• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雷體罩模態(tài)振型與激光散斑干涉信號(hào)的關(guān)系解析

    2022-09-07 06:54:48張小青李金輝羅欣宇于瀛潔
    中國(guó)光學(xué) 2022年4期
    關(guān)鍵詞:上海大學(xué)信息工程振型

    張小青,王 馳,李金輝,羅欣宇,于瀛潔

    (1. 上海大學(xué) 精密機(jī)械工程系, 上海200444;2. 同濟(jì)大學(xué)浙江學(xué)院 電子與信息工程系, 嘉興314000;3. 近地面探測(cè)技術(shù)重點(diǎn)實(shí)驗(yàn)室, 無(wú)錫214035)

    1 Introduction

    As a kind of low-cost defense weapon in wartime, landmines have been widely used in previous wars. Landmines have always been a severe threat to the people’s live of those mined countries or regions[1]. Therefore, eliminating hidden dangers caused by landmines has become a global problem that all countries in the world face. Landmine detection remains a worldwide problem to this day, especially for the detection of buried plastic landmines.The difference in electrical characteristics between plastic-cased landmines and the surrounding soil is relatively small, making it difficult for commonly used metal-cased landmine detectors to detect plastic-cased landmines. From the 1940s to the 1950s, a large number of plastic-cased landmines began to appear when the metal shells of landmines were gradually replaced by plastic shells[2]. Due to the limitation of these detection mechanisms, it is difficult to distinguish whether the buried objects are plastic-cased landmines or bricks, rocks, and other interfering objects. Using UAV-based Optical Data Fusion, landmine detection probability can be preliminarily estimated[3]. The methods of detecting the chemical composition of explosives such as hyperspectral images[4], Neutron challenge[5], and Raman spectroscopy[6]developed in recent years have strong identification capabilities, but the system is complicated and expensive, and the detected signal is extremely weak, leading to the problems relating to long detection (signal accumulation) time and a high misdetection rate. It is possible to overcome the difficulty of detecting plastic-cased landmines containing very low metal contents by improving the sensitivity of metal landmine detectors.However, many shrapnel, shell and other metal interferences in a minefield can cause high false positives. Biological mine detection methods, such as the passive method using Honeybee-based on-site explosive sampling, can only estimate the total explosive load in a certain area but cannot locate the mine’s location[7].

    Acoustic-to-seismic landmine detection technology based on the unique mechanical properties of landmines and the principle of acoustic-to-seismic coupling shows good application prospects, especially in the safe and effective detection of plastic-cased landmines. The acoustic-to-seismic coupling[8-10]refers to when sound waves propagating in the air are incident on the ground. In addition to most of the energy reflected into the air by the ground surface, a small proportion is coupled to propagate underground due to the influence of soil porosity. This forms seismic waves with different compositions such as transverse waves and fast and slow longitudinal waves. The air cavity and fuze in the landmine structure make its acoustic compliance (the deformation caused by per unit stress,commonly known as flexibility) much greater than the acoustic compliance of the surrounding soil. The"soil-landmine" system can produce the equivalent“Mass-spring" resonance phenomenon under the influence of seismic waves. Sabatier J. M and Donskoyet al.[11-13]successively established linear and nonlinear resonance models for acoustic-to-seismic landmine detection; Zagraiet al.[14-15]studied the multi-mode mechanism of landmine vibration response; Albertset al.[16]studied the impact of landmine burial depth on resonance frequency. These studies have indicated the feasibility of acoustic-toseismic landmine detection based on the mechanical properties of landmines and the principle of acoustic-to-seismic coupling. However, due to the low efficiency of acoustic-to-seismic coupling, the ground surface vibration excited by sound waves is still very weak even when the landmine resonates.Measuring the characteristic signals of landmines accurately and quickly has always been a key problem that limits the research of acoustic-to-seismic landmine detection systems.

    Laser interferometric vibration detection technology has a good application prospect in acousticto-seismic landmine detection due to its of highly precise and non-contact mechanism. Qiukun Zhanget al.[17]studied that the vibration measurement technology of high-performance optical coherence velocimeter can achieve nanometer-level accuracy; Xiang and Sabatier[18-19]used a single-beam laser Doppler vibrometer for acoustic-to-seismic landmine detection; Wang Chi research group[20-21]studied the landmine’s mode shape based on laser self-mixing vibrometer; Rajeshet al.[22]used the ultrasonic Doppler vibrometer array for landmine detection, which increased the vibration measurement rate to a certain extent, but the array had the disadvantages in its bulky size and high cost. In this paper, based on the multi-model resonance phenomenon of a landmine’s upper casing under the sound wave excitation, laser speckle interferometric vibration measurement technology based on a time average is used to study the relationship between the mode shapes of the landmine’s upper casing and the Bessel signals, providing theoretical evidence for realizing the rapid scanning technology of acoustic-optics landmine detection.

    2 Analysis of mode shapes of mine

    According to literatures [14-15], the main vibration mode characteristics of landmines are mainly determined by the upper surface of landmines, i.e., the landmine’s upper casing. To facilitate the analysis of the multi-mode vibration phenomena of landmines, the characteristics of the three-dimensional vibration mode shapes of landmines are simplified to the characteristics of the two-dimensional vibration mode shape of the plane structures where the burying depth is assumed to be 0 to remove the restriction of the soil above the landmine. As shown in Fig. 1, the landmine’s upper casing is equivalent to a cylindrical thin circular plate structure in polar coordinatesOrθ, with a radius ofaand a thickness ofh. Two continuous boundary constrained springs are arranged on the boundary of the plate structure atr=a, namely linear displacement springkand rotation constrained springK. For a circular planar structure, the (m,n) mode can be used to represent the vibration mode.

    Fig. 1 Analytical object and model of landmine’s multi-modal vibration characteristics. (a) Anti-tank plastic landmine; (b)equivalent cylindrical thin circular plate

    In a certain 1storder state, wheremrepresents the number of pitch diameters of the structure, andnrepresents the number of pitch circles of the structure. Theoretically, the point with a value of 0 in the mode shape is called a node, i.e., the intersection of the mode shape and the undeformed point in the original structure. The pitch diameter refers to the diameter with a value of 0 in the vibration mode,i.e., the lines composed of nodes. The pitch circle refers to the circle with a value of 0 in the vibration mode. As shown in Fig. 2 (Color online), when a landmine is excited by an external vibration with a certain frequency, the surface of its upper casing will produce a unique multi-modal vibration phenomenon. In Fig. 2, green represents pitch diameter,red represents pitch circle.

    Fig. 2 Contour diagrams of landmine mode shapes. (a) (0,1) mode; (b) (0,2) mode; (c) (1,1) mode

    The mode shapes of landmines are thoroughly analyzed according to literatures [14-15]. When the landmine’s upper casing is subjected to external forces, the vibration equation of the thin circular plate can be expressed as:

    whereTmnis a time function, andWmn(r,θ) is the mode shape function. Based on the mathematical model of the thin circular plate structure, its vibration function can be written as:

    where Jnand Inare the first kind and second kind Bessel functions, andais the radius of the thin circular plate. Let the modal shape function equal to zero, and the following equation can be obtained:

    According to equation (4), combined with the values of the points whose amplitudes are 0, whenr=r1,r2,r3,···rm, the value of the mode shape function is 0, andmis the number of pitch circles. When θ=θ1,θ2,θ3···θn, the value of the mode shape function is 0, andnis the number of pitch diameters.CmnandAmnare coefficients that depend onmandn, andλmnis theathpositive root of them-order Bessel function Jn=0.

    For elastic boundaries, the boundary conditions are:

    MrandVrare the bending moments at the corresponding positions. According to the plate and shell vibration theory, the following expressions apply:

    According to equations (7) and (8), equations(5) and (6) can be expressed in terms ofW(a,θ).Then the parametersCmnandAmncan be obtained by substituting equation (3) into equations (5) and (6).

    The parameterAmnof the mode shape function can be obtained by the following equation:

    where δ is the Kronecker number, and whenm=p,δmp= 1; whenm ≠ p,δmp=0.mMis the mass of the thin circular plate. According to the equation (9),Amncan be expressed as:

    The mode shape functionWmn(r,θ) can be obtained by substitutingCmn,Amnandλmninto equation(3). The complex "soil-mine" system can be described by a relatively simple and direct mathematical equation, which provides a theoretical basis for the analysis of the mode shapes of the landmine’s upper casing and its application in the acoustic-toseismic landmine detection system.

    3 Bessel fringe mapping method

    Electronic Speckle-Shearing Patten Interferometry (ESSPI) is a new technique for measuring displacement derivative developed after electronic speckle interference and is widely used in the field of non-destructive testing[23-25]. For the measurement of the deformation caused by the vibration of the object, laser shearing speckle interferometry is often combined with the time-average method of a CCD camera[26-27]. Consequently, the use of high-energy sound wave pulses or vibration exciters to excite the vibration energy close to the landmine location will cause abnormal changes in the ground surface vibration under the resonant movement of the landmine (Fig. 3). The laser beam is projected to the location where the landmine is buried, and the highresolution CCD camera system is used to record the speckle interference fringes containing the surface vibration information in real time. The interference fringes are analyzed and processed to obtain small vibration signals on the ground surface, and then the existence of buried landmines can be determined.

    Fig. 3 Vibration deformation schematic diagram of the soil surface with and without landmine under the excitation of sound waves

    The speckle interference fringe obtained by the time-average method of a CCD camera is modulated by the zero-order Bessel function, that is,Bessel fringe[28]. Thus, studying the mapping relationship between the mode shapes of the landmine’s upper casing and the Bessel fringes can further study the information such as the type and size of the landmine, as well as the rapid identification method. The following is the analysis of mapping relationship between the function of the mode shape of the landmine ’s upper casing and the Bessel fringes.

    To analyze the mapping relationship between the mode shape of the mine cover and the Bessel fringe, the optical path of laser speckle interferometry measurement on the mode shapes of the landmine’s upper casing is shown in Fig. 4(Color online). Assuming that the shearing direction is in thexdirection. LaserS(xs,ys,zs) irradiates on the measured landmine ’s upper casing. The two pointsP1(x,y,z) andP2(x+δx,y,z) on the surface of the landmine’s upper casing spaced apart byδxare imaged and interfered with each other at the same pointC(xc,yc,zc) on the CCD camera after passing through the shearing device, whereδxis the shear amount in thexdirection. After the landmine’s upper casing is excited by sound waves, pointP1(x,y,z) moves to(x+u,y+v,z+w) and pointP2(x+δx,y,z) moves to(x+δx+u+δu,y+v+δv,z+w+δw). The distance betweenandis(δu,δv,δw).

    Fig. 4 The optical path of laser speckle interferometry measurement on the mode shapes of the landmine’s upper casing

    Fig. 5 Vibration diagram under (0,1) mode. (a) Three-dimensional vibration mode diagram; (b) contour map

    Fig. 6 Vibration diagram under (0,2) mode. (a) Three-dimensional vibration mode diagram; (b) contour map

    Fig. 7 Vibration displacement gradient change under the (0,1) mode. (a) Three-dimensional diagram of the displacement gradient change; (b) contour map

    Fig. 8 Vibration displacement gradient change under the (0,2) mode. (a) Three-dimensional diagram of displacement gradient change; (b) contour map

    According to our preliminary research and analysis[28], it is assumed that the intensity of speckle interference obtained by the time averaging method based on a CCD camera isI(x,y), and its expression is as follows:

    In the formula, 2Re[g1(x,y)(x,y)] is random speckle noise, J0is the zero-order Bessel function of the first kind, and Δ φ(x,y) is the phase difference of the interference laser due to the vibration deformation of the landmine’s upper casing.

    In order to facilitate the correlation between the shear speckle interferometry theory and the multimodal vibration characteristics of mines, the vibration mode function is transformed from the polar coordinate system to the Cartesian coordinate systemxOy, that is:x=rcosθ,y=rsinθ .

    The equation of the mode shape function of the landmine’s upper casing in the Cartesian coordinate system can be obtained as equation (13) by substituting equation (12) into equation (3).

    According to literature [29], the relationship between the pure phase change caused by the outoff-plane displacement of the landmine’s upper casing and the derivative of the out-off-plane displacement is as follows:

    In the formula (11), since 1 -J0(Δφ(x,y)) is a value that changes in a period, the resulting speckle interferogram is a light and dark speckle fringe pattern produced by 1 -J0(Δφ(x,y)) modulation, that is Bessel fringe. It is possible to calculate the phase change caused by the vibration of the out-off-plane deformation through observing the obtained Bessel fringe. Then, the amount of change in the gradient of the out-off-plane displacement of the landmine’s upper casing can be obtained. As a result, the vibration deformation of the landmine’s upper casing can be determined. Where there is a constant shear amount, the Bessel fringe order increases as the displacement gradient is larger.

    4 Numerical analysis and discussion

    The landmine’s upper casing is equivalent to a thin circular plate structure with elastic supports and it has the mode functionWmn(x,y). The numerical analysis is based on the mapping relationship between the mode shapes of landmine and Bessel fringes, which is formula (13).

    The simulation parameter setting is shown in Table 1. The radius of the landmine’s upper casinga=13.5 cm, Poisson’s ratio υ=0.33, Young’s modulusE=17×1019Pa, and laser wavelength λ=658 nm. To clearly display the fringe series in the Bessel fringe pattern, the shear amount is set to 6 mm, and the Cartesian coordinate system is established with the center of the thin circular plate as the origin. The shearing direction of the laser speckle interference is in thexdirection. Assuming that there is a circle and 0 pitch diameters in the thin circular plate, i.e., the (0,1) order mode. The simulation results are shown in Fig 5, 7, 9(a) (Color online), while the mode simulation results for the (0,2)order mode are shown in Figs. 6, 8, 9(b) (Color online).

    Tab. 1 Simulation parameter setting

    Figs. 5 and 6 show the (0,1) and (0,2) order landmine vibration patterns, respectively. The vibration amplitude of the (0,1) order mode decreases from the center to the surroundings with a maximum value of 2.157 3 mm at the center of the mine.Due to the existence of two pitch circles in the (0,2)order mode, the vibration amplitude changes suddenly at the first pitch circle line then increases from there to the center. Its amplitude reaches a maximum of 2.809 9 mm at the center of the mine, which is an increase of 0.652 6 mm compared to the maximum amplitude of the (0,1) order mode.

    Figs. 7 and 8 show the (0,1) and (0,2) order modes’ vibration displacement gradient changes, respectively. Since the shear direction of the laser speckle interference is set to thexdirection, the vibration displacement gradient is obtained by calculating the first-order partial derivative of the landmine vibration mode function with respect tox.Since the mode shapes of landmines are evenly symmetric abouty=0, the displacement gradient change of the (0,1) order mode shape obtained by calculating the first-order partial derivative with respect toxis oddly symmetric abouty=0. The maximum absolute value of the gradient change is 0.228 5. It is obvious from the contour map in Fig. 7(b) that aty=0, the displacement gradient change is always zero regardless of any change inx. The two displacement gradients with odd symmetry increase or decrease from the point where ofx=0 cm andy=±7.752 cm to the surroundings, respectively. As shown in Fig. 8, the first section circular vibration mode of the (0,2) order is evenly symmetrical abouty=0, and its displacement gradient change is oddly symmetrical at that same point. The maximum absolute value of the gradient change is 0.706 4, an increase of approximately 0.477 9 compared to the maximum absolute displacement gradient of the(0,1) order mode. Similarly, aty=0, the displacement gradient change is constantly 0 for any change ofx. The two displacement gradients with odd symmetry increase or decrease from the point with the coordinate wherex=0 cm andy=±4.377 cm to the surroundings, respectively. Compared with the center position of the (0,1) order, theycoordinate of the(0,2) order is offset by 3.375 cm toward the center.

    Fig.9 shows the mode shapes of the landmine based on speckle interference fringes of the (0,1)and (0,2) order modes, respectively. It can be seen from Fig. 7 that the displacement gradient generated before and after the interference laser vibration in the (0,1) order mode is oddly symmetrical abouty=0. Aty= 0, with the change ofx, the displacement gradient change is always 0. Therefore, Fig. 9(a)shows symmetrical butterfly-shaped interference fringes with dark fringes aty=0. Since the maximum displacement gradient is 0.228 5 , the Bessel fringe order is about 2. Similarly, the Bessel fringe at the first pitch circle in Fig.9(b) is symmetrically butterfly-shaped wherey=0 with the dark fringe appearing aty=0. Since the maximum displacement gradient is 0.706 4, which is approximately 3 times the maximum displacement gradient of the (0, 1) order mode, the Bessel fringe order is about 6.

    Fig. 9 Mine modal shapes based on speckle interference fringes. (a) Under the (0,1) mode; (b) under the (0,2) mode

    5 Experiment verification analysis

    According to the literatures [14-15], landmines will produce different resonance phenomena in different soil environments, different buried depths,different frequencies, and different decibel levels of sound wave excitation, leading to different degrees of vibration and deformation of the soil surface above buried landmines, i.e., different displacement gradient changes. The order of Bessel fringe series is related to the displacement gradient and the shear amount. Therefore, when using laser speckle interferometry to carry out mine detection experiments,the order of interference fringes such as the (0,1) order mode will change based on the actual measurement situation, but the overall shape should be symmetrically butterfly-shaped interference fringes.

    For the purpose of carrying out experimental verification analysis, a landmine detection experimental system based on laser speckle measurement was built up as shown in Fig. 10. The sound source excitation system composed of a function signal generator, a speaker and a power amplifier were used to excite high-intensity low-frequency sound waves. The laser speckle interference detection system was used for speckle interference detection of surface vibrations. The decibel meter was used to measure the sound pressure level of the sound wave.The interference laser wavelength was 658 nm. The type-69 plastic case coach mine, the type-72 antipersonnel coach mine and the Brick were taken as the sample to be tested. The samples were buried in dry or wet sand at a depth of 2 cm. The shear amountδxwas set to 12.122 mm in thexdirection in all experiments, except for the experiment of the type-69 plastic case coach mine buried in wet sand wherein the shear amount was 10.935 mm. The frequencies of the sound were 110 Hz for the type-69 plastic case coach mine and 145 Hz for the type-72 anti-personnel coach mine and brick. The test results are shown in Fig. 11~15 (Color online).

    Fig. 10 Acousto-optic mine detection experimental system based on laser speckle measurement

    Fig. 11 (a) The type-69 plastic case coach mine in dry sand. Bessel fringes obtained with different excitation sound frequencies and different sound pressure levels. (b) 110 Hz, 100 dB; (c) 110 Hz, 95 dB; (d) 110 Hz, 90 dB

    Fig. 12 Bessel fringes of the type-69 plastic case coach mine in wet sand with different excitation sound frequencies and different sound pressure levels. (a) 110 Hz, 100 dB; (b) 110 Hz, 95 dB; (c) 110 Hz, 90 dB

    Fig. 13 (a) Type 72 anti-personnel coach mine, and it’s Bessel fringes obtained with different excitation sound frequencies and different sound pressure levels. (b) 145 Hz, 100 dB; (c) 145 Hz, 98 dB; (d) 145 Hz, 95 dB

    Fig. 14 (a) Brick in dry sand and (b) it’s speckle interferometer detection results obtained with the excitation sound frequency of 145 Hz and the sound pressure level of 100 dB

    Fig. 15 Vibration amplitude of the type-69 plastic case coach mine in dry sand with the excitation sound frequency of 110 Hz and the sound pressure level of 100 dB. (a) Three-dimensional vibration; (b)contour map

    As shown in Fig.11, the dotted circle indicates the mine burial area, and no Bessel fringe appears on the ground surface of the area where no landmine is buried. The Bessel fringes are symmetrical butterfly-shaped, which is quantitatively consistent with the theoretical analysis in Section 4. In addition, as the decibel value of the sound pressure level decreases, the deformation amplitude of the ground vibration decreases, the magnitude of change in the displacement gradient decreases, and the number of Bessel fringe levels decreases. The shape and change trend of the Bessel fringes in Fig.12 are consistent with those in Fig.11. In Fig.13, the fringe profile is gossip-like, and the number of Bessel fringe levels also decreases as the decibel value of the sound pressure level decreases. There is no fringe in the area where the brick was buried simultaneously(Fig.14). Therefore, Bessel fringes can reflect the mode shapes of landmines and the displacement gradient changes, which shows the feasibility of using laser speckle interference technology for coupled acoustic-to-seismic landmine detection. The detailed experimental steps and results can be seen in our previous research (Ref. [28]). A three-dimensional vibration mode diagram and contour map are recovered for the type-69 plastic case coach mine in dry sand after performing phase unwrapping(Fig.15). The black dotted line area is the likely location of the landmine. From Fig.15, we can see that the acoustic-to-seismic coupling vibration deformation occurs in the buried landmine area, which is consistent with the theory in Section 3. However,the experimental results only qualitatively verify the relationship between the modal vibration mode and the laser speckle interference signal, the mapping relationship between the mode shape and the Bessel fringe signal under the complex environment is the focus of the next research work.

    6 Conclusion

    In this paper, the mapping relationship of laser speckle interference fringes is preliminarily established by analyzing landmine mode shapes. The derived mapping relationship shows that the different mode shapes of landmines correspond to the unique Bessel fringes. The Bessel fringes of two modes are simulated. It is verified by simulations that the displacement gradient change caused by mine vibration can generate Bessel fringes. The Bessel fringe series reflects the maximum displacement gradient generated by the vibration deformation. The maximum displacement gradient is increased by 0.477 9 after changing from the (0,1) order mode to the(0,2) order mode, and the Bessel fringe order is increased from 2 to 6. The Bessel fringe shape reflects the entire vibration model. Due to the increase in pitch circle number from the order (0,1)mode to the order (0,2) mode, the Bessel fringe pattern changes from a simple pair of butterfly shapes to a combination of a symmetrical butterfly shape on the first pitch circle, and a circular looped stripe on the second pitch circle. Furthermore, experiments were carried out. Both the numerical and experimental results illustrate the theoretical conclusions, providing theoretical evidence for realizing the rapid scanning technology of acoustic-optics landmine detection. Thus, the Bessel fringe database corresponding to the mode shapes of different mines in different environments can be established,and it is feasible to realize the rapid scanning technology of acoustic-optics landmine detection.

    猜你喜歡
    上海大學(xué)信息工程振型
    關(guān)于模態(tài)綜合法的注記
    縱向激勵(lì)下大跨鋼桁拱橋高階振型效應(yīng)分析
    江蘇高速公路信息工程有限公司
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    上海大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    塔腿加過(guò)渡段輸電塔動(dòng)力特性分析
    信息工程技術(shù)的應(yīng)用與發(fā)展
    計(jì)算機(jī)網(wǎng)絡(luò)在電子信息工程中的應(yīng)用
    結(jié)構(gòu)振型幾何辨識(shí)及應(yīng)用研究
    山西建筑(2015年14期)2015-06-05 09:37:07
    插阴视频在线观看视频| 成人亚洲欧美一区二区av| 亚洲美女搞黄在线观看| 国模一区二区三区四区视频| 亚洲aⅴ乱码一区二区在线播放| 少妇被粗大猛烈的视频| 九草在线视频观看| 国产淫片久久久久久久久| 久久久久久久久大av| 网址你懂的国产日韩在线| 国产亚洲av片在线观看秒播厂| 女性被躁到高潮视频| 精品久久久精品久久久| 一级片'在线观看视频| 国产av精品麻豆| 美女中出高潮动态图| 国产视频内射| 国产精品久久久久久av不卡| 一级毛片 在线播放| 国产免费一级a男人的天堂| a级一级毛片免费在线观看| 久久久久久人妻| 中文字幕精品免费在线观看视频 | 国产高清三级在线| 女性被躁到高潮视频| 免费久久久久久久精品成人欧美视频 | 男人舔奶头视频| 赤兔流量卡办理| 99热全是精品| 国产av国产精品国产| xxx大片免费视频| 91久久精品电影网| 99精国产麻豆久久婷婷| h视频一区二区三区| 久久久久性生活片| 大片免费播放器 马上看| 久久人人爽人人爽人人片va| 男女边摸边吃奶| 大陆偷拍与自拍| 日韩欧美一区视频在线观看 | 国语对白做爰xxxⅹ性视频网站| 国产国拍精品亚洲av在线观看| 国产午夜精品久久久久久一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产色爽女视频免费观看| 性色av一级| 国产精品嫩草影院av在线观看| 美女福利国产在线 | 一级毛片久久久久久久久女| 精品久久久久久久久亚洲| 亚洲精品aⅴ在线观看| 另类亚洲欧美激情| 免费黄频网站在线观看国产| 久久人人爽人人片av| 最近手机中文字幕大全| 一级毛片久久久久久久久女| 国产高清国产精品国产三级 | 狂野欧美激情性bbbbbb| 啦啦啦中文免费视频观看日本| 日韩大片免费观看网站| 91久久精品电影网| 大陆偷拍与自拍| 久久鲁丝午夜福利片| 久久婷婷青草| 在线观看人妻少妇| 一级av片app| 国产淫片久久久久久久久| 欧美成人一区二区免费高清观看| 舔av片在线| 午夜激情久久久久久久| 3wmmmm亚洲av在线观看| 国产精品一区二区性色av| 亚洲最大成人中文| 精品久久久噜噜| 国产一级毛片在线| 99久国产av精品国产电影| 国产黄片视频在线免费观看| 日本色播在线视频| 少妇的逼好多水| 国产高清不卡午夜福利| 亚洲中文av在线| 国产免费又黄又爽又色| 久久精品国产a三级三级三级| 亚洲精品第二区| 五月天丁香电影| 国模一区二区三区四区视频| 嫩草影院新地址| 亚洲国产精品一区三区| 国产亚洲欧美精品永久| 亚洲av成人精品一二三区| 午夜福利网站1000一区二区三区| 久久久久国产网址| 日韩电影二区| 超碰97精品在线观看| 少妇熟女欧美另类| av不卡在线播放| 观看美女的网站| 一级片'在线观看视频| 亚洲怡红院男人天堂| 欧美精品一区二区免费开放| 两个人的视频大全免费| 日韩在线高清观看一区二区三区| 成年女人在线观看亚洲视频| 极品教师在线视频| av不卡在线播放| 亚洲婷婷狠狠爱综合网| 一区二区三区乱码不卡18| 久久97久久精品| 国产视频首页在线观看| 26uuu在线亚洲综合色| 久久99精品国语久久久| 国产成人精品久久久久久| 人妻制服诱惑在线中文字幕| 一级毛片aaaaaa免费看小| 99热全是精品| 欧美精品亚洲一区二区| 校园人妻丝袜中文字幕| 亚洲精品乱久久久久久| 成人国产麻豆网| 午夜日本视频在线| 亚洲电影在线观看av| 亚洲经典国产精华液单| 久久av网站| 国产色爽女视频免费观看| 国产91av在线免费观看| 在线观看免费高清a一片| 欧美一区二区亚洲| 日韩强制内射视频| 亚州av有码| av在线观看视频网站免费| 美女脱内裤让男人舔精品视频| 日韩在线高清观看一区二区三区| 亚洲欧美成人精品一区二区| av专区在线播放| 国产在线一区二区三区精| 18禁动态无遮挡网站| 在线亚洲精品国产二区图片欧美 | 99国产精品免费福利视频| 欧美人与善性xxx| 精品久久久噜噜| 少妇精品久久久久久久| 在线观看国产h片| 色婷婷av一区二区三区视频| 日韩精品有码人妻一区| 91aial.com中文字幕在线观看| 日韩av在线免费看完整版不卡| 国内少妇人妻偷人精品xxx网站| 人妻夜夜爽99麻豆av| 欧美三级亚洲精品| 男人舔奶头视频| 哪个播放器可以免费观看大片| 欧美精品一区二区免费开放| 最新中文字幕久久久久| 久久久久久久久大av| 久久久久久久久大av| 七月丁香在线播放| 免费久久久久久久精品成人欧美视频 | 高清欧美精品videossex| 中文字幕精品免费在线观看视频 | 日日摸夜夜添夜夜爱| 青青草视频在线视频观看| 免费观看性生交大片5| 毛片一级片免费看久久久久| 男男h啪啪无遮挡| 一二三四中文在线观看免费高清| 在线观看国产h片| 91久久精品国产一区二区三区| 在线观看国产h片| 国产av国产精品国产| 国产免费一区二区三区四区乱码| 夜夜骑夜夜射夜夜干| 国产片特级美女逼逼视频| 最近2019中文字幕mv第一页| 狂野欧美激情性bbbbbb| 国产精品国产三级国产专区5o| 人妻系列 视频| 国产精品久久久久久精品古装| 18禁动态无遮挡网站| av黄色大香蕉| 中文在线观看免费www的网站| 精品一品国产午夜福利视频| 欧美变态另类bdsm刘玥| 大香蕉久久网| 高清午夜精品一区二区三区| 亚洲精品自拍成人| 日本午夜av视频| 亚洲伊人久久精品综合| 精品久久久久久电影网| 免费久久久久久久精品成人欧美视频 | 亚洲精品乱码久久久v下载方式| 老女人水多毛片| 午夜视频国产福利| 国产精品.久久久| 成年美女黄网站色视频大全免费 | 简卡轻食公司| 极品教师在线视频| 欧美97在线视频| 熟女av电影| 国产白丝娇喘喷水9色精品| 永久免费av网站大全| 久久国产乱子免费精品| 亚洲自偷自拍三级| 一级二级三级毛片免费看| 欧美成人一区二区免费高清观看| 人妻少妇偷人精品九色| 99热这里只有精品一区| av视频免费观看在线观看| 看十八女毛片水多多多| 国产爱豆传媒在线观看| 久久99热这里只有精品18| 又粗又硬又长又爽又黄的视频| 最近中文字幕高清免费大全6| 成年人午夜在线观看视频| 美女cb高潮喷水在线观看| 综合色丁香网| 啦啦啦视频在线资源免费观看| 毛片女人毛片| 国产中年淑女户外野战色| 久久久a久久爽久久v久久| 久久久精品免费免费高清| 亚洲av二区三区四区| 欧美亚洲 丝袜 人妻 在线| 美女国产视频在线观看| 久久ye,这里只有精品| 美女内射精品一级片tv| 韩国av在线不卡| videos熟女内射| 国产伦理片在线播放av一区| 精品熟女少妇av免费看| 3wmmmm亚洲av在线观看| 亚洲国产欧美人成| 97热精品久久久久久| 99热全是精品| 99热这里只有是精品50| 亚洲av二区三区四区| 亚洲精品aⅴ在线观看| 男女下面进入的视频免费午夜| 亚洲精品国产成人久久av| 尾随美女入室| 国产一区二区三区综合在线观看 | 国产伦理片在线播放av一区| 国产成人精品福利久久| 九九在线视频观看精品| 日本-黄色视频高清免费观看| 日韩人妻高清精品专区| 一区二区三区精品91| 99久久中文字幕三级久久日本| 精品久久国产蜜桃| 久久青草综合色| 2021少妇久久久久久久久久久| 51国产日韩欧美| 99久久人妻综合| av视频免费观看在线观看| 日韩成人伦理影院| 亚洲国产日韩一区二区| 日本黄大片高清| 日本色播在线视频| 国产精品免费大片| 日本av手机在线免费观看| 婷婷色综合www| 秋霞在线观看毛片| 老师上课跳d突然被开到最大视频| 欧美变态另类bdsm刘玥| 国产黄片美女视频| av网站免费在线观看视频| 99热国产这里只有精品6| 多毛熟女@视频| 久久6这里有精品| 一本一本综合久久| 国产精品久久久久成人av| 97在线视频观看| 久久久久网色| 国产91av在线免费观看| 色综合色国产| 亚洲婷婷狠狠爱综合网| 最近中文字幕高清免费大全6| 国产淫片久久久久久久久| 直男gayav资源| 国产成人午夜福利电影在线观看| 国产有黄有色有爽视频| 观看av在线不卡| 亚洲自偷自拍三级| 国语对白做爰xxxⅹ性视频网站| 日本黄色片子视频| kizo精华| 亚洲av日韩在线播放| 色吧在线观看| 久久国产亚洲av麻豆专区| 干丝袜人妻中文字幕| 美女中出高潮动态图| 亚洲最大成人中文| 日日啪夜夜撸| 日韩av免费高清视频| videossex国产| 欧美高清性xxxxhd video| 欧美老熟妇乱子伦牲交| 天天躁夜夜躁狠狠久久av| 成人国产av品久久久| 麻豆精品久久久久久蜜桃| 又爽又黄a免费视频| 色5月婷婷丁香| 亚洲av国产av综合av卡| 色哟哟·www| 国内精品宾馆在线| 伊人久久国产一区二区| 人人妻人人看人人澡| 制服丝袜香蕉在线| 高清日韩中文字幕在线| 国产精品女同一区二区软件| 久久久色成人| 夜夜爽夜夜爽视频| 亚洲国产高清在线一区二区三| 久久久久久久久大av| 午夜免费鲁丝| 成人二区视频| 成年女人在线观看亚洲视频| 大陆偷拍与自拍| 亚洲美女视频黄频| 国产黄片视频在线免费观看| 国产69精品久久久久777片| 99久久精品一区二区三区| av.在线天堂| 各种免费的搞黄视频| 性色avwww在线观看| 99热这里只有精品一区| 日本黄色日本黄色录像| 免费人妻精品一区二区三区视频| 有码 亚洲区| 99久国产av精品国产电影| 国产色爽女视频免费观看| 亚洲成人av在线免费| 久久精品久久久久久噜噜老黄| 91久久精品国产一区二区成人| 99热这里只有精品一区| 色综合色国产| 国产精品无大码| 搡老乐熟女国产| 亚洲精品456在线播放app| 国产精品人妻久久久久久| 男女啪啪激烈高潮av片| 欧美少妇被猛烈插入视频| 国内精品宾馆在线| 亚洲av成人精品一区久久| 亚洲精品亚洲一区二区| 亚洲欧洲日产国产| 五月天丁香电影| 夜夜爽夜夜爽视频| 一个人看视频在线观看www免费| 国产av码专区亚洲av| 精品久久久久久电影网| 精品久久久久久久末码| 亚洲不卡免费看| 性高湖久久久久久久久免费观看| 99热国产这里只有精品6| 久久影院123| 欧美xxxx性猛交bbbb| 午夜视频国产福利| 天天躁夜夜躁狠狠久久av| 2018国产大陆天天弄谢| 在现免费观看毛片| 久久国产精品男人的天堂亚洲 | 亚洲人成网站在线观看播放| 成人亚洲欧美一区二区av| 色婷婷av一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av天美| 欧美激情国产日韩精品一区| 欧美亚洲 丝袜 人妻 在线| 一级二级三级毛片免费看| 久久久久性生活片| 久久毛片免费看一区二区三区| 国产精品一区二区性色av| 亚洲自偷自拍三级| 熟女人妻精品中文字幕| 久久亚洲国产成人精品v| 国产黄色免费在线视频| 亚洲国产精品一区三区| 欧美丝袜亚洲另类| 国产精品国产av在线观看| 成年美女黄网站色视频大全免费 | 欧美高清性xxxxhd video| 国产黄片美女视频| 久久久久视频综合| 亚洲精品日本国产第一区| 少妇精品久久久久久久| 大话2 男鬼变身卡| 精品久久久久久久久av| 97热精品久久久久久| 新久久久久国产一级毛片| 全区人妻精品视频| 国产男人的电影天堂91| 久久久久国产精品人妻一区二区| 久热这里只有精品99| 一区二区三区精品91| 免费观看性生交大片5| 亚洲精品一区蜜桃| 精品国产露脸久久av麻豆| xxx大片免费视频| 丝袜脚勾引网站| 91狼人影院| 亚洲天堂av无毛| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久v下载方式| 在线天堂最新版资源| xxx大片免费视频| 51国产日韩欧美| 国产伦在线观看视频一区| 日韩中字成人| 乱系列少妇在线播放| 日韩国内少妇激情av| 26uuu在线亚洲综合色| 男男h啪啪无遮挡| 夜夜爽夜夜爽视频| 这个男人来自地球电影免费观看 | 国产高清国产精品国产三级 | 久久国产精品大桥未久av | 亚洲欧美日韩无卡精品| 久久 成人 亚洲| 一级爰片在线观看| 亚洲一区二区三区欧美精品| 国产av国产精品国产| 国产高清三级在线| 22中文网久久字幕| 色哟哟·www| 2021少妇久久久久久久久久久| 久久久久久久久久久丰满| 永久免费av网站大全| 亚洲国产精品一区三区| 精品人妻一区二区三区麻豆| 身体一侧抽搐| 色视频在线一区二区三区| 高清在线视频一区二区三区| 欧美精品人与动牲交sv欧美| 久久精品久久精品一区二区三区| 免费黄网站久久成人精品| 国产av码专区亚洲av| 一级片'在线观看视频| 日本黄色片子视频| 亚洲最大成人中文| 18禁裸乳无遮挡动漫免费视频| 99热全是精品| 国产有黄有色有爽视频| 在线观看国产h片| 久久精品国产鲁丝片午夜精品| 亚洲国产高清在线一区二区三| 国产精品爽爽va在线观看网站| 亚洲人成网站在线播| 中文天堂在线官网| 一级毛片久久久久久久久女| 99久久人妻综合| 日韩一本色道免费dvd| 久久国产亚洲av麻豆专区| 精品一品国产午夜福利视频| 欧美精品一区二区免费开放| av国产久精品久网站免费入址| 国产在线男女| 欧美bdsm另类| 国产人妻一区二区三区在| 久久精品国产亚洲av涩爱| 久久久成人免费电影| 最近2019中文字幕mv第一页| 人妻制服诱惑在线中文字幕| 777米奇影视久久| 国产无遮挡羞羞视频在线观看| 99视频精品全部免费 在线| 欧美另类一区| 久久精品国产鲁丝片午夜精品| 亚洲成色77777| 精品国产露脸久久av麻豆| 99九九线精品视频在线观看视频| 高清毛片免费看| 国产成人精品久久久久久| 免费观看无遮挡的男女| 成人一区二区视频在线观看| 成人黄色视频免费在线看| av国产久精品久网站免费入址| 国产伦精品一区二区三区四那| 日本wwww免费看| 少妇人妻精品综合一区二区| 久久久久久久久久人人人人人人| 亚洲精品国产成人久久av| 极品少妇高潮喷水抽搐| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 我的女老师完整版在线观看| 美女视频免费永久观看网站| 黑丝袜美女国产一区| 少妇裸体淫交视频免费看高清| 在线观看人妻少妇| 精品人妻视频免费看| 精品一区二区三区视频在线| 内射极品少妇av片p| 97超视频在线观看视频| 嘟嘟电影网在线观看| 中文天堂在线官网| 美女内射精品一级片tv| 麻豆成人av视频| 一级a做视频免费观看| 亚洲av在线观看美女高潮| 亚洲av中文av极速乱| 亚洲综合精品二区| 国产在线视频一区二区| 色哟哟·www| tube8黄色片| 欧美bdsm另类| 精品一区二区三区视频在线| h日本视频在线播放| 少妇裸体淫交视频免费看高清| 秋霞伦理黄片| 各种免费的搞黄视频| 亚洲国产成人一精品久久久| 亚洲精品自拍成人| 亚洲精品国产av成人精品| 亚洲久久久国产精品| 亚洲av电影在线观看一区二区三区| 直男gayav资源| 亚洲精品日韩av片在线观看| 五月天丁香电影| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 亚洲国产成人一精品久久久| 免费观看av网站的网址| 视频中文字幕在线观看| 午夜免费观看性视频| 国产成人免费观看mmmm| 中文字幕免费在线视频6| 亚洲美女黄色视频免费看| 国产黄色视频一区二区在线观看| av.在线天堂| 久久韩国三级中文字幕| 精品少妇黑人巨大在线播放| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 免费播放大片免费观看视频在线观看| 少妇熟女欧美另类| 成人毛片a级毛片在线播放| 高清欧美精品videossex| 成人免费观看视频高清| 日本av手机在线免费观看| 国产伦精品一区二区三区四那| 国产精品人妻久久久影院| 国产大屁股一区二区在线视频| 亚洲欧美成人综合另类久久久| 嘟嘟电影网在线观看| 天天躁夜夜躁狠狠久久av| 日本欧美国产在线视频| 国产有黄有色有爽视频| 美女内射精品一级片tv| 国产精品一区二区三区四区免费观看| 一边亲一边摸免费视频| 涩涩av久久男人的天堂| 免费播放大片免费观看视频在线观看| 免费看日本二区| 久久99蜜桃精品久久| 天堂俺去俺来也www色官网| 国产乱人视频| 国产 精品1| 91久久精品电影网| av女优亚洲男人天堂| 三级国产精品欧美在线观看| 春色校园在线视频观看| 亚洲av二区三区四区| 多毛熟女@视频| 欧美日韩亚洲高清精品| 午夜福利在线观看免费完整高清在| 欧美国产精品一级二级三级 | 中文精品一卡2卡3卡4更新| 一区二区三区免费毛片| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频| 美女内射精品一级片tv| 看十八女毛片水多多多| 美女福利国产在线 | av在线观看视频网站免费| 韩国av在线不卡| 只有这里有精品99| 成人二区视频| 国产精品无大码| 婷婷色av中文字幕| av国产免费在线观看| 国产v大片淫在线免费观看| 一区在线观看完整版| 国产精品伦人一区二区| 精华霜和精华液先用哪个| 亚洲精品国产av蜜桃| 国产伦精品一区二区三区视频9| 久久久久久人妻| 久久99热这里只有精品18| 久久精品国产鲁丝片午夜精品| 99热网站在线观看| 亚洲av成人精品一区久久| 亚洲精品乱久久久久久| 国产亚洲av片在线观看秒播厂| 亚州av有码| 男人添女人高潮全过程视频| 国产精品免费大片| 免费看不卡的av| 久久人人爽av亚洲精品天堂 | 97在线视频观看| kizo精华| 国产高清有码在线观看视频| .国产精品久久| 一级毛片我不卡| 身体一侧抽搐| 亚洲国产精品成人久久小说| 午夜日本视频在线| 欧美丝袜亚洲另类| 国产亚洲5aaaaa淫片| 啦啦啦啦在线视频资源| 黄片wwwwww| 尤物成人国产欧美一区二区三区| 18禁裸乳无遮挡动漫免费视频|