• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Control of Heterogeneous-Susceptible-Exposed-Infectious-Recovered-Susceptible Malware Propagation Model in Heterogeneous Degree-Based Wireless Sensor Networks

    2022-08-08 05:47:38ZHANGHongSHENShigen沈士根WUGuowen吳國文CAOQiying曹奇英XUHongyun許洪云
    關(guān)鍵詞:吳國

    ZHANG Hong(張 紅), SHEN Shigen(沈士根), WU Guowen(吳國文),CAO Qiying(曹奇英), XU Hongyun(許洪云)

    1 School of Computer Science and Technology, Donghua University, Shanghai 201620, China 2 Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China 3 Faculty of Business Information, Shanghai Business School, Shanghai 201400, China

    Abstract: Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation, because of their low configuration and weak defense mechanism. Therefore, an optimality system for HWSNs is developed to suppress malware propagation in this paper. Firstly, a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs. Secondly, the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved, and then an optimal control strategy for the problem is derived by the optimal control theory. Thirdly, the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle, and the corresponding optimality system is derived. Finally, the effectiveness of the optimality system is validated by the experimental simulations, and the results show that the infectious HSNs will fall to an extremely low level at a low cost.

    Key words: heterogeneous wireless sensor network(HWSN); malware propagation; optimal control; Pontryagin’s minimum principle

    Introduction

    Heterogeneous wireless sensor networks(HWSNs)are a kind of wireless sensor networks(WSNs),composed of a great many of resource constrained and heterogeneous sensor nodes(HSNs)to detect physical environmental conditions.These HSNs have different computing resources, energy, and communication, and that HWSNs have the advantages of strong pertinence, high flexibility, and low cost[1].With these characteristics, HWSNs thus have been deployed in many practical applications, such as smart life, biological medicine, environmental monitoring, and military[2].

    In HWSNs, there exists the failure of HSNs caused by malware, which is an application with malicious intent, ruining the normal work of HWSNs by injecting malicious data, blocking communication channels, or occupying computing units.Besides, the HSNs systems have no strong hardware and software with limited resources, which make the defense mechanism weak, so that the malware in HWSNs is prone to propagation[3-4].To solve this problem, many researchers have studied the methods and processes of malware propagation in HWSNs.For example, Illiano and Lupu[5]presented many methods of malicious data injection in WSNs.Ho[6]presented on demand software-attestation based scheme to defend against worm propagation in WSNs.

    The propagation process of malware in HWSNs is similar to that of diseases in human populations[7], and thus epidemiology is commonly applied to study malware propagation.The classic epidemic models include susceptible-infectious(SI), susceptible-infectious-susceptible(SIS), and susceptible-infectious-recovered(SIR)[8-10].In this paper, we propose a heterogeneous susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model, containing statesS,E,I,Rto describe all the states of HSNs infected by malware.We add the statesEandSto the classical epidemic model SIR.Because some malware may have an incubation period in reality.That is to say, when HSNs are infected by malware, they may propagate malware to other HSNs with delay.Besides, when the recovered HSNs encounter unknown malware, they usually lack of immunity, and thus the state will change fromRtoS.

    There are generally two ways to solve the problem with malware propagation in HWSNs.One is based on the qualitative analysis[11-13], such as proving the existence of equilibrium points and attaining the basic reproduction number governing the stability of the equilibrium points; the other is based on the optimal control theory[14-17], which is defined by an optimal strategy to achieve a low level of infectious HSNs at a low cost.The second way is more suitable for solving the problem of active defense malware propagation in HWSNs.In this paper, we thus apply it to suppress malware propagation in HWSNs by defining a dynamic optimal control strategy.Using the communication channels of HWSNs, the patches corresponding to malware can be sent to some infectious HSNs to defend their systems, which are effective in enhancing the overall defense capability of HWSNs.

    Our contributions are summarized as follows.

    (1)An HSEIRS model is proposed, which is the major work to describe the state dynamics of HSNs in HWSNs.

    (2)The existence of an optimal control problem based on the HSEIRS model is proved, and then an optimal control strategy for the problem is derived using the optimal control theory.

    (3)Using the Pontryagin’s minimum principle, the optimal control strategy based on the HSEIRS model is transformed into the corresponding Hamiltonian, and an optimality system based on the HSEIRS model is derived.

    The difficulty of this paper lies in proving the existence of an optimal control problem based on the HSEIRS model, and deriving the optimality system based on the HSEIRS model.

    The rest of the paper is presented as follows.In section 1, the related works are reviewed.In section 2, an HSEIRS model is proposed.In section 3, an optimality system based on the HSEIRS model is derived, and the theoretical analysis of the optimization problem is presented.In section 4, a calculation algorithm is presented to validate the optimality system and the results of data analyses are also shown using the relevant parameters.Finally, the conclusions of the paper are given.

    1 Related Works

    Many researchers have illustrated various extended epidemic models for WSNs.For example, a susceptible-exposed-infectious-susceptible-recovered-vaccination(SEIRSV)model containing the statesS,E(exposed),I,R, andV(vaccination)[18]; a susceptible-infected-immunized(SII)model[19]; a worm propagation model considering the spatial-temporal perspective[20]; a susceptible-active-dormant-immune(SADI)model considering the hierarchical topology structure[21]; and a susceptible-infected-susceptible-vaccinated(SISV)model[22].

    Furthermore, various methods have been presented to solve the problems with malware propagation in WSNs.Liuetal.[23]used the stochastic game to propose a method for WSNs to predict the probability of malware adopting the spread behavior.Shenetal.[24]developed traditional epidemic theory and constructed a malware propagation model by differential equations to represent the dynamics between states.They considered HWSNs and set up a dependability assessment mechanism for HWSNs with malware propagation[25].They also considered a clustered WSNs under epidemic-malware propagation conditions[26].Jiangetal.[27]established a new attack-defense game based on Stackelberg game.Acaralietal.[28]thought of the epidemic modeling to the Internet of things(IOT)networks consisting of WSNs.Wangetal.[29]proposed a method using the pulse differential equation and the epidemic theory for WSNs preventing from malware propagation.Shenetal.[30]proposed a malware detection infrastructure realized by an intrusion detection system(IDS)with cloud and fog computing to preserve the privacy of smart objects in the IOT networks and suppress malware propagation.

    In addition, some researchers have applied the optimal control theory to study the infected networks.Zhangetal.[31]proposed a time-varying control mechanism of an SIQRS epidemic model of the network in terms of vaccination, quarantine and treatment by the optimal control theory.Xuetal.[32]proposed a novel SIVRS mathematical model for epidemic spreading based on complex networks, where an optimal control problem was formulated to maximize the recovered agents with the limited resource.Dongetal.[33]presented a general formulation for the optimal control problem to a class of fuzzy probability differential systems relating to SIR and SEIR epidemic models.Darajatetal.[34]discussed an optimal control on the spread of SLBS computer virus model.Zhang and Huang[35]solved an optimal control problem for the combined impact of reinstalling system and network topology on the spread of computer viruses based on scale-free networks.Ganetal.[36]proposed a novel dynamical model with an external compartment to control the level of infected computers based on the optimal control theory.Bietal.[37]addressed the development of a cost effective dynamic control strategy of disruptive viruses.Yangetal.[38]presented the optimal control problem for capturing the optimal dynamical immunization based on a controlled heterogeneous node-based SIRS model.

    The dynamical optimal control strategy based on HWSNs has not been worked out yet.The first issue is how to characterize the feature of HSNs in infected HWSNs; the second issue is how to formulate the optimal control problem with installing effective antivirus programs for infectious HSNs.Here, we focus on the first issue by proposing an HSEIRS model based on epidemiology.After that, we handle the second issue by deriving the optimality system based on the Pontryagin’s minimum principle, which is proved to be effective by experimental simulations and data analysis.

    2 Description of HSEIRS Model

    From the perspective of network topology, HSNs are divided into two categories.One is data nodes randomly distributed in the detection area, which are responsible for collecting and transmitting data; the other is gateway nodes, which are responsible for aggregating data and transmitting control information.Obviously, the gateway nodes are better than the data nodes in terms of the processing capacity, storage capacity and calculation capacity.In this paper, we characterize HSNs on the basis of the heterogeneity of the degrees.According to the degree number of an HSN, they are divided intoMgroups, whereMmeans the number of HSN groups, the HSNs have the same degree in each group.For simplicity, we identify the degree of HSN groupi∈{1, 2, …,M} withi∈{1, 2, …,M}, and letSi(t),Ei(t),Ii(t), andRi(t)be the probabilities of the HSN groupi∈{1, 2, …,M} in statesS,E,I, andRat timet, respectively.As shown in Fig.1, according to the degree of an HSN group, all HSNs can be divided into group 1, group 3 and group 4.

    Fig.1 HWSNs topology

    In terms of the other malware propagation models, we assume that the initial probability of HSN groupi∈{1, 2, …,M} in stateIisp,i.e.,

    Ii(0)=p, 0

    (1)

    We also assume that

    Ei(0)=Ri(0)=0.

    (2)

    In this manner, we obtain

    Si(0)=1-p.

    (3)

    (4)

    whereBi(t)denotes the probability of a susceptible HSN in groupiencountering infectious HSNs, denotes the average degree of the HWSNs,δidenotes the probability of an HSN with degreei, andγidenotes the infectious ability of an HSN with degreei.Naturally, these parameters satisfy

    (5)

    and

    (6)

    According to the characteristics of HSNs, we construct a state diagram about the behaviors of HSNs in HWSNs.In the state diagram, there is one state from five possible states at a certain time for an HSN.Specifically, if an HSN is in stateSat timet, it means that it is prone to being infected by malware but has not been infected yet; if it is in stateEat timet, it means that it has been infected by malware, but cannot propagate malware to its adjacent nodes by transmitting data or control information; if it is in stateIat timet, it denotes that it has been infected by malware and can propagate the malware to its adjacent nodes by transmitting data or control information; if it is in stateRat timet, it denotes that it is immune to malware.In addition, if it is in stateDat timet, it denotes that it loses all functions, as it has either entirely consumed its energy or been damaged by malware.

    Fig.2 State diagram for an HSN

    Motivated by the above, we propose the following HSEIRS model with delay timeτ, wherepdenotes the initial fraction of HSN groupiin stateI.

    (7)

    (8)

    (9)

    (10)

    subject to

    (11)

    3 Optimal Control Strategy Based on HSEIRS Model

    In this section, the sufficient and necessary conditions of the optimal control strategy are presented.

    With regard to installing effective antivirus programs for infectious HSNs belonging to groupi, we adopt the central patch allocation strategy.An HSN in stateIbelonging to groupiis installed effective antivirus programs and becomes recovered with probabilityθi(t)per unit time.In order to describeθi(t)clearly, let us make some assumptions on theθi(t).

    (a)Fori∈{1, 2,…,M},θi(t)∈L2[0,tf].

    (b)θi(t)is measurable.

    (d)Letθi(·)=(θ1(·),θ2(·),…,θM(·)).

    From these facts, we now consider an optimal control problem to minimize the objective function:

    (12)

    satisfying

    (13)

    subject to

    Si(σ)>0,Ei(σ)>0,Ii(σ)>0,Ri(σ)>0.

    (14)

    whereσ∈[-τ, 0]denotes the admissible time in the incubation period.

    In order to find an optimality system, we firstly find the Lagrange and Hamiltonian for the optimal control problem.In fact, the Lagrange of the optimal control problem is given by

    (15)

    whereξdenotes the cost of installing effective antivirus programs for infectious HSNs, and it is a small positive constant.To find the optimal control function for the optimal control problem, we define the corresponding Hamiltonian as

    (16)

    where

    (17)

    which are the adjoint functions of the optimal control problem.

    3.1 Existence of an optimal control problem based on HSEIRS model

    In order to prove the existence of an optimal control problem based on the HSEIRS model, six lemmas are established here.

    Lemma1 With regard to the optimal control problem(12), system(13)can be rewritten as

    (18)

    withx(t)∈Ω, wheref(t,x,θ)denotes the states function of the HSEIRS model, andΩis the positively invariant for system(13).The problem has an optimal control if the following five conditions are satisfied at the same time.

    (a)f(t,x,θ)is bounded by a linear function inx, the first partial derivatives are consecutive, and there is a constantZsuch that

    |f(t,x,θ)|≤Z,

    (19)

    |fθ(t,x,θ)|≤Z,

    (20)

    and

    |fx(t,x,θ)|≤Z(1+|θ|),

    (21)

    wherefθ(t,x,θ)is the first partial derivatives of the functionf(t,x,θ)toθ,fx(t,x,θ)is the first partial derivatives of the functionf(t,x,θ)tox.

    (b)There isθ(·)∈θadsuch that system(18)is solvable.

    (c)θadis convex and closed.

    One night, the girl caught ill. In moment of fluster9() , instead of calling her parents, she dialed the new boy s cell phone. The boy was already asleep but his cell phone was still on.

    (d)L(x,θ)is convex onθad.

    Next, we show the correctness of those five conditions by introducing and proving Lemmas 2-5.

    Lemma2f(t,x,θ)is bounded by a linear function inx, the first partial derivatives are consecutive, and there is a constantZsuch that systems(19)-(21)are satisfied.

    ProofFor simple description, the system(13)is rewritten as

    (22)

    We can obtain

    |f(t, 0, 0)|=|(μ0 0 0)T|,

    (23)

    (24)

    (25)

    Lemma3The system(18)is solvable.

    (26)

    Thus, the proof is complete.

    Lemma4θadis convex and closed.

    ProofLet

    (27)

    (28)

    and let 0<ε<1.SetL2[0,tf]denotes the control functionθi(t)which is integrable and bounded during the time period[0,tf].As(L2[0,tf])2Mis a real vector space, we get

    (1-ε)θ(1)(·)+εθ(2)(·)∈(L2[0,tf])2M.

    (29)

    So, the convexity ofθadfollows by the observation that, for 1≤i≤M, we have

    (30)

    Let

    θ(·)=(θ1(·),θ2(·),…,θM(·))T,

    (31)

    be a limit point ofθad, and let

    (32)

    be a sequence of points inθadsuch that

    (33)

    It comes from the completeness of(L2[0,T])2Nthat

    (34)

    So the closeness ofθadcomes from the observation that, for 1≤i≤M, we have

    (35)

    Thus, the proof is complete.

    Lemma5L(x,θ)is convex onθad.

    (36)

    Here,

    (37)

    (38)

    We can obtain

    (39)

    Thus, the proof is complete.

    ProofWe can chooseο1=ξ/2,ι=2.ο2is the lower bound onI, which is similar to that in Ref.[39].We can obtain

    (40)

    Further,

    (41)

    Thus, the proof is complete.

    ProofLemmas 2-6 show that the five conditions in Lemma 1 are all satisfied.Thus, the existence of the optimal control follows from Lemma 1.

    3.2 Optimality system based on HSEIRS model

    In this subsection, we present a necessary condition for the optimal control problems(12)and(13).

    (42)

    with transversality conditions

    (43)

    (44)

    ProofTo determine the adjoint equations and the transversality conditions, we differentiate the Hamiltonian, and obtain the adjoint system as

    (45)

    Thus, the adjoint system can be rewritten as system(42).By the optimal conditions, we have

    (46)

    From Theorem 2, we derive the following optimality system(47)and(48)for the optimal control problems(12)and(13).

    (47)

    and

    (48)

    4 Validating Optimal Control Strategy of HSEIRS Model

    Here, we validate the optimality system based on the HSEIRS model using Python.In our experiments, the HWSNs are composed of 1 000 HSNs,i.e.,M=1 000.The intervaltfis 10 time steps.We construct the HWSNs topology and set the experimental parameters referring to Ref.[40], the minimum degree of HSNs is 2, the maximum degree of HSNs is 20, and the mean degree 〈d〉 is 4.

    Using the forward and backward difference approximation, the calculation algorithm is described in Fig.3, where the step sizeh>0,τ=mh, andtf-t0=nh.

    Fig.3 Calculation algorithm to the optimality system based on the HSEIRS model

    Figure 4 shows the changeable probability trends of susceptible HSNs belonging to group 3 under different values of control variableθ.We observe different trends.Forθ=0.1,θ=θ*, andθ=0.8, the probabilities of susceptible HSNs gradually increase to 0.88, 0.88 and 0.95 in the first 22 time steps, respectively, these probabilities then slowly increase to 0.915, 0.925 and 0.975 after 8 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of susceptible HSNs.

    Fig.4 Changeable probability trends of susceptible HSNs under different values of control variable θ

    Figure 5 shows the changeable probability trends of infectious HSNs belonging to group 3 under different values of control variableθ.We observe different trends.Forθ=0.1,θ=θ*, andθ=0.8, the probabilities of infectious HSNs gradually decrease to 0.06, 0.06, and 0 in the first 13 time steps, respectively.These probabilities then slowly decrease to 0.025, 0, and 0 in the 20 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of infectious HSNs.

    Fig.5 Changeable probability trends of infectious HSNs under different values of control variable θ

    Figure 6 shows the changeable probability trends of recovered HSNs belonging to group 3 under different values of control variableθ.We observe some different trends.Forθ3=0.1, the probability of recovered HSNs gradually increases to 0.1 in the first 10 time steps, then slowly decreases to 0.075 in the 30 time steps.Forθ=θ*, the probability of recovered HSNs gradually increases to 0.15 in the first 15 time steps, then slowly decreases to 0.08 in the next 30 time steps.Forθ=0.8, the probability of recovered HSNs fast increases to 0.175 in the first 2 time steps, then slowly decreases to 0.04 in then 30 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of recovered HSNs.

    Fig.6 Changeable probability trends of recovered HSNs under different values of control variable θ

    Figure 7 shows the changeable probability trends of control variableθunder different values of delayτ.We observe some different trends.Forτ1=1,τ2=2, andτ3=3, the probabilities of control variableθgradually increase to 0.50, 0.43, and 0.38, respectively in the first 15 time steps, then slowly increase to a stable value.It can tell us that the optimal control variableθdeceases whenτincreases from 1 to 3.

    Fig.7 Changeable probability trends of control variable θ under different values of delay τ

    Figure 8 shows the changeable probability trends of control variableθunder different values.We observe different trends.Forθ=θ*, the probability of control variableθgradually increases from 0 to 0.5 in 30 time steps.

    Fig.8 Changeable probability trends of control variable θ under different values

    Figure 9 shows the changeable probability trends of control variableθunder different values of degreei.We observe different trends.Fori1=3,i2=10, andi3=20, the probabilities of control variableθgradually increase to 0.35, 0.50, and 0.80 in the first 15 time steps, respectively, then slowly increase to a stable value.It can tell us that the optimal control variableθincreases when the degreeiincreases from 3 to 20.

    Fig.9 Changeable probability trends of control variable θ under different values of degree i

    5 Conclusions

    In this paper, we have studied an optimal control to malware propagation by installing effective antivirus programs for infectious HSNs in controlled HWSNs.We firstly proposed an HSEIRS model to describe the HSNs state dynamics of malware propagation in HWSNs, involving the exposed state and degree heterogeneity of HSNs.After that, we derived an optimality system to achieve a low level of infectious HSNs at a low cost based on the HSEIRS model through a series of theoretical analysis.Finally, using the forward and backward difference approximation, we validated the effectiveness of the optimality system by the calculation algorithm and data analyses.

    猜你喜歡
    吳國
    Deep Multi-Module Based Language Priors Mitigation Model for Visual Question Answering
    車身間隙面差在線測量技術(shù)及應(yīng)用
    GLOBAL STRONG SOLUTION AND EXPONENTIAL DECAY OF 3D NONHOMOGENEOUS ASYMMETRIC FLUID EQUATIONS WITH VACUUM?
    吳國良花鳥畫選
    三十六計(jì)第十九計(jì):釜底抽薪
    小讀者之友(2021年6期)2021-07-29 08:54:00
    吳國平
    書香兩岸(2020年3期)2020-06-29 12:33:45
    書法古詩
    一所學(xué)校 一名老師 一輩子堅(jiān)守
    糧食也是武器
    糧食也是武器
    18禁黄网站禁片午夜丰满| 一级a爱视频在线免费观看| 国产精品综合久久久久久久免费 | 欧美一区二区精品小视频在线| 国产高清激情床上av| 久久中文字幕人妻熟女| 美女 人体艺术 gogo| 丰满迷人的少妇在线观看| 亚洲色图av天堂| av中文乱码字幕在线| www.999成人在线观看| 最近最新免费中文字幕在线| 久久久精品国产亚洲av高清涩受| 亚洲一区高清亚洲精品| 大码成人一级视频| 99国产精品99久久久久| 大型黄色视频在线免费观看| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 久久影院123| 美女国产高潮福利片在线看| 欧美+亚洲+日韩+国产| 久久欧美精品欧美久久欧美| 亚洲专区中文字幕在线| 亚洲美女黄片视频| 国产av精品麻豆| 国产精品美女特级片免费视频播放器 | 首页视频小说图片口味搜索| 亚洲欧美一区二区三区久久| 国产精品影院久久| 免费高清视频大片| 一级作爱视频免费观看| 一级毛片精品| 999精品在线视频| a级片在线免费高清观看视频| 亚洲黑人精品在线| 日韩欧美在线二视频| 色婷婷久久久亚洲欧美| 一a级毛片在线观看| 少妇裸体淫交视频免费看高清 | 在线观看www视频免费| 黄色女人牲交| 18禁裸乳无遮挡免费网站照片 | 免费看十八禁软件| 91大片在线观看| 国产精品1区2区在线观看.| 精品国产一区二区三区四区第35| 交换朋友夫妻互换小说| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 新久久久久国产一级毛片| 成人亚洲精品一区在线观看| 国产欧美日韩综合在线一区二区| 99精品在免费线老司机午夜| 悠悠久久av| a级片在线免费高清观看视频| 久久久久九九精品影院| 亚洲情色 制服丝袜| 欧美成人午夜精品| 天堂动漫精品| 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 欧美+亚洲+日韩+国产| 成人亚洲精品一区在线观看| 国产成人欧美在线观看| 激情在线观看视频在线高清| 少妇被粗大的猛进出69影院| 久久性视频一级片| 国产精品电影一区二区三区| 自线自在国产av| 琪琪午夜伦伦电影理论片6080| 欧美日韩一级在线毛片| 美女福利国产在线| 97碰自拍视频| 国产伦人伦偷精品视频| 校园春色视频在线观看| 免费日韩欧美在线观看| 久久精品aⅴ一区二区三区四区| 男女下面插进去视频免费观看| 精品久久久久久成人av| 亚洲精品一卡2卡三卡4卡5卡| 两个人看的免费小视频| 一级a爱视频在线免费观看| 成人三级黄色视频| 国产精品 国内视频| 精品久久久久久成人av| 亚洲人成网站在线播放欧美日韩| 日本精品一区二区三区蜜桃| 国产极品粉嫩免费观看在线| 国产亚洲精品综合一区在线观看 | 亚洲成a人片在线一区二区| 亚洲欧美一区二区三区久久| 99re在线观看精品视频| 久久性视频一级片| 精品国产国语对白av| 新久久久久国产一级毛片| 免费女性裸体啪啪无遮挡网站| 国产单亲对白刺激| 九色亚洲精品在线播放| 天堂动漫精品| 日本一区二区免费在线视频| 精品卡一卡二卡四卡免费| 亚洲精品在线观看二区| 日本免费a在线| 91麻豆av在线| 变态另类成人亚洲欧美熟女 | 超色免费av| xxxhd国产人妻xxx| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放 | 国产一区二区三区在线臀色熟女 | 国产精品国产av在线观看| 丝袜人妻中文字幕| 看免费av毛片| 好男人电影高清在线观看| 俄罗斯特黄特色一大片| 欧洲精品卡2卡3卡4卡5卡区| 国产无遮挡羞羞视频在线观看| 亚洲av成人av| 狂野欧美激情性xxxx| 国产乱人伦免费视频| 国产精品久久久人人做人人爽| 18美女黄网站色大片免费观看| 最新美女视频免费是黄的| 国产无遮挡羞羞视频在线观看| 国产三级黄色录像| 成年女人毛片免费观看观看9| 岛国在线观看网站| 国产成年人精品一区二区 | 午夜影院日韩av| 高清黄色对白视频在线免费看| 免费久久久久久久精品成人欧美视频| 亚洲精品在线美女| 女生性感内裤真人,穿戴方法视频| 两人在一起打扑克的视频| 欧美性长视频在线观看| 一区二区日韩欧美中文字幕| 一区在线观看完整版| 99国产精品99久久久久| 亚洲精品久久成人aⅴ小说| 视频在线观看一区二区三区| 国产成人精品久久二区二区免费| 午夜a级毛片| 99riav亚洲国产免费| 黄色怎么调成土黄色| 久久欧美精品欧美久久欧美| 午夜福利在线观看吧| 久久青草综合色| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 多毛熟女@视频| 999精品在线视频| 亚洲性夜色夜夜综合| 国产亚洲欧美精品永久| 激情视频va一区二区三区| 国产午夜精品久久久久久| 无人区码免费观看不卡| 亚洲一区二区三区不卡视频| 久久精品aⅴ一区二区三区四区| 国产av又大| 亚洲av片天天在线观看| 午夜免费观看网址| 亚洲欧美激情综合另类| 夜夜看夜夜爽夜夜摸 | 精品第一国产精品| 男人舔女人的私密视频| 一个人观看的视频www高清免费观看 | 成人18禁在线播放| 天天躁夜夜躁狠狠躁躁| 天堂中文最新版在线下载| 日本三级黄在线观看| 精品国产超薄肉色丝袜足j| 国产精品一区二区三区四区久久 | 99国产综合亚洲精品| svipshipincom国产片| 不卡一级毛片| 亚洲欧美一区二区三区黑人| 高潮久久久久久久久久久不卡| 男女午夜视频在线观看| 午夜福利在线观看吧| 黄色毛片三级朝国网站| 在线永久观看黄色视频| 精品久久久久久电影网| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 丰满人妻熟妇乱又伦精品不卡| 老司机靠b影院| 极品教师在线免费播放| 91老司机精品| 新久久久久国产一级毛片| 俄罗斯特黄特色一大片| 大香蕉久久成人网| 夜夜躁狠狠躁天天躁| 亚洲美女黄片视频| 一级作爱视频免费观看| 一级黄色大片毛片| 日本免费a在线| 9色porny在线观看| 丁香欧美五月| 在线观看日韩欧美| 曰老女人黄片| 国产一区二区在线av高清观看| 久久久国产成人精品二区 | 黄色片一级片一级黄色片| 欧美国产精品va在线观看不卡| 18禁国产床啪视频网站| 成人国语在线视频| 黄色 视频免费看| 中文字幕人妻丝袜制服| 看免费av毛片| 亚洲视频免费观看视频| 两人在一起打扑克的视频| 国产视频一区二区在线看| 成在线人永久免费视频| 国产99久久九九免费精品| 日韩成人在线观看一区二区三区| 欧美午夜高清在线| 国产国语露脸激情在线看| 亚洲国产精品合色在线| videosex国产| 夜夜躁狠狠躁天天躁| 搡老岳熟女国产| 两性夫妻黄色片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久久久99蜜臀| 十分钟在线观看高清视频www| 精品国产亚洲在线| 满18在线观看网站| 久久 成人 亚洲| 国产不卡一卡二| 后天国语完整版免费观看| 欧美乱码精品一区二区三区| 久久中文看片网| av片东京热男人的天堂| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 国产亚洲精品综合一区在线观看 | 国产亚洲精品综合一区在线观看 | 国产亚洲精品综合一区在线观看 | 怎么达到女性高潮| 国产欧美日韩一区二区三| 精品久久久久久电影网| 久久久久久人人人人人| 两性夫妻黄色片| 又黄又爽又免费观看的视频| 亚洲九九香蕉| 久久久久久久久中文| 久久中文看片网| 中文字幕色久视频| 国产男靠女视频免费网站| a在线观看视频网站| 咕卡用的链子| 国产一区二区激情短视频| 国内久久婷婷六月综合欲色啪| 亚洲少妇的诱惑av| 热99re8久久精品国产| 黄网站色视频无遮挡免费观看| 香蕉丝袜av| 黄色a级毛片大全视频| 在线观看一区二区三区激情| 很黄的视频免费| 日韩中文字幕欧美一区二区| 亚洲aⅴ乱码一区二区在线播放 | 成人手机av| 99国产精品一区二区三区| 久久久水蜜桃国产精品网| 黑人猛操日本美女一级片| 国产精品影院久久| tocl精华| 欧美一级毛片孕妇| 国产精品亚洲一级av第二区| 交换朋友夫妻互换小说| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 久9热在线精品视频| 99久久综合精品五月天人人| 国产高清视频在线播放一区| 国产精品偷伦视频观看了| 欧美性长视频在线观看| 日本免费a在线| 一级毛片高清免费大全| 人人妻人人爽人人添夜夜欢视频| 国产精品永久免费网站| 亚洲精品久久成人aⅴ小说| 最新在线观看一区二区三区| 国产av在哪里看| 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 国产av精品麻豆| 一级毛片精品| 啦啦啦 在线观看视频| 中文字幕最新亚洲高清| 精品国产美女av久久久久小说| 亚洲一区高清亚洲精品| 午夜影院日韩av| 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 视频在线观看一区二区三区| 黄色成人免费大全| 免费人成视频x8x8入口观看| 欧美性长视频在线观看| 精品免费久久久久久久清纯| 香蕉久久夜色| 久久人妻福利社区极品人妻图片| 色综合婷婷激情| 日本精品一区二区三区蜜桃| 丰满人妻熟妇乱又伦精品不卡| 巨乳人妻的诱惑在线观看| 美女 人体艺术 gogo| 每晚都被弄得嗷嗷叫到高潮| 欧美人与性动交α欧美精品济南到| 少妇 在线观看| 一夜夜www| 欧美日韩国产mv在线观看视频| 国产精品九九99| 久久人人爽av亚洲精品天堂| a级片在线免费高清观看视频| 多毛熟女@视频| 国产一区在线观看成人免费| 人妻久久中文字幕网| 精品人妻1区二区| 国产欧美日韩综合在线一区二区| 午夜精品国产一区二区电影| 久久香蕉激情| 欧美一区二区精品小视频在线| 两性夫妻黄色片| 国产视频一区二区在线看| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 99精国产麻豆久久婷婷| 亚洲av成人一区二区三| 露出奶头的视频| 久久国产亚洲av麻豆专区| 久久久水蜜桃国产精品网| 黄色a级毛片大全视频| 亚洲精品一二三| 国产精品久久电影中文字幕| 精品人妻在线不人妻| 国产激情久久老熟女| 在线视频色国产色| 人妻久久中文字幕网| 在线观看一区二区三区激情| 老司机福利观看| 国产男靠女视频免费网站| 母亲3免费完整高清在线观看| 国产片内射在线| 99久久久亚洲精品蜜臀av| 久久亚洲真实| 老司机在亚洲福利影院| 交换朋友夫妻互换小说| 一二三四在线观看免费中文在| 亚洲国产精品一区二区三区在线| 热99国产精品久久久久久7| av在线天堂中文字幕 | 91麻豆精品激情在线观看国产 | 成年人免费黄色播放视频| 精品日产1卡2卡| 亚洲午夜理论影院| 男人舔女人的私密视频| 久久久国产精品麻豆| 欧美最黄视频在线播放免费 | 久久草成人影院| 国产男靠女视频免费网站| 精品久久久久久电影网| 无遮挡黄片免费观看| 操美女的视频在线观看| 久久久国产欧美日韩av| 精品日产1卡2卡| 欧美在线黄色| 日本三级黄在线观看| 久热这里只有精品99| 欧美日韩亚洲国产一区二区在线观看| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 国产av精品麻豆| 国产亚洲精品一区二区www| 免费高清在线观看日韩| 好看av亚洲va欧美ⅴa在| 嫩草影院精品99| 国产精品电影一区二区三区| 亚洲国产看品久久| 国产精品久久久久久人妻精品电影| 国产一卡二卡三卡精品| 欧美成狂野欧美在线观看| 一级毛片高清免费大全| 国产不卡一卡二| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 两个人免费观看高清视频| 99香蕉大伊视频| 精品国产国语对白av| 日韩欧美三级三区| 精品午夜福利视频在线观看一区| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美一区二区综合| 中文字幕av电影在线播放| 他把我摸到了高潮在线观看| 国产精品亚洲av一区麻豆| 成人特级黄色片久久久久久久| 日本a在线网址| 91精品国产国语对白视频| 亚洲视频免费观看视频| 亚洲一区高清亚洲精品| 女人被躁到高潮嗷嗷叫费观| 人成视频在线观看免费观看| 国产亚洲精品综合一区在线观看 | 精品一区二区三区四区五区乱码| 国产精品影院久久| 老司机福利观看| 久热这里只有精品99| 成人影院久久| 日韩三级视频一区二区三区| 午夜日韩欧美国产| 免费观看人在逋| 免费在线观看视频国产中文字幕亚洲| 欧美在线一区亚洲| 黑人巨大精品欧美一区二区mp4| 国产色视频综合| 老熟妇仑乱视频hdxx| bbb黄色大片| 最好的美女福利视频网| 国产激情久久老熟女| 亚洲激情在线av| 我的亚洲天堂| 免费高清在线观看日韩| 又黄又爽又免费观看的视频| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 久久这里只有精品19| 在线视频色国产色| 伦理电影免费视频| 亚洲精品美女久久av网站| 色播在线永久视频| 大型av网站在线播放| 黑人巨大精品欧美一区二区mp4| 制服诱惑二区| 亚洲精品一区av在线观看| 成人国语在线视频| 国产精品国产av在线观看| 人人妻人人添人人爽欧美一区卜| 欧美日韩中文字幕国产精品一区二区三区 | 欧美成人免费av一区二区三区| 啦啦啦免费观看视频1| 97超级碰碰碰精品色视频在线观看| 老熟妇仑乱视频hdxx| 亚洲五月婷婷丁香| 欧美不卡视频在线免费观看 | 欧洲精品卡2卡3卡4卡5卡区| 国产一区在线观看成人免费| 多毛熟女@视频| 免费少妇av软件| aaaaa片日本免费| 大型黄色视频在线免费观看| 午夜精品在线福利| 在线观看66精品国产| 黄频高清免费视频| 在线观看免费高清a一片| 日韩欧美一区二区三区在线观看| 99香蕉大伊视频| 成年版毛片免费区| 十八禁网站免费在线| 国内久久婷婷六月综合欲色啪| 国产99白浆流出| 免费人成视频x8x8入口观看| 91在线观看av| 欧美激情极品国产一区二区三区| 国产激情久久老熟女| 国产三级在线视频| 欧美乱妇无乱码| 久热爱精品视频在线9| 真人一进一出gif抽搐免费| 亚洲伊人色综图| 婷婷丁香在线五月| 日本精品一区二区三区蜜桃| 香蕉久久夜色| 国产黄色免费在线视频| ponron亚洲| 可以免费在线观看a视频的电影网站| 日韩欧美一区二区三区在线观看| 看片在线看免费视频| 狠狠狠狠99中文字幕| 成人特级黄色片久久久久久久| 三级毛片av免费| 一a级毛片在线观看| 国产成人av激情在线播放| 亚洲性夜色夜夜综合| 国产精品99久久99久久久不卡| 男人操女人黄网站| 亚洲美女黄片视频| 最新美女视频免费是黄的| 淫秽高清视频在线观看| a级毛片黄视频| 真人一进一出gif抽搐免费| 村上凉子中文字幕在线| 国产aⅴ精品一区二区三区波| 久久久国产精品麻豆| 美女国产高潮福利片在线看| 69精品国产乱码久久久| 国产又爽黄色视频| 国产精品一区二区在线不卡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲情色 制服丝袜| 亚洲性夜色夜夜综合| 美女国产高潮福利片在线看| 别揉我奶头~嗯~啊~动态视频| 丁香欧美五月| 午夜免费鲁丝| 亚洲精品中文字幕一二三四区| 成人特级黄色片久久久久久久| 亚洲欧美激情综合另类| 欧美午夜高清在线| 精品国产国语对白av| 啪啪无遮挡十八禁网站| 999久久久国产精品视频| 成人亚洲精品av一区二区 | 久久 成人 亚洲| 国产成人精品久久二区二区91| 亚洲精品国产区一区二| 久久久久国产一级毛片高清牌| 人人妻人人爽人人添夜夜欢视频| 一本大道久久a久久精品| 亚洲五月婷婷丁香| 亚洲自拍偷在线| xxx96com| 性色av乱码一区二区三区2| 久久香蕉精品热| 久久这里只有精品19| av视频免费观看在线观看| 中文字幕高清在线视频| 18禁美女被吸乳视频| 亚洲中文字幕日韩| 久久久国产成人精品二区 | 精品久久久精品久久久| 在线观看免费日韩欧美大片| 亚洲少妇的诱惑av| 丰满迷人的少妇在线观看| 叶爱在线成人免费视频播放| 日本黄色视频三级网站网址| 亚洲成国产人片在线观看| 人人妻人人爽人人添夜夜欢视频| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 色在线成人网| 黄色怎么调成土黄色| 日日干狠狠操夜夜爽| 欧美日韩黄片免| 亚洲第一欧美日韩一区二区三区| 深夜精品福利| 欧美日韩瑟瑟在线播放| 操出白浆在线播放| 精品一品国产午夜福利视频| 欧美最黄视频在线播放免费 | 香蕉久久夜色| 欧美乱妇无乱码| 欧美在线黄色| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一小说| 亚洲美女黄片视频| 日韩大尺度精品在线看网址 | 亚洲精品在线美女| 久久久久国产一级毛片高清牌| 日本黄色日本黄色录像| 欧美日韩精品网址| 老司机午夜十八禁免费视频| 99热只有精品国产| 中文字幕精品免费在线观看视频| 一区在线观看完整版| av欧美777| 亚洲av片天天在线观看| 大香蕉久久成人网| 欧美在线黄色| 成人精品一区二区免费| 国产成人影院久久av| 最好的美女福利视频网| 精品国产乱子伦一区二区三区| cao死你这个sao货| 亚洲av成人不卡在线观看播放网| 国内久久婷婷六月综合欲色啪| 俄罗斯特黄特色一大片| 老汉色∧v一级毛片| www.精华液| 大陆偷拍与自拍| 亚洲精品国产区一区二| 亚洲国产中文字幕在线视频| 黑丝袜美女国产一区| 欧美日韩黄片免| 国产精品久久电影中文字幕| 国产精品自产拍在线观看55亚洲| 亚洲成人免费电影在线观看| 婷婷丁香在线五月| 90打野战视频偷拍视频| 亚洲欧美激情在线| 亚洲成国产人片在线观看| 亚洲精品国产精品久久久不卡| 少妇 在线观看| 国产单亲对白刺激| 国产一区二区在线av高清观看| 久久国产精品影院| 精品无人区乱码1区二区| 国产一卡二卡三卡精品| 757午夜福利合集在线观看| 精品国产一区二区久久| 亚洲成人国产一区在线观看| 色婷婷久久久亚洲欧美| 精品一区二区三区四区五区乱码| 日本精品一区二区三区蜜桃| 777久久人妻少妇嫩草av网站| 国产97色在线日韩免费| 国产午夜精品久久久久久| 国产精品亚洲一级av第二区| 婷婷丁香在线五月| 精品久久久久久久毛片微露脸| 不卡一级毛片| 国产精品永久免费网站|