• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors

    2022-08-31 09:58:12JiananWei魏佳男YangLi李洋WenlongLiao廖文龍FangLiu劉方YonghongLi李永宏JianchengLiu劉建成ChaohuiHe賀朝會andGangGuo郭剛
    Chinese Physics B 2022年8期
    關(guān)鍵詞:李洋文龍

    Jianan Wei(魏佳男) Yang Li(李洋) Wenlong Liao(廖文龍) Fang Liu(劉方)Yonghong Li(李永宏) Jiancheng Liu(劉建成) Chaohui He(賀朝會) and Gang Guo(郭剛)

    1Science and Technology on Analog Integrated Circuit Laboratory,Chongqing 400060,China

    2School of Nuclear Science and technology,Xi’an Jiaotong University,Xi’an 710049,China

    3National Innovation Center of Radiation Application,China Institute of Atomic Energy,Beijing 102413,China

    Keywords: heterojunction bipolar transistor,proton irradiation,single event transient,angular effect

    1. Introduction

    Silicon-germanium heterojunction bipolar transistors(SiGe HBTs)are favored for space applications due to the superior low-temperature performance and the better tolerance to total ionizing dose and displacement damage than traditional silicon bipolar junction transistors(Si BJTs).[1–6]The siliconbased bandgap engineering provides a way to combine III–V performance with the yield and cost advantages of bulk silicon into an ideal platform.[7,8]However,SiGe HBTs are confirmed to be very sensitive to single event effect (SEE).[9–11]Integrated circuits (ICs) based on SiGe HBT and SiGe BiCMOS technologies usually suffer from low SEE thresholds and large SEE cross sections.[12–14]Therefore, the detailed characteristics of single event transient (SET) in SiGe HBTs are important for a full understanding of behavior of SiGe ICs in particular radiation environments.

    Heavy ions and protons are the two dominant causes for SEE in spaceborne electronics. Some previous publications have investigated the current transients induced by heavy ions in SiGe HBTs via experiments and technology computer aided design (TCAD) simulations.[11,15–18]The results indicate that the large-area collector–substrate junction and the lightly doped substrate are the two dominant factors for the collection of excess carriers generated by incident ions. However, the SET induced by protons in SiGe HBTs is rarely investigated from a transistor level of view. In submicron semiconductor devices, protons cause SEE mainly via the secondary particles created by interactions with target materials. This is quite different from heavy ions which cause SEE mainly via direct ionizing processes. The randomness of the location of proton/material interactions and the characteristics of secondary particles makes the analysis of proton-induced SET in SiGe HBTs rather complicated.[19]In our previous study,[20]we presented primary results of proton-induced SET in SiGe HBTs. The temporal information of the current transients induced by protons with energy ranging from 30 MeV to 90 MeV was measured via experiment for the first time. However, the incident angle of protons was fixed at 0?(normal to the device surface),so that the impact of incident angle of protons was not discussed at that time. Note that protons from the radiation belts can penetrate low altitude orbiting spacecrafts from all directions,it is still essential to make further supplements.

    In this work,we present the first investigation into the angular dependence of proton-induced SET in SiGe HBTs. The collector transient currents induced by 60 MeV protons at different incident angles are measured. Then the angular effect on the current transient duration and integral charge collection are discussed. Furthermore,the ionizing energy deposition in the sensitive volume and the angular distribution of protoninduced secondary particles are simulated by using GEANT4 Monte Carlo toolkits in order to gain deeper insights into the underlying mechanisms.

    2. Experimental setup

    2.1. Device description

    The devices under test(DUTs)are vertical double polysilicon NPN SiGe HBTs fabricated by a system purchased from a HUAJIE company and achieve a peakhFEof 150,a peakfTof 25 GHz and a maximum collector current(IC)of 30 mA.Figure 1 shows the schematic device structure. Figure 2 shows a localized SEM picture of the emitter-base-collector stack. The width of the emitter window is about 0.4 μm and the thickness of EB spacer is about 16 nm. The intrinsic base is formed by an epitaxially grown SiGe layer with thickness of about 100 nm. The isolation layer between collector and base is formed by local oxidation of silicon (LOCOS) with a thickness of about 675 nm. More detailed information about the DUTs can be found in Refs.[21–23].

    Fig.1. Schematic cross section of the SiGe HBT(not to scale).

    Fig.2. SEM picture of the emitter-base-collector stack.

    3. Proton irradiation

    The proton irradiation experiment was carried out at the SEE testing facility of the proton cyclotron in China Institute of Atomic Energy (CIAE), Beijing, China. Figure 3 shows the components of the facility. The energy of protons is adjusted by aluminum degraders with variable thickness, while the beam spot size is adjusted by the collimator. The dosimetry measurements use a secondary-electron emission monitor calibrated against a Faraday cup. In this work,the proton energy was adjusted to 60 MeV and the spot size of proton beam was fixed at 5×5 cm2. The flux varied from 1×107cm?2·s?1to 2×107cm?2·s?1, depending on the beam intensity. The incident angle of protons was controlled by the sample rack which can rotate around its central axis,as shown in Fig.3(b),

    where 0?corresponds to the proton beam being incident normal to the device surface. The maximum available incident angle of the facility is 70?. Three irradiations were carried out with proton incident angles set at 0?,30?and 60?.

    Fig.3. Schematic of the proton SEE testing facility at CIAE.

    Fig.4. Configuration of the SET testing circuit.

    The external circuit components and lumped elements for SET testing are shown in Fig. 4. The proton-induced current transients on collector, which is the main cause for SEE in most SiGe circuits,[24]is recorded through a Mini-Circuits(company)wide-band bias tee by a Tektronix DPO71604 16-GHz (50 GS/s) real time digital phosphor oscilloscope. The DUTs were biased withVE=VB=VS=0 V andVC=5 V during irradiation. Under this condition, the collector–substrate junction is reverse-biased so that excess carriers generated by charged particles in the lightly doped substrate can be collected rapidly.This has been confirmed to be the worst case for SET.The trigger threshold was set to|IC|=0.08 mA.Three independent DUTs were tested at each proton incident angle and the total accumulated proton fluence at each angle exceeded 1.5×1011cm?2,which resulted in no less than 35 SET events.

    4. Experimental results

    Figure 5 shows the SET cross section(σSET)as a function of incident angle. The cross section is calculated by

    whereNSETis the number SET events recorded by the oscilloscope,ΦPis the proton fluence. The error bars represent the standard deviation of data from three independent DUTs.The error bar is not given for the data at 60?because function failure of the testing circuit was found for one of the three DUTs during irradiation. It can be found that the SET cross section exhibits no clear trend with incident angle,indicating a negligible angular effect. Figure 6 plots typical waveforms of recorded collector current transients at different incident angles. Each panel in the figure shows the experimental results obtained from a single DUT in a single run of proton irradiation. The accumulated fluence of a single run is no less than 5×1010cm?2. Most current transients exhibit similar characteristics,namely a very short rise time and a relatively longer falling time.This is consistent with the previous results. However,with the increase of proton incident angle,the falling tail of some current transients turns to be much longer,thereby increasing the duration significantly. As seen in Fig. 6, all the current transients restore to the background level in about 1 ns when the incident angle is 0?, whereas the current transients may last for more than 3 ns when the incident angle increases to 60?. Figure 7 shows the proportion of current transients with different durations. A broadening of the distribution of histograms can be found at large incident angles. Moreover,the proportion of SET events with short duration decreases with increasing incident angle,whereas the proportion of SET events with long duration increases,thereby leading to a rightward shift of the histograms. A SET event with longer duration can span a greater number of clock periods and affect more data bits if the SiGe circuit works at high frequencies.[25]On the other hand,the increase of transient duration will consequently result in a greater integral charge collection which is the time integral of transient current. Evidently, as shown in Fig. 8, the distribution of SET events with certain integral charge collection values shows similar trends to that in Fig.7.The increasing proportion of SET events with high charge collection values has more significant impact on the circuit with a high SEE critical charge(QC). Figure 9 shows the cross section of SET events with collector charge collection exceeding certain values ofQC,which is calculated byσQ=NQ/(ΦP·cosθ),(2)

    whereNQis the number of SET events with collector charge collection exceedingQC. The proton incident angle appears to have no clear impact onσQwhenQCis set to 0.05 pC and 0.1 pC, whereas a rapid increase ofσQwith incident angle occurs whenQCis increased to 0.15 pC.

    Fig.5. SET cross section at different proton incident angles.

    Fig.6. Typical current transients at different proton incident angles.

    Fig.7. Proportion of current transients with different durations.

    Fig. 8. Proportion of current transients with different integral charge collections.

    Fig.9. Cross section of SET events with integral charge collection exceeding certain critical values.

    These results suggest that the impact of proton incident angle should not be simply ignored when performing ground SET testings and the results at normal incidence may underestimate the SET susceptibility of this SiGe technology.

    5. Monte Carlo simulation and discussion

    In this section, the GEANT4 Monte Carlo simulation toolkits are used to better understand the mechanisms for angular dependence of proton-induced SET. In our previous work,[20]the sensitive volume geometry of this SiGe HBT has been determined based on heavy-ion microbeam irradiation and TCAD simulation results. The right rectangular parallelepiped sensitive volume has a topside area of 140×140μm2and a depth of 20μm. We use the same model configurations in this work to investigate the ionizing energy deposition in the sensitive volume and the characteristics of secondary particles at varying proton incident angles.

    5.1. Ionizing energy deposition in sensitive volume

    The amount of collected charge of a SET event is directly related to the ionizing energy loss in the sensitive volume.Figure 10 shows the simulated integral cross section of proton incident events that deposit a certain amount of ionizing energy or greater in the sensitive volume. It can be found that the integral cross section does not exhibit significant dependence on incident angle when the deposited ionizing energy is less than 10 MeV.

    Fig. 10. Simulated integral cross section as a function of ionizing energy deposition in the sensitive volume for 60 MeV protons.

    However, for the deposited energy greater than 10 MeV,the integral cross section increases significantly with the increasing incident angle,which indicates that the probability of proton incident events with large ionizing energy deposition turns to be higher at larger incident angles. This is consistent with the experimental results in Fig.8.

    5.2. Angular distribution of proton-induced secondary particles

    Figure 11 shows the simulated angular distributions of proton-induced secondary particle energy,linear energy transfer(LET)and range in silicon. Information of secondary particles created through both spallation reaction and elastic nuclear scattering is collected. The launching angle is defined as the angle between the momentum directions of the secondary particles and the primary incident protons. Evidently,the secondary particles with the highest energy(highest LET,longest range)tend to have smaller launching angles,which indicates that they are forward directed. On the contrary,the secondary particles with lower energies are more isotropic, thus leading to the broader angular distributions that cover 0?to approximately 140?.

    As mentioned above, the sensitive volume of the SiGe HBT is 140μm×140μm×20μm,which results in an aspect ratio of 7.Under this condition,the particles that are parallel to the device surface would have longer paths than those normal to the device surface. Therefore, the forward-directed highenergy secondary particles can leave a longer ionizing track in the sensitive volume at larger proton incident angles,as shown in Fig.12. As a consequence, the ionizing energy deposition increases since it is proportional to the track length. On the contrary,for the low-energy secondary particles that are more isotropic,the impact of incident angle becomes much smaller,as shown in Fig.13. Therefore,the angular dependence of the proton-induced SET can be associated with the angular distribution of the secondary particles.

    However, it should be emphasized that the SiGe HBTs investigated in this work were fabricated via bulk silicon technology, and the deep trench isolation (DTI) is not employed.For SiGe HBTs fabricated via silicon-on-isolator (SOI) technology, the depth of the sensitive volume is confined by the buried oxide layer,[25–27]so that a more aggressive aspect ratio can be expected,which leads to more significant angular effects. On the other hand,for the SiGe HBTs with DTI around the intrinsic device(i.e. the emitter-base-collector stack), the sensitive volume is determined by the deep trench,[11,16,28,29]which leads to an aspect ratio much smaller.Therefore,the impact of proton incident angle may vary among different SiGe technologies and should be carefully considered in the SET ground testings.

    Fig.11. Simulated angular distribution of proton-induced secondary particles: (a)energy,(b)LET,(c)range.

    Fig.12. Schematic of angular effect on the ionizing track length of forward-directed high-energy secondary particles in the sensitive volume:(a)proton incidence at 0?,(b)proton incidence at 60?.

    Fig.13. Schematic of angular effect on the ionizing track length of isotropic low-energy secondary particles in the sensitive volume: (a)proton incidence at 0?,(b)proton incidence at 60?.

    6. Conclusions

    In summary,the angular effect of proton-induced current transient in SiGe HBT is investigated. Collector current transients caused by 60 MeV protons were measured at incident angles of 0?, 30?and 60?. The overall cross section of SET events exhibits no clear angular dependence. However, the proportion of SET events with long duration and high integral charge collection grows significantly with increasing incident angle. Monte Carlo simulation demonstrates that the integral cross section of proton incident events depositing more than 10 MeV ionizing energy in the sensitive volume grows with increasing incident angle. This can be associated with the forward-directed nature of the most energetic (highest LET,longest range) secondary particles. Given a sensitive volume with an aspect ratio of 7,the forward-directed high-energy secondary particles can leave longer ionizing tracks, thus more ionizing energy deposition and excess carriers,in the sensitive volume at larger proton incident angles.

    The results of this study indicate that ground testings on SiGe devices which ignore the proton incident angle may lead to misestimations of SET susceptibility. Furthermore,the geometry of sensitive volume, which varies significantly among different SiGe technologies, must be carefully considered when assessing the angular effects of proton-induced SET.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11775167 and 12105252) and the Natural Science Foundation of Chongqing, China (Grant No.cstc2021jcyj-bsh0246).

    猜你喜歡
    李洋文龍
    Time-dependent variational approach to solve multi-dimensional time-dependent Schr¨odinger equation
    Understanding the changing mechanism of arc characteristics in ultrasound-magnetic field coaxial hybrid gas tungsten arc welding
    郭文龍
    李洋、龔有月、賴姝、程曉春作品
    大觀(2022年12期)2022-02-23 00:44:30
    李洋論
    中華詩詞(2021年1期)2021-12-31 07:51:46
    遠行
    勝利就在明天
    好的設(shè)計應該是有氣氛、有故事感的——專訪天比高空間設(shè)計謝文龍
    仙逝的“文龍”你在天堂還好嗎?
    旅游縱覽(2018年9期)2018-09-18 19:48:40
    New teacher—student Relationship in Junior English Class Teaching
    魅力中國(2018年51期)2018-04-08 09:09:34
    国产精品麻豆人妻色哟哟久久 | 国产一区二区在线av高清观看| 大型黄色视频在线免费观看| 九九在线视频观看精品| 亚洲av中文字字幕乱码综合| 成人一区二区视频在线观看| 亚洲av不卡在线观看| 最近最新中文字幕大全电影3| 国产精品麻豆人妻色哟哟久久 | 午夜亚洲福利在线播放| 色综合亚洲欧美另类图片| 深夜a级毛片| 亚洲精品久久久久久婷婷小说 | 又黄又爽又刺激的免费视频.| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲网站| 乱系列少妇在线播放| 成人性生交大片免费视频hd| av视频在线观看入口| 男女边吃奶边做爰视频| 国产私拍福利视频在线观看| www日本黄色视频网| 日产精品乱码卡一卡2卡三| 亚洲精品乱码久久久久久按摩| 欧美+亚洲+日韩+国产| 久久久久久九九精品二区国产| 日韩成人伦理影院| 美女被艹到高潮喷水动态| 小蜜桃在线观看免费完整版高清| 青春草视频在线免费观看| 亚洲欧美日韩高清在线视频| 中文字幕人妻熟人妻熟丝袜美| 久久草成人影院| 在线免费观看不下载黄p国产| 人妻少妇偷人精品九色| 久久久久网色| 在线免费观看不下载黄p国产| 乱系列少妇在线播放| 性欧美人与动物交配| 亚洲精品456在线播放app| 中出人妻视频一区二区| 国产亚洲欧美98| 久久精品夜色国产| 日韩亚洲欧美综合| 久久九九热精品免费| 一本久久精品| 99久久无色码亚洲精品果冻| av视频在线观看入口| av视频在线观看入口| 亚洲高清免费不卡视频| 欧美一区二区亚洲| 久久久久久大精品| 精品一区二区免费观看| 久久中文看片网| 亚洲国产欧美在线一区| 亚洲18禁久久av| 高清日韩中文字幕在线| 91av网一区二区| 亚洲精品久久久久久婷婷小说 | 国产v大片淫在线免费观看| 亚洲av不卡在线观看| 精品日产1卡2卡| 成人亚洲精品av一区二区| 亚洲美女搞黄在线观看| 日本一本二区三区精品| 欧美高清成人免费视频www| 免费看光身美女| 国产高清不卡午夜福利| 亚洲第一区二区三区不卡| 久久精品人妻少妇| 国产午夜精品久久久久久一区二区三区| 亚洲精品日韩av片在线观看| 色综合亚洲欧美另类图片| 国产一区二区在线观看日韩| 亚洲真实伦在线观看| 黄色欧美视频在线观看| 久久久久久久亚洲中文字幕| 麻豆国产av国片精品| 日韩一区二区三区影片| 日本黄色片子视频| 亚洲不卡免费看| avwww免费| 日韩精品有码人妻一区| av又黄又爽大尺度在线免费看 | 日韩人妻高清精品专区| 一进一出抽搐gif免费好疼| av天堂在线播放| avwww免费| 国产亚洲91精品色在线| 欧美性猛交黑人性爽| 国产黄片视频在线免费观看| 午夜福利在线观看吧| 国产久久久一区二区三区| 人妻系列 视频| 精品久久久久久久久久久久久| 国产精品野战在线观看| 不卡视频在线观看欧美| 黄色一级大片看看| av在线蜜桃| 久久久午夜欧美精品| 18禁黄网站禁片免费观看直播| 国产精品久久久久久精品电影| 天堂√8在线中文| 99九九线精品视频在线观看视频| 嫩草影院入口| 三级毛片av免费| 国产91av在线免费观看| 最近最新中文字幕大全电影3| a级一级毛片免费在线观看| 日韩,欧美,国产一区二区三区 | 国产精品乱码一区二三区的特点| 国产精品1区2区在线观看.| 午夜福利高清视频| 国产亚洲5aaaaa淫片| 99久久精品热视频| 中文精品一卡2卡3卡4更新| 中文字幕熟女人妻在线| 夜夜爽天天搞| 可以在线观看的亚洲视频| 久久久国产成人精品二区| 老师上课跳d突然被开到最大视频| 亚洲三级黄色毛片| 欧美日本视频| 亚洲av二区三区四区| 在线a可以看的网站| 亚洲精品自拍成人| 国产伦精品一区二区三区视频9| 美女xxoo啪啪120秒动态图| 丝袜美腿在线中文| 能在线免费观看的黄片| 国产一级毛片在线| 黄色欧美视频在线观看| 婷婷亚洲欧美| 久久热精品热| 亚洲一级一片aⅴ在线观看| 欧美日韩乱码在线| 毛片女人毛片| 男人狂女人下面高潮的视频| 欧美一级a爱片免费观看看| 日韩国内少妇激情av| 亚洲成人av在线免费| 国产午夜精品久久久久久一区二区三区| 免费电影在线观看免费观看| 久久久久久久午夜电影| 色播亚洲综合网| 麻豆国产av国片精品| 国产综合懂色| 搞女人的毛片| 人妻夜夜爽99麻豆av| 国产一区二区在线观看日韩| 亚洲精品粉嫩美女一区| 亚洲三级黄色毛片| 成年版毛片免费区| 2022亚洲国产成人精品| 亚洲综合色惰| 国产一区二区激情短视频| 欧美zozozo另类| 国产69精品久久久久777片| 青春草视频在线免费观看| av福利片在线观看| 亚洲精品日韩av片在线观看| 亚洲国产欧洲综合997久久,| 在线观看美女被高潮喷水网站| 男插女下体视频免费在线播放| 蜜桃亚洲精品一区二区三区| 免费av观看视频| 午夜福利在线观看免费完整高清在 | 免费看av在线观看网站| 丝袜喷水一区| 三级经典国产精品| 国产极品天堂在线| 亚洲国产欧洲综合997久久,| 久久6这里有精品| 少妇人妻精品综合一区二区 | 亚洲电影在线观看av| 少妇被粗大猛烈的视频| 色综合站精品国产| 男人的好看免费观看在线视频| 男人狂女人下面高潮的视频| 国产av麻豆久久久久久久| 伦理电影大哥的女人| 国产爱豆传媒在线观看| 久久婷婷人人爽人人干人人爱| 舔av片在线| 一本一本综合久久| 人妻久久中文字幕网| 国产精品野战在线观看| 欧美最新免费一区二区三区| 蜜臀久久99精品久久宅男| 国产av不卡久久| 精品一区二区三区视频在线| 久久久久久久亚洲中文字幕| 欧美日韩综合久久久久久| avwww免费| 欧美日韩乱码在线| 成人性生交大片免费视频hd| 在线播放国产精品三级| 欧美日本视频| 久久久久久九九精品二区国产| 最新中文字幕久久久久| 久久久精品94久久精品| 97热精品久久久久久| 欧美色欧美亚洲另类二区| 啦啦啦观看免费观看视频高清| 两个人的视频大全免费| 国产精品一区二区三区四区久久| 亚洲精品影视一区二区三区av| 日本黄色片子视频| 一级毛片aaaaaa免费看小| 变态另类成人亚洲欧美熟女| 3wmmmm亚洲av在线观看| 乱人视频在线观看| 最近2019中文字幕mv第一页| 又黄又爽又刺激的免费视频.| 国产精品乱码一区二三区的特点| 久久99精品国语久久久| 一边亲一边摸免费视频| 久久午夜亚洲精品久久| 国产精品麻豆人妻色哟哟久久 | 夜夜爽天天搞| 国产精品一二三区在线看| 国产午夜精品一二区理论片| 精品人妻偷拍中文字幕| 九色成人免费人妻av| 国产亚洲精品久久久com| 国产精品蜜桃在线观看 | 日韩av不卡免费在线播放| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 亚洲久久久久久中文字幕| 亚洲,欧美,日韩| 中文欧美无线码| 偷拍熟女少妇极品色| 精品无人区乱码1区二区| 国产在线精品亚洲第一网站| 日本成人三级电影网站| 成人国产麻豆网| 精品免费久久久久久久清纯| 夜夜夜夜夜久久久久| 人人妻人人看人人澡| 成人毛片a级毛片在线播放| 在线免费观看的www视频| 一区二区三区免费毛片| 欧美极品一区二区三区四区| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 乱人视频在线观看| 韩国av在线不卡| 中文字幕av在线有码专区| 国产成人精品久久久久久| 国产精品人妻久久久影院| 男插女下体视频免费在线播放| 直男gayav资源| 成年版毛片免费区| 国产高清激情床上av| 少妇猛男粗大的猛烈进出视频 | 国产精品麻豆人妻色哟哟久久 | 又爽又黄无遮挡网站| 伦精品一区二区三区| 欧美日韩在线观看h| 欧美性感艳星| 乱系列少妇在线播放| 国产欧美日韩精品一区二区| 国产精品一区二区性色av| 日韩三级伦理在线观看| 国产亚洲精品久久久com| 一本精品99久久精品77| 亚洲色图av天堂| 日本色播在线视频| 免费观看人在逋| 蜜桃久久精品国产亚洲av| 成人亚洲欧美一区二区av| av在线观看视频网站免费| 91aial.com中文字幕在线观看| 久久久精品欧美日韩精品| 夜夜夜夜夜久久久久| 国产毛片a区久久久久| 99久久精品热视频| 性色avwww在线观看| 亚洲在线自拍视频| 你懂的网址亚洲精品在线观看 | 日本色播在线视频| 青青草视频在线视频观看| 特大巨黑吊av在线直播| 变态另类成人亚洲欧美熟女| 日韩欧美一区二区三区在线观看| 欧美成人a在线观看| 国产精品永久免费网站| 国产精品1区2区在线观看.| 26uuu在线亚洲综合色| 天天躁日日操中文字幕| 高清在线视频一区二区三区 | 午夜福利成人在线免费观看| 欧美+日韩+精品| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 老司机影院成人| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| ponron亚洲| 五月伊人婷婷丁香| 日韩三级伦理在线观看| 亚洲av熟女| 给我免费播放毛片高清在线观看| 国产又黄又爽又无遮挡在线| 国产白丝娇喘喷水9色精品| 99久久精品热视频| 精品久久久久久久末码| 精品久久久久久久久久久久久| 免费av不卡在线播放| 久久精品夜夜夜夜夜久久蜜豆| 毛片一级片免费看久久久久| 中文字幕免费在线视频6| 波野结衣二区三区在线| 我的女老师完整版在线观看| 禁无遮挡网站| 亚洲丝袜综合中文字幕| 欧美+亚洲+日韩+国产| 偷拍熟女少妇极品色| 久久精品国产亚洲av天美| 欧美日韩一区二区视频在线观看视频在线 | 春色校园在线视频观看| 中文在线观看免费www的网站| 又粗又爽又猛毛片免费看| 亚洲av第一区精品v没综合| 中文字幕制服av| 老熟妇乱子伦视频在线观看| 亚洲综合色惰| 国产精华一区二区三区| 欧美变态另类bdsm刘玥| 国产精品福利在线免费观看| 在线观看美女被高潮喷水网站| 国产高清三级在线| 亚洲精品亚洲一区二区| 青青草视频在线视频观看| 成人亚洲精品av一区二区| h日本视频在线播放| 日韩欧美三级三区| 久久久国产成人免费| 国产伦一二天堂av在线观看| 久久国产乱子免费精品| 最后的刺客免费高清国语| 成人综合一区亚洲| 22中文网久久字幕| 亚洲国产欧美人成| a级毛色黄片| 久久鲁丝午夜福利片| 色综合亚洲欧美另类图片| 禁无遮挡网站| 久久久久免费精品人妻一区二区| 伊人久久精品亚洲午夜| 日本色播在线视频| 99riav亚洲国产免费| 日韩大尺度精品在线看网址| 日日啪夜夜撸| 欧美zozozo另类| 大又大粗又爽又黄少妇毛片口| 免费看a级黄色片| videossex国产| 青春草视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| av在线老鸭窝| 亚洲精品日韩在线中文字幕 | 亚洲三级黄色毛片| 国产精品福利在线免费观看| 欧美xxxx黑人xx丫x性爽| 国产探花在线观看一区二区| 中文欧美无线码| 亚洲欧美清纯卡通| 国产精品不卡视频一区二区| 久久这里只有精品中国| 亚洲欧美中文字幕日韩二区| 不卡视频在线观看欧美| 美女黄网站色视频| 美女 人体艺术 gogo| 国产精品1区2区在线观看.| 变态另类丝袜制服| 性欧美人与动物交配| 午夜视频国产福利| 中文欧美无线码| 一夜夜www| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 男女边吃奶边做爰视频| 国产精品久久电影中文字幕| 亚洲第一区二区三区不卡| 激情 狠狠 欧美| 国产乱人偷精品视频| 午夜福利高清视频| 嫩草影院新地址| 国产大屁股一区二区在线视频| 欧美+亚洲+日韩+国产| www日本黄色视频网| 国产精华一区二区三区| 亚洲无线观看免费| 精品午夜福利在线看| 91精品国产九色| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 亚洲av电影不卡..在线观看| 国产精品综合久久久久久久免费| 免费看美女性在线毛片视频| 国产精品蜜桃在线观看 | 97人妻精品一区二区三区麻豆| 性插视频无遮挡在线免费观看| 免费人成在线观看视频色| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| 十八禁国产超污无遮挡网站| 只有这里有精品99| 插阴视频在线观看视频| 看片在线看免费视频| 黄片wwwwww| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验 | 内地一区二区视频在线| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 欧美高清成人免费视频www| www.色视频.com| 三级毛片av免费| 少妇熟女aⅴ在线视频| АⅤ资源中文在线天堂| 人妻久久中文字幕网| 日韩精品青青久久久久久| 18禁在线无遮挡免费观看视频| 免费av观看视频| 国产精品,欧美在线| 欧美3d第一页| 一区二区三区高清视频在线| 免费人成视频x8x8入口观看| 中文字幕av在线有码专区| 久久精品国产亚洲av香蕉五月| 日韩亚洲欧美综合| 少妇高潮的动态图| 久久人人爽人人爽人人片va| 精品久久久久久成人av| 久久热精品热| 亚洲精品久久国产高清桃花| 国产成人一区二区在线| 日韩欧美三级三区| 中出人妻视频一区二区| ponron亚洲| 午夜福利在线观看吧| 免费av观看视频| 亚洲av.av天堂| 婷婷色av中文字幕| 亚洲欧美精品自产自拍| 一个人观看的视频www高清免费观看| 麻豆一二三区av精品| 亚洲美女视频黄频| 可以在线观看的亚洲视频| 成人亚洲欧美一区二区av| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 白带黄色成豆腐渣| 成人欧美大片| 热99在线观看视频| 欧美色欧美亚洲另类二区| 日本黄色视频三级网站网址| 美女xxoo啪啪120秒动态图| av黄色大香蕉| 少妇人妻一区二区三区视频| 99在线视频只有这里精品首页| 免费无遮挡裸体视频| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 22中文网久久字幕| 美女cb高潮喷水在线观看| 色综合色国产| 哪里可以看免费的av片| 久久草成人影院| 久久精品人妻少妇| 最近手机中文字幕大全| 成年版毛片免费区| 国产精品精品国产色婷婷| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| 最近的中文字幕免费完整| 亚洲成人av在线免费| 青春草亚洲视频在线观看| 精品久久久久久久久久免费视频| 婷婷色综合大香蕉| 久久精品夜色国产| 日本黄大片高清| 毛片一级片免费看久久久久| 亚洲性久久影院| 国产一区亚洲一区在线观看| 亚洲不卡免费看| 午夜a级毛片| 啦啦啦啦在线视频资源| 国内少妇人妻偷人精品xxx网站| 久久久久九九精品影院| 亚洲国产精品合色在线| 91久久精品国产一区二区三区| 国产日韩欧美在线精品| 久久精品国产亚洲av香蕉五月| 中出人妻视频一区二区| 亚洲欧美精品专区久久| 精品一区二区三区视频在线| 美女脱内裤让男人舔精品视频 | 午夜老司机福利剧场| 在线国产一区二区在线| 国产精品三级大全| 国内精品久久久久精免费| 少妇丰满av| 成人鲁丝片一二三区免费| 亚洲精品久久久久久婷婷小说 | 一边亲一边摸免费视频| av黄色大香蕉| 国产一区二区在线观看日韩| 99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 99久久精品国产国产毛片| 三级经典国产精品| 丝袜美腿在线中文| 一个人看视频在线观看www免费| 成人漫画全彩无遮挡| 免费观看精品视频网站| 国产一区亚洲一区在线观看| 久久精品国产鲁丝片午夜精品| 白带黄色成豆腐渣| 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线| 成人特级黄色片久久久久久久| 久久6这里有精品| 不卡视频在线观看欧美| 校园人妻丝袜中文字幕| 人妻制服诱惑在线中文字幕| 亚洲七黄色美女视频| 岛国毛片在线播放| 一个人免费在线观看电影| 看片在线看免费视频| 久久精品综合一区二区三区| 免费观看精品视频网站| 国产精品三级大全| 看片在线看免费视频| 久久久久久久午夜电影| 欧美高清成人免费视频www| 亚洲精品国产成人久久av| 成人永久免费在线观看视频| 国产精品日韩av在线免费观看| 人人妻人人看人人澡| 一级二级三级毛片免费看| 亚洲欧美成人精品一区二区| 乱人视频在线观看| 搞女人的毛片| 我要搜黄色片| 91狼人影院| 搡老妇女老女人老熟妇| 国产免费男女视频| 69人妻影院| 亚洲色图av天堂| 国产精品久久视频播放| 国产熟女欧美一区二区| 亚洲最大成人手机在线| 国产精品一区二区在线观看99 | 免费看av在线观看网站| 2022亚洲国产成人精品| 夜夜夜夜夜久久久久| 中文欧美无线码| 又爽又黄无遮挡网站| 亚洲欧美日韩无卡精品| 亚洲精品456在线播放app| 国产精品无大码| 麻豆av噜噜一区二区三区| 12—13女人毛片做爰片一| 国产黄色视频一区二区在线观看 | 深夜a级毛片| 晚上一个人看的免费电影| 国产伦精品一区二区三区视频9| 国产在视频线在精品| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 精品国产三级普通话版| 午夜久久久久精精品| 亚洲18禁久久av| 99久久精品一区二区三区| 亚洲最大成人av| 欧美日本视频| 国产国拍精品亚洲av在线观看| 高清在线视频一区二区三区 | 国产白丝娇喘喷水9色精品| 亚洲欧美日韩卡通动漫| 国产精品野战在线观看| 久久久久久久久久黄片| 大又大粗又爽又黄少妇毛片口| av在线观看视频网站免费| 欧美色视频一区免费| av在线蜜桃| 在线免费观看不下载黄p国产| 亚洲成人精品中文字幕电影| 美女高潮的动态| 97人妻精品一区二区三区麻豆| 免费看日本二区| 精品少妇黑人巨大在线播放 | 日韩高清综合在线| 精品一区二区三区人妻视频| 亚洲成人久久爱视频| 亚洲真实伦在线观看| 欧美成人免费av一区二区三区| 热99在线观看视频| 国产成人精品一,二区 | 精品久久久久久久久久久久久| 久久久久久久久大av| 日韩视频在线欧美| 亚洲精品国产成人久久av| 欧美人与善性xxx| 国产成人a∨麻豆精品| 九九在线视频观看精品| 成人av在线播放网站| 亚洲精品乱码久久久久久按摩| 久久精品久久久久久久性| 久久精品国产自在天天线|