatureTand temperature difference ΔTwere contained in the undetermined coefficients ξ0,ξ1,η1,η2,η3···, Eq.(7) can be simplified to be Eq.(8).

    There may be several different orders of the model that satisfy the reconstruction uncertainty required by the spectral radiance of the lamp-diffuser calibrator. However, the model order should be determined as the lowest order that satisfies the spectral radiance reconstruction uncertainty of the onboard lamp-diffuser calibrator, which is referred to as the model-order-determination criterion in this study. The lowest-order model requires the fewest wavebands to reconstruct from the spectral radiance of the on-board lamp-diffuser calibrator, which incurs the lowest cost to the on-board spectral radiometric calibration. Therefore, the model order of Eq.(7) should be determined experimentally.

    3 Model order determined by experiment method

    3.1 Measurement of the spectral irradiance degradation curve

    Because the spectral irradiance degradation characteristics of halogen tungsten lamps are closely related to their manufacturing process, it is reasonable to believe that halogen spectral irradiance degradation characteristics of the same type of the halogen tungsten lamp can be described by the same analytic model. In other words, the model order of one type of halogen tungsten lamp can be determined from the spectral irradiance degradation curves of samples. The spectral irradiance degradation curve of the halogen tungsten lamp is the ratio of its spectral irradiances at different moments, which can be expressed by Eq.(9) whereEo(λ) andEj(λ) are the initial and the spectral irradiance after thejthaging interval, respectively.

    Therefore, the spectral irradiance degradation curve can be measured by the scheme shown in Fig.1, which is composed of a halogen tungsten lamp, diffuser reflection plate, and spectrometer.Two Osram 64610HLX lamps have been measured to investigate the spectral irradiance degradation model of the halogen tungsten lamp, whose rated voltage and power are 12 V and 50 V, respectively.Therefore, the operating current at which the halogen tungsten lamp operates is set to a constant 4 amperes which is the same as the operating current of the halogen tungsten lamp for on-board calibration during the test.

    Fig. 1 Measurement scheme of the spectral irradiance degradation curve of the halogen tungsten lamp

    Fig. 2 (a) Extra-atmospheric solar spectral irradiance and(b) spectral irradiance of tested halogen tungsten lamp

    The diffuser plate was made of spectralon (one kind of PTFE supplied with Labsphere). The spectral reflectance degradation of the spectralon diffuser was caused by exposure to radiation at wavebands of 200 nm-400 nm according to J.E.Leland[13]. Fig.2 shows the spectral irradiance of the tested halogen tungsten lamp and the extra-atmospheric solar spectral irradiance calculated by MODTRAN[14], the ratio of which at wavebands of 250 nm to 400 nm was shown in Fig.3. According to Fig.3, the averaged ratio at wavebands of 250-400 nm was calculated to be about 0.86%.Moreover, the radiation of the halogen tungsten lamp at wavebands of 200-250 nm was so low that it can be neglected. Therefore, the diffuser equals to be exposure to the extra-atmospheric solar radiation for about one hour when it is irradiated by the halogen tungsten lamp for 160 hours. According to the technical guide of Labsphere, the reflectance of the diffuser decreases at wavelength of 250 nm to about 0.04%, when the irradiation is equivalent to one extra-hour of atmospheric solar irradiation. Moreover,the diffuser reflectance returned to near original values when it returned to atmospheric conditions, presumably due to oxidation and the loss of the surface contaminants that caused the discoloration[15]. Therefore, it was reasonable to infer that the reflectance degradation of the diffuser reflector was much smaller than 0.04%, which was much smaller than the degradation of the halogen tungsten lamp. That is to say that the reflectance degradation of the diffuser reflector can be neglected in researching the degradation of the halogen tungsten lamp.

    Fig. 3 Ratio of the spectral irradiance of the tested halogen tungsten lamp to the sun

    The spectrometer was an HR-1024i, supplied by SVC (Spectra Vista Corporation, US), that operates at wavebands of 350-2 500 nm and has 1 024 spectral channels. The detector assembly of the HR-1024i spectrometer was composed of three linear array detectors: a 512 CCD detector for wavebands from 350-990 nm, a 256 InGaAs detector for wavebands from 990-1 900 nm and a 256 extended In-GaAs detector for wavebands from 1 900-2 500 nm. The temperature stability of the laboratory and the three detectors in the spectrometer were kept within ± 1°C and ± 0.1°C, respectively. Besides,the lamp, the spectrometer and the diffuser plate had never been moved or replaced during the 7-day measurement. Therefore, the responsivity of the HR-1024i spectrometer can be assumed to remain unchanged during the 7-day measurement.

    Additionally, the dark current had been removed from the measuring results during the measurement, which means that the spectral irradiance decay curve only contains the random noise. The method to remove dark current from the measuring results was shown in the following. First, the dark current is measured by closing the shutter, and then,the reflected light from the diffuser is measured by opening the shutter. The dark current is removed by reducing the closed shutter measurement results from the final opened shutter measurement results.To make the two unused new lamps remain stable,they were aged for 20 hours in the same experimental setting before the measurement.

    To sum up, the spectral irradiance degradation curve shown in Eq. (9) can be simplified as Eq.(10),whereDNo(λ) andDNj(λ) are the initial andjthoutput of the spectrometer with the dark current removed, respectively.

    According to Eq.(10), the measurement uncertainty of the spectral irradiance degradation curve is simplified to its measurement repeatability, when the measurement setup is not touched and the dark current is removed during the measurement. The calculation of the measurement uncertainty is shown in chapter 3.2 in this paper.

    To simulate the on-orbit operation, the lamp is turned on for one hour and then turned off for five minutes, and the above procedure is repeated 160 times during the measurement to ensure the lamp can satisfy the on-orbit calibration requirements.The measured spectral irradiance degradation curves of the two halogen tungsten lamps are shown in Fig.4 (Color online).

    Fig. 4 Spectral irradiance degradation curves of (a) 1# and(b) 2# halogen tungsten lamps

    3.2 Measurement uncertainty of the spectral irradiance degradation curve

    According to Eq.(10), the measurement uncertainty of the spectral irradiance degradation curve can be expressed by Eq. (11).

    Therefore, the measurement uncertainty of the spectral irradiance degradation curve is simplified to Eq. (13):

    Eq.(13) shows that the uncertainty of the spectral irradiance degradation curve can be determined by the measurement repeatability ofDNthat stands for the spectral irradiance. However, the repeatability of theDNis determined by the spectral irradiance of the light source and the signal to noise ratio of the HR-1024i spectrometer, which can be calculated according to the measured spectral irradiance expressed byDN. To summarize, the measurement uncertainty of the spectral irradiance degradation curve can be calculated by the measured spectral irradiance according to Eq.(13).

    The measurement uncertainty of the spectral irradiance degradation curve shown in Fig.4 was calculated and shown in Fig.5 (Color online) according to Eq.(13). The standard deviations of the measurement uncertainty of the two lamps were calculated to be approximately 0.038% according to the measurement uncertainty curves shown in Fig.5,both of which were significantly less than the spectral radiance reconstruction uncertainty of 0.3% required by the on-board lamp-diffuser calibrator.Therefore, it is reasonable to construct a spectral irradiance degradation model that satisfies the spectral radiance reconstruction uncertainty of the onboard lamp-diffuser calibrator according to the measured spectral irradiance degradation curve.

    Fig. 5 Measurement uncertainty of the spectral irradiance degradation curve for (a) 1# and (b) 2# halogen tungsten lamps

    3.3 Determination of the model order

    The spectral irradiance degradation curves of the two lamps were fitted by Eq. (7) with the model order ranging from one to four using the leastsquares method. Fig.6 showed the measured spectral irradiance degradation curves and fitted results with the two-order model of the two halogen tungsten lamps. Because the fitting results of the models almost coincide, only the fitting results of the second-order model are shown in Fig.6 as an example. The relative standard deviations are expressed in Eq.(14):

    Fig. 6 Measured spectral irradiance degradation curves and fitted results with the second-order model of (a) 1#and (b) 2# halogen tungsten lamps

    where ζf, ζm,Nandn+1 are the fitted data, measured data, number of measuring wavebands, and number of fitting parameters, respectively. The relative standard deviations were calculated and is shown in Fig.7 (Color online) according to Eq.(14).

    Fig. 7 Relative standard deviations of the spectral irradiance degradation curves of (a) 1# and (b) 2# halogen tungsten lamps

    Fig.7(a) shows that the relative standard deviations of the first-order model increase from about 0.03% to about 0.11% and from about 0.03% to about 0.04% for the model orders from two to four during the burning time for 1# lamp. Fig.7(b) shows that the relative standard deviations of the first-order model increase from about 0.02% to about 0.16% and from about 0.02% to about 0.04% for the model orders from two to four during the burning time for 2# lamp. That is to say that the relative standard deviation of the first-order model increases much faster than the higher order model,which indicates that first-order model cannot describe the degradation characterization of the halogen tungsten lamp accurately enough during the burning life.

    Moreover, Fig.7(a) and Fig.7(b) show that the relative standard deviations are better than 0.05%and very similar for the model orders from two to four during the burning time for the two lamps.Therefore, the model order of the two halogen tungsten lamps are determined to be two since it obtains the least fitting parameters in this paper.

    The model precisions are estimated by relative errors between the fitted and measured spectral irradiance degradation curve. The relative errors of the two lamps are calculated to be better than 0.25% at wavebands from 400 nm to 1 300 nm as shown in Fig.8(a) (Color online) and Fig.8(b) (Color online),respectively. Therefore, the proposed spectral irradiance degradation model of halogen tungsten lamps can satisfy the spectral radiance reconstruction uncertainty of the on-board lamp-diffuser calibrator.

    Fig. 8 Relative errors between the fitted and measured spectral irradiance degradation curve of the two halogen tungsten lamps fitted by the second-order model. (a) 1# and (b) 2# halogen tungsten lamp

    Hence, the spectral irradiance degradation model of the two halogen tungsten lamps can be expressed by Eq. (15):

    The proposed spectral irradiance degradation model may not be suitable for other types of lamps;however, the method used to construct the spectral irradiance degradation model is still valid for other types of halogen tungsten lamp.

    4 Conclusions

    In this paper, a hemi-empirical spectral irradiance degradation model of a halogen tungsten lamp with an undetermined model order at wavelengths from 400 nm to 1 300 nm was derived based on the blackbody radiation law and the Weierstrass theorem, and the model order was subsequently determined to be two by the proposed model-order-determination criterion. The proposed spectral irradiance degradation model may not be suitable for other types of lamps. However, the method used to construct the spectral irradiance degradation model is still valid for other types of halogen tungsten lamps.The uncertainty of the proposed model is approximately 0.25%, which satisfies the spectral radiance reconstruction uncertainty of the on-board lampdiffuser calibrator at wavelengths from 400 nm to 1 300 nm and lays a theoretical foundation to realize a measurement uncertainty of 0.3% at reflected solar wavebands. The spectral irradiance degradation model of halogen tungsten lamps at wavelengths from 1 300 nm to 2 350 nm will be researched, subsequently.

    Acknowledgements

    The author thanks Dr. Lei kai-chao from Chang Chun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, for his valuable suggestions and selfless help that have helped improve this manuscript substantially.

    猜你喜歡
    精密機(jī)械輻照度中國科學(xué)院
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    昆山邁晟科精密機(jī)械有限公司
    模具制造(2022年1期)2022-02-23 01:13:34
    昆山邁晟科精密機(jī)械有限公司
    模具制造(2021年7期)2021-09-14 00:28:20
    昆山邁晟科精密機(jī)械有限公司
    模具制造(2021年6期)2021-08-06 01:07:54
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    昆山邁晟科精密機(jī)械有限公司
    模具制造(2020年12期)2020-02-06 08:05:18
    中國典型地區(qū)水平總輻射輻照度頻次特征*
    風(fēng)能(2016年8期)2016-12-12 07:28:48
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    太陽模擬器輻照度修正方法的研究
    午夜福利影视在线免费观看| 欧美日本中文国产一区发布| 久久久精品94久久精品| 亚洲美女视频黄频| 欧美日韩视频精品一区| 男人操女人黄网站| 亚洲人成电影观看| 天天躁夜夜躁狠狠久久av| 男的添女的下面高潮视频| 亚洲欧美一区二区三区黑人 | 日本wwww免费看| 亚洲天堂av无毛| 一区二区av电影网| 啦啦啦中文免费视频观看日本| 国产精品免费视频内射| 男女午夜视频在线观看| 欧美最新免费一区二区三区| 精品国产乱码久久久久久小说| 国产精品 欧美亚洲| 久久精品久久精品一区二区三区| 久久热在线av| 9色porny在线观看| 青春草亚洲视频在线观看| 久久97久久精品| 久久精品久久精品一区二区三区| 人妻人人澡人人爽人人| 在线 av 中文字幕| 欧美成人午夜精品| 欧美亚洲日本最大视频资源| 97在线人人人人妻| 国产淫语在线视频| 大片电影免费在线观看免费| 亚洲成人av在线免费| av有码第一页| 熟女电影av网| 交换朋友夫妻互换小说| 日产精品乱码卡一卡2卡三| 成人手机av| 国产一区二区在线观看av| 精品午夜福利在线看| 激情五月婷婷亚洲| 国产成人av激情在线播放| 亚洲色图综合在线观看| 天天躁日日躁夜夜躁夜夜| 久久久久精品性色| 亚洲三级黄色毛片| 国产福利在线免费观看视频| 男女边吃奶边做爰视频| 亚洲三区欧美一区| 国产一区二区三区综合在线观看| 少妇人妻 视频| 免费观看无遮挡的男女| 亚洲伊人色综图| 亚洲中文av在线| 少妇被粗大猛烈的视频| av国产久精品久网站免费入址| 国产无遮挡羞羞视频在线观看| 亚洲国产成人一精品久久久| 国产一区二区三区综合在线观看| 久久国产精品男人的天堂亚洲| 国产在视频线精品| 亚洲,一卡二卡三卡| 国产精品嫩草影院av在线观看| 免费看av在线观看网站| 国产亚洲av片在线观看秒播厂| 久久久久久久久久久免费av| 午夜福利在线免费观看网站| 丝袜人妻中文字幕| 精品一区二区免费观看| 激情五月婷婷亚洲| 亚洲国产精品成人久久小说| 九九爱精品视频在线观看| 国产免费又黄又爽又色| 不卡视频在线观看欧美| 日韩熟女老妇一区二区性免费视频| 国产成人精品无人区| 满18在线观看网站| 日韩一本色道免费dvd| 街头女战士在线观看网站| 中文字幕人妻熟女乱码| 2018国产大陆天天弄谢| 多毛熟女@视频| 日日摸夜夜添夜夜爱| 久久久久网色| 精品国产超薄肉色丝袜足j| 国产亚洲av片在线观看秒播厂| 午夜免费男女啪啪视频观看| 国产在线免费精品| 纵有疾风起免费观看全集完整版| 欧美日韩成人在线一区二区| 校园人妻丝袜中文字幕| 十八禁高潮呻吟视频| 国产av精品麻豆| 亚洲一级一片aⅴ在线观看| 不卡av一区二区三区| 免费少妇av软件| 男女下面插进去视频免费观看| 2018国产大陆天天弄谢| 美女视频免费永久观看网站| 成人亚洲欧美一区二区av| 久久久久视频综合| 一边摸一边做爽爽视频免费| 美女高潮到喷水免费观看| 最新中文字幕久久久久| 国产精品熟女久久久久浪| 午夜免费观看性视频| 视频在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲精品国产av蜜桃| 99国产综合亚洲精品| 中文字幕色久视频| 精品少妇一区二区三区视频日本电影 | 精品卡一卡二卡四卡免费| 97在线人人人人妻| 精品人妻偷拍中文字幕| 啦啦啦中文免费视频观看日本| 国产深夜福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 黄片无遮挡物在线观看| 九九爱精品视频在线观看| 丰满饥渴人妻一区二区三| 国产黄色视频一区二区在线观看| 亚洲精品日本国产第一区| 秋霞在线观看毛片| 亚洲精品一区蜜桃| 久久亚洲国产成人精品v| 亚洲人成77777在线视频| 2022亚洲国产成人精品| 性少妇av在线| 免费av中文字幕在线| 午夜老司机福利剧场| 婷婷成人精品国产| 欧美97在线视频| 久久久久久久久久久免费av| 国产一区二区三区av在线| 久久影院123| 久久久久国产精品人妻一区二区| 精品亚洲成国产av| 成人亚洲精品一区在线观看| 日本色播在线视频| 91午夜精品亚洲一区二区三区| 1024香蕉在线观看| 久久女婷五月综合色啪小说| 亚洲一级一片aⅴ在线观看| 国产爽快片一区二区三区| 18禁国产床啪视频网站| 亚洲伊人久久精品综合| 亚洲五月色婷婷综合| 亚洲久久久国产精品| 少妇人妻 视频| 亚洲一区中文字幕在线| 高清视频免费观看一区二区| 亚洲成国产人片在线观看| 曰老女人黄片| 欧美激情 高清一区二区三区| 一区在线观看完整版| 国语对白做爰xxxⅹ性视频网站| 国产xxxxx性猛交| 18在线观看网站| 一二三四中文在线观看免费高清| 成年女人在线观看亚洲视频| 亚洲一区二区三区欧美精品| 最黄视频免费看| 赤兔流量卡办理| 久久久久精品人妻al黑| www.av在线官网国产| 精品国产一区二区三区久久久樱花| 日韩av在线免费看完整版不卡| 亚洲综合色惰| 亚洲,一卡二卡三卡| 亚洲精品在线美女| 午夜福利乱码中文字幕| 香蕉丝袜av| 亚洲美女视频黄频| 日本爱情动作片www.在线观看| 韩国高清视频一区二区三区| 精品一品国产午夜福利视频| 精品国产乱码久久久久久男人| 亚洲国产av影院在线观看| 免费观看性生交大片5| 日韩中文字幕欧美一区二区 | 日韩制服骚丝袜av| 亚洲激情五月婷婷啪啪| 尾随美女入室| 最近最新中文字幕大全免费视频 | 亚洲第一区二区三区不卡| 中文字幕最新亚洲高清| 国产一区有黄有色的免费视频| 超色免费av| videossex国产| 欧美变态另类bdsm刘玥| 亚洲av.av天堂| 九色亚洲精品在线播放| 欧美激情高清一区二区三区 | 少妇熟女欧美另类| 久久精品国产亚洲av高清一级| 亚洲国产精品一区三区| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 黄网站色视频无遮挡免费观看| 久久久久久久久久久免费av| 久久久久久久久免费视频了| 亚洲三级黄色毛片| 色婷婷av一区二区三区视频| 亚洲欧美日韩另类电影网站| 国产熟女欧美一区二区| 国产综合精华液| 午夜影院在线不卡| 菩萨蛮人人尽说江南好唐韦庄| 水蜜桃什么品种好| 亚洲人成77777在线视频| 国产亚洲最大av| 成年av动漫网址| 天天操日日干夜夜撸| 免费观看性生交大片5| 日韩电影二区| 美女国产视频在线观看| 国产乱来视频区| 欧美日韩综合久久久久久| 欧美少妇被猛烈插入视频| 成年av动漫网址| 1024视频免费在线观看| 久久国内精品自在自线图片| 午夜福利在线免费观看网站| 日韩成人av中文字幕在线观看| 久久国产精品男人的天堂亚洲| av福利片在线| 日韩 亚洲 欧美在线| 国产高清不卡午夜福利| xxxhd国产人妻xxx| 久久这里有精品视频免费| 精品一区二区三区四区五区乱码 | 国产精品一区二区在线不卡| videos熟女内射| 亚洲人成电影观看| 女性被躁到高潮视频| 亚洲精品美女久久av网站| 又粗又硬又长又爽又黄的视频| 三上悠亚av全集在线观看| 永久免费av网站大全| 卡戴珊不雅视频在线播放| 亚洲国产看品久久| 少妇的丰满在线观看| 婷婷成人精品国产| 18在线观看网站| 婷婷色综合www| 亚洲,欧美,日韩| 精品午夜福利在线看| 18禁观看日本| 91aial.com中文字幕在线观看| 不卡av一区二区三区| 国产在线免费精品| 精品少妇久久久久久888优播| 国产精品香港三级国产av潘金莲 | 中文字幕人妻熟女乱码| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 亚洲综合精品二区| 久久久久久久久久久免费av| 久久热在线av| kizo精华| 一级片'在线观看视频| 国产爽快片一区二区三区| 超色免费av| 老司机亚洲免费影院| 精品酒店卫生间| 成人18禁高潮啪啪吃奶动态图| av在线老鸭窝| 一级毛片 在线播放| 亚洲av综合色区一区| 老鸭窝网址在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品.久久久| 国产精品女同一区二区软件| a级片在线免费高清观看视频| 亚洲精品乱久久久久久| 男女午夜视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 午夜福利网站1000一区二区三区| 咕卡用的链子| 成人亚洲精品一区在线观看| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| 国产男女内射视频| 国产精品香港三级国产av潘金莲 | 又大又黄又爽视频免费| 晚上一个人看的免费电影| 一区二区av电影网| 久久久久久久大尺度免费视频| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 国产女主播在线喷水免费视频网站| 午夜老司机福利剧场| 国产在线免费精品| 免费观看无遮挡的男女| 岛国毛片在线播放| 高清不卡的av网站| 老汉色av国产亚洲站长工具| 9色porny在线观看| 国产成人一区二区在线| 中国国产av一级| 日本欧美视频一区| 免费高清在线观看视频在线观看| 婷婷色综合大香蕉| 亚洲av中文av极速乱| 欧美国产精品一级二级三级| www日本在线高清视频| 极品少妇高潮喷水抽搐| 日韩视频在线欧美| 观看av在线不卡| 少妇熟女欧美另类| 国产极品天堂在线| 侵犯人妻中文字幕一二三四区| 国产福利在线免费观看视频| 亚洲四区av| 叶爱在线成人免费视频播放| av电影中文网址| 女性生殖器流出的白浆| √禁漫天堂资源中文www| 韩国av在线不卡| 亚洲三级黄色毛片| 母亲3免费完整高清在线观看 | 久久久久人妻精品一区果冻| 国产精品一区二区在线不卡| 国产精品一国产av| 男女高潮啪啪啪动态图| 麻豆精品久久久久久蜜桃| 九草在线视频观看| 一本—道久久a久久精品蜜桃钙片| 韩国av在线不卡| 国产精品一区二区在线观看99| 欧美日韩亚洲国产一区二区在线观看 | 一二三四中文在线观看免费高清| 国产xxxxx性猛交| 69精品国产乱码久久久| 亚洲精品国产av成人精品| 1024香蕉在线观看| av片东京热男人的天堂| 国产日韩欧美视频二区| 老司机影院毛片| 黑人猛操日本美女一级片| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 麻豆精品久久久久久蜜桃| 最新的欧美精品一区二区| 久久久久精品性色| 亚洲激情五月婷婷啪啪| 建设人人有责人人尽责人人享有的| 一级片免费观看大全| 国产精品熟女久久久久浪| 黄频高清免费视频| 国产片特级美女逼逼视频| 精品国产乱码久久久久久男人| 日韩欧美精品免费久久| 精品国产露脸久久av麻豆| 咕卡用的链子| 国产成人精品久久久久久| 美国免费a级毛片| 欧美最新免费一区二区三区| 亚洲国产最新在线播放| 免费女性裸体啪啪无遮挡网站| 国产在视频线精品| 在线看a的网站| 我要看黄色一级片免费的| 亚洲成人av在线免费| 咕卡用的链子| 亚洲国产精品一区二区三区在线| 777久久人妻少妇嫩草av网站| av网站免费在线观看视频| 国产精品嫩草影院av在线观看| 满18在线观看网站| 狂野欧美激情性bbbbbb| 丝袜人妻中文字幕| 婷婷成人精品国产| 人人妻人人澡人人看| 三上悠亚av全集在线观看| 欧美bdsm另类| 丝瓜视频免费看黄片| 菩萨蛮人人尽说江南好唐韦庄| 十八禁高潮呻吟视频| 亚洲av男天堂| 欧美精品高潮呻吟av久久| 日韩一卡2卡3卡4卡2021年| 亚洲少妇的诱惑av| 亚洲av福利一区| 国产淫语在线视频| av天堂久久9| 欧美黄色片欧美黄色片| 亚洲,一卡二卡三卡| 女性生殖器流出的白浆| 亚洲综合精品二区| 亚洲精品aⅴ在线观看| 男人爽女人下面视频在线观看| 久久99一区二区三区| 国产老妇伦熟女老妇高清| 久久久久久久久久久久大奶| 天堂俺去俺来也www色官网| 91aial.com中文字幕在线观看| 久热久热在线精品观看| 观看av在线不卡| 久久人人97超碰香蕉20202| 久久久久精品久久久久真实原创| 精品亚洲成a人片在线观看| 中文字幕色久视频| 亚洲人成网站在线观看播放| 观看美女的网站| 国产一区二区激情短视频 | 中文天堂在线官网| 日韩中文字幕欧美一区二区 | 18在线观看网站| 啦啦啦啦在线视频资源| 日韩不卡一区二区三区视频在线| av在线app专区| 中国三级夫妇交换| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 欧美人与善性xxx| 久久精品久久精品一区二区三区| 黑丝袜美女国产一区| 99久国产av精品国产电影| 老鸭窝网址在线观看| 日韩中文字幕欧美一区二区 | 欧美亚洲 丝袜 人妻 在线| 亚洲成人一二三区av| 日韩精品有码人妻一区| 久久久久久久亚洲中文字幕| 伦理电影免费视频| 国产在线免费精品| 久久国内精品自在自线图片| 视频在线观看一区二区三区| 国产精品久久久久久精品古装| 国产欧美日韩综合在线一区二区| 波多野结衣av一区二区av| 中文精品一卡2卡3卡4更新| 国产一区有黄有色的免费视频| 国产激情久久老熟女| 久久毛片免费看一区二区三区| 黄片播放在线免费| 看十八女毛片水多多多| 又黄又粗又硬又大视频| 18+在线观看网站| 久久人人爽av亚洲精品天堂| 90打野战视频偷拍视频| 欧美人与性动交α欧美软件| 电影成人av| 热re99久久精品国产66热6| 黄片无遮挡物在线观看| 亚洲国产精品国产精品| 亚洲综合色网址| 成年动漫av网址| 两个人看的免费小视频| 亚洲人成77777在线视频| av电影中文网址| 欧美日韩一区二区视频在线观看视频在线| 国产精品熟女久久久久浪| 国产av码专区亚洲av| 亚洲av.av天堂| 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 欧美日韩成人在线一区二区| 欧美国产精品va在线观看不卡| 国产免费现黄频在线看| 久久久久久久精品精品| a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 国产日韩欧美在线精品| 日韩精品有码人妻一区| 熟妇人妻不卡中文字幕| 久久久精品国产亚洲av高清涩受| 精品99又大又爽又粗少妇毛片| 波多野结衣一区麻豆| 青春草国产在线视频| 男女边摸边吃奶| 黄色视频在线播放观看不卡| 免费观看在线日韩| 9191精品国产免费久久| 色94色欧美一区二区| 卡戴珊不雅视频在线播放| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 国产伦理片在线播放av一区| 国产精品女同一区二区软件| 深夜精品福利| 9色porny在线观看| 欧美日韩综合久久久久久| 老司机影院成人| 日韩av不卡免费在线播放| 久久久久久人人人人人| 一区二区av电影网| 国产精品香港三级国产av潘金莲 | 免费播放大片免费观看视频在线观看| 三上悠亚av全集在线观看| 99热国产这里只有精品6| 国产精品蜜桃在线观看| 亚洲国产欧美日韩在线播放| 欧美日韩一区二区视频在线观看视频在线| 少妇 在线观看| 国产精品欧美亚洲77777| 国产毛片在线视频| 精品国产国语对白av| av.在线天堂| 欧美成人午夜精品| 精品一区二区免费观看| 另类亚洲欧美激情| av在线播放精品| 日本免费在线观看一区| 久久精品久久久久久久性| 99热网站在线观看| 国产不卡av网站在线观看| 毛片一级片免费看久久久久| 国产精品 国内视频| 18禁动态无遮挡网站| 国产男人的电影天堂91| 高清视频免费观看一区二区| 春色校园在线视频观看| 最新的欧美精品一区二区| 国产深夜福利视频在线观看| 男女国产视频网站| 老司机影院毛片| 亚洲欧美日韩另类电影网站| 日韩一卡2卡3卡4卡2021年| av视频免费观看在线观看| 亚洲,一卡二卡三卡| 久久99一区二区三区| 欧美亚洲日本最大视频资源| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 在线观看国产h片| 人妻 亚洲 视频| 国产成人一区二区在线| 中文字幕色久视频| 国产xxxxx性猛交| 国产精品人妻久久久影院| 伊人久久国产一区二区| 91aial.com中文字幕在线观看| 韩国高清视频一区二区三区| 国产极品天堂在线| 久久久久精品性色| 亚洲国产精品一区二区三区在线| 一本大道久久a久久精品| 国产精品av久久久久免费| 日韩中文字幕视频在线看片| 美女午夜性视频免费| 日本猛色少妇xxxxx猛交久久| 午夜免费观看性视频| 一级片'在线观看视频| 人妻 亚洲 视频| 中国国产av一级| 国产在线视频一区二区| 男男h啪啪无遮挡| 你懂的网址亚洲精品在线观看| 在现免费观看毛片| 日韩人妻精品一区2区三区| 99热全是精品| 成人手机av| 久久久久久久国产电影| 国产97色在线日韩免费| 日韩精品免费视频一区二区三区| 国产片内射在线| 高清视频免费观看一区二区| 亚洲精品av麻豆狂野| 久久久久国产网址| 精品卡一卡二卡四卡免费| 美女国产高潮福利片在线看| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 波野结衣二区三区在线| 久久午夜福利片| 成人亚洲欧美一区二区av| 欧美人与性动交α欧美软件| 一级片免费观看大全| 丰满饥渴人妻一区二区三| 看非洲黑人一级黄片| 在线观看人妻少妇| 日韩av免费高清视频| 18禁国产床啪视频网站| 日本爱情动作片www.在线观看| 国产精品一区二区在线观看99| 亚洲四区av| 国产黄色免费在线视频| 久久久久久免费高清国产稀缺| 又大又黄又爽视频免费| 欧美精品高潮呻吟av久久| 久久久精品94久久精品| 精品人妻熟女毛片av久久网站| 久久韩国三级中文字幕| 寂寞人妻少妇视频99o| 韩国av在线不卡| 最黄视频免费看| 少妇精品久久久久久久| 国产片内射在线| 国产成人精品福利久久| 一本大道久久a久久精品| 91午夜精品亚洲一区二区三区| 999精品在线视频| av片东京热男人的天堂| 亚洲精品久久成人aⅴ小说| 久久综合国产亚洲精品| 久久精品国产亚洲av高清一级| 18禁观看日本| 久久影院123| 满18在线观看网站| 乱人伦中国视频| 9色porny在线观看| 男的添女的下面高潮视频| videos熟女内射| 国精品久久久久久国模美| 亚洲精品久久久久久婷婷小说| 国产免费又黄又爽又色| 亚洲国产欧美网| 国产精品成人在线| 久久这里有精品视频免费| 婷婷色综合www| 视频区图区小说|