• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction

    2022-08-01 06:02:20MingLangWang王明郎BoHanZhang張博涵WenFeiZhang張雯斐XinYueTian田馨月GuangPingZhang張廣平andChuanKuiWang王傳奎
    Chinese Physics B 2022年7期
    關(guān)鍵詞:廣平王明

    Ming-Lang Wang(王明郎), Bo-Han Zhang(張博涵), Wen-Fei Zhang(張雯斐),Xin-Yue Tian(田馨月), Guang-Ping Zhang(張廣平), and Chuan-Kui Wang(王傳奎)

    School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: molecular electronics,crystallographic orientations,non-equilibrium Green’s function

    1. Introduction

    Single-molecule electronics aiming to drive electronic component miniaturization have achieved considerable progress in the recent years.[1,2]Since the first rectifier was proposed by Aviram and Ratner,[3]functional single-molecule junctions have been fabricated by investigating the electron transport properties for various applications, such as molecular rectifiers,[4–6]molecular conducting wires,[7–9]molecular switches,[10–12]and molecular transistors.[13–15]In this context, understanding and controlling the electron transfer process based on the core functional molecules between electrodes is essential for developing the single-molecule junctions. The single-molecule junction conductance has been theoretically and experimentally verified to primarily depend on the molecular geometry and molecule–electrode interface,which includes factors like anchoring groups, interfacial geometry, and electrode characteristics.[16–23]Therefore, suitable anchoring groups and electrode materials must be determined for designing high-performance single-molecule devices. Common anchoring groups for attaching metal electrodes include pyridine, amino groups, carboxylic acids, nitriles, and isonitriles, among which thiol is more popular as a linker because it forms stable mechanical and electronic contacts.[24–29]After systematically comparing the conductance values of alkane molecular chains with various anchoring groups,Chenet al.demonstrated that Au–thiol contributes the lowest contact resistance,whereas the conductance decay constant is virtually independent of the anchoring groups.[30]In addition, the metal electrodes in molecular junctions can change the Fermi level and influence the energy alignment with the molecular conducting energy level. In this context,several studies have reported that the conductance is strongly dependent on the electrode materials used for constructing single-molecular devices.[31–33]Owing to their lower work function, the molecular junctions formed with Ag electrodes are less conductive than those formed with Au electrodes for amine-terminated oligophenyl and alkane molecules.[34]Furthermore, the varying of electrode crystallographic orientations can result in the large variations in electronic transport properties of molecular junctions.[35–45]Moreover, the high and low conductance measured in alkanethiol molecular junctions are attributed to the electrode orientation,which can tune the molecule–electrode interaction.[35]For aromatic thiophene-based molecules, the (110) crystallographic orientation exhibits superior constructive conductance and negative differential conductance(NDR).[40]In particular,the NDR behavior is verified based on switching molecular junctions for utilizing the electrode orientations.[37]

    As the most prevalent material in integrated circuits,bulk Si can be considered as a series of cross-linked Si monatomic chains in one-dimensional structures. Since the first report on permethyloligosilanes short chains exhibiting electronic properties different from those alkane analogs, the saturatedσconjugated permethyloligosilanes have been reported to show a variety of rich electronic properties.[46–56]After the geometry of the terminal methylthiomethyl group was connected to Au electrodes, the permethyloligosilanes demonstrated the first single-molecular switch operation via a stereoelectronic effect.[53]Moreover, the single-molecule junction conductance trend for thiol-terminated permethyloligosilanes was inversely related to metal work function.[56]To the best of our knowledge, the crystallographic orientation effect of the permethyloligosilane molecular junctions has not yet been investigated. Therefore,it is essential to bridge the knowledge gap concerning this molecule–electrode interface effect.

    In this study, the atomic structures and electronic transport properties of methylthiol-terminated permethyloligosilane molecular junctions containing permethyloligosilanes with 6, 7, and 8 Si atoms are investigated based on density functional theory through using the nonequilibrium Green’s function method. Considering the possible nanostructures formed using the scanning tunneling microscope breakjunction technology,[35,52]a face-centered crystal Au/Ag with the crystallographic orientations of (111) and (100) is used as the electrodes. The calculations reveal that the low-bias conductance calculated in the linear response limit is dominated by electronic tunneling between the terminal metal–S bonds formed at the metal–molecule interfaces for all molecular junctions considered in this work. The low-bias conductance exponentially decreases with the number of Si atoms in the permethyloligosilane backbone increasing from 6 to 8.More importantly, the results of this study suggest that the interfacial coupling is determined by the electrode characteristics. In the case of the (111) crystallographic orientation,the interfacial coupling between the interfacial Au–S states is stronger than that between the interfacial Ag–S states, resulting in a large low-bias junction conductance. In contrast, the interfacial coupling between interfacial Au–S states is weaker than that between interfacial Ag–S states for the(100)crystallographic orientations,which yields a small low-bias junction conductance.

    2. Calculation method

    We employed the Atomistix ToolKit (ATK) software package to optimize the geometric structures and evaluate the electronic structures of molecules and molecular junctions.[57,58]The ATK is a highly efficientab initiocode for implementing numerical simulations of large systems,wherein the norm-conserving Troullier–Martins pseudopotentials are used to describe the core electrons, and the finiterange numerical orbital basis set is used for describing the valence electrons.[59–61]In particular, the C, H, S, Si, Au, and Ag atoms comprising the molecules and molecular junctions considered herein are described using a double-zeta plus polarization (DZP) basis set. The generalized gradient approximation (GGA) formulated by Perdew–Burke–Ernzerhof relates to the exchange–correlation functional.[62]Additionally,the real-space grid integration was considered by an equivalent cutoff of 300.0 Ry (1 Ry=13.6056923(12) eV), and a 4×4k-point sampling was employed in the transverse direction, with a periodic boundary condition used. The geometry optimization was accomplished using the standard conjugate gradient method until the energy tolerance was lower than 1.0×10-4Hartree(1 Hartree=4.3597×10-18J)and all atomic forces were lower than 0.02 eV/?A.

    Subsequently,the transport properties of molecular junctions were evaluated using ATK,which effectively implements the nonequilibrium Green’s function calculations.[63]Moreover, the molecular junctions include a single molecule and 12 atomic layers of the metal electrodes. The periodic boundary conditions were applied to the direction perpendicular to the transport direction.The charge density was integrated over 30 energy points along the semicircle, eight points along the line in the complex plane, and eight poles in the Fermi function with an electronic temperature of 300 K.The transmission spectrumT(E)of the molecular junctions was obtained from the following equation:

    whereG0=2e2/hdenotes the conductance quantum.erepresents the electron charge,hrefers to the Planck’s constant,andEFis the Fermi energy.

    3. Results and discussion

    First, the atomic structure and the electronic structure of the isolated permethyloligosilane are investigated in a transextended conformation. The methylthiol-terminated oligosilanes with 6,7,and 8 Si atoms(denoted as Si6,Si7,and Si8,respectively)are used as the central conductive molecules.For all isolated molecules, the Si atoms in the oligosilane backbone are coplanar with the terminal S atom and C atom in methylene. The interatomic bond length is independent of the number of Si atoms, and the length of C–S, C–Si, and Si–Si bonds are 1.82,1.91,and 2.37 ?A,respectively,corresponding to the electronic structures presented in Fig. 1. The highest occupied molecular orbital(HOMO)orbital and HOMO-1 orbital, shown in the inset in Fig. 1, are degenerate, and both orbitals are contributed by terminal S 3p localized atomic orbitals perpendicular to the molecular plane. In contrast to the localized characteristics, both lowest unoccupied molecular orbital(LUMO)and HOMO-2 are delocalized across the entire molecular backbone. Although theσ-bond comprising the Si backbone is similar to that in alkane,the oligosilanes exhibit the specialσconjugation due to the reduced energy gap,with the number of Si atoms increased,as depicted in Fig.1.

    The optimized geometric structure of the Ag(111)–Si6–Ag(111)molecular junction is illustrated in Fig.2(a),wherein two methylthiol groups connect to the Ag adatoms on electrode surfaces cut from a face-centered crystal Ag bulk along the(111)direction. The optimized Ag–S covalent bond length is 2.35 ?A,whereas the C–Si bond length and Si–Si bond length are the same as those of isolated molecule,indicating that the molecular geometry is stable both before and after forming the molecular junction. The equilibrium transmission spectrum is obtained as depicted in Fig.2(b). Two prominent transmission peaks at-1.02 eV and 3.25 eV decay rapidly towardsEF. In particular,a small shoulder peak centered at-0.33 eV occurs.The transmission coefficient atEFis 8.9×10-3. To further understand these peaks,the projected density of states(PDOS)on the terminal S and Ag atoms and the eigenchannel are evaluated and shown in Figs. 2(c)–2(e). The narrow peak aboveEFis caused by the weak coupling between the Ag p-orbitals and S 3p-orbitals,which are obtained from the LUMO orbitals by comparing the eigenchannel calculated at 3.25 eV with the frontier molecular orbitals (FMOs) as indicated in the insets of Fig. 1. Although the PDOS at-0.33 eV is exceedingly high,the corresponding transmission peak is extremely small,which is caused by S 3p-orbitals perpendicular to the molecular plane,resulting in weak coupling with backboneσ-bond(Fig. 2(e)). Moreover, the broadened peak underEFextends from-0.86 eV to-1.02 eV, which is primarily contributed by Ag 4d and S 3p orbitals. Furthermore,the broadened transmission peak in Fig. 2(e) is dominated by the HOMO and HOMO-1, wherein the splitting of energy level is caused by interaction between two interfacial states after having been connected to electrodes.The eigenchannel calculated atEFexhibits the fundamental density distribution on the left-terminal S atoms and Ag atoms as depicted in Fig.2(e),indicating that the interfacial hybrid states provide a dominant contribution to electron transfer in the vicinity ofEF. As the isovalue of eigenchannel isosurface decreases from 0.15 ?A-1.5(eV)-0.5to 0.05 ?A-1.5(eV)-0.5, the eigenchannel exhibits an extension along the molecular backbone through the S–Cσchannel and Si–Siσchannel. The results further demonstrate that the states contributing to the small shoulder does not contribute to the transmission atEF,regardless of their vicinity toEF.

    Similar junctions are constructed using Si7 (Si8)molecule and denoted by Ag(111)–Si7(Si8)–Ag(111), and the optimized geometric structures are almost unchanged.The Ag–S, S–C, and C–Si bond length are calculated to be 2.37 ?A (2.36 ?A), 1.83 ?A (1.83 ?A), and 1.92 ?A (1.91 ?A) for Si7(Si8)molecular junctions,respectively. Overall,the trend of the equilibrium transmission curve is similar to that of the Ag(111)–Si6–Ag(111)junction,except that the energy gap between the HOMO and LUMO decreases,and the HOMO shifts towardEFas the molecular backbone elongates. Counter intuitively,the calculated transmission coefficient atEFdecreases from 8.9×10-3and 4.97×10-3to 3.4×10-3as the molecule changes from Si6 into Si8,which is prominently expressed in the inset with the transmission coefficients using logarithmic coordinates(Fig.2). This is ascribable to the longer molecular backbone and weaker interfacial coupling. Therefore, the conductive mechanism of the Ag(111)–Si6(Si7,Si8)–Ag(111)molecular junction is primarily dominated by the electronic tunneling between the two localized Ag–S interfacial states that can be tuned by the oligosilane chain. For the three molecular junctions, the conductance calculated in the linear response limit decreases exponentially with the number of Si atoms, which can be expressed asG~exp(-βn), whereGdenotes the junction conductance,nthe number of Si atoms,andβthe conductance decay constant. Theβvalue is fitted as 0.52 per Si atom,which corresponds well with the experimentally measured value of 0.60±0.03 per Si atom. Furthermore,the tunneling mechanism is confirmed based on the discussed length-dependent junction conductance.

    Fig. 2. Optimized atomic structure and electronic transport properties of Ag(111)–Si6–Ag(111) molecular junction with Ag electrode along (111)directions: (a) optimized atomic structure; (b) equilibrium transmission spectra calculated for Ag(111)–Si6(7,8)–Ag(111) molecular junctions, with inset showing transmission coefficients in logarithmic coordinates; (c) PDOS projected onto adatom Ag atom; (d) PDOS projected onto terminal S atom; (e)eigenchannel calculated at EF, -0.33, -0.86, -1.02, and 3.25 eV.The isovalue is 0.15 ?A-1.5 (eV)-0.5, whereas it decreases to 0.05 ?A-1.5(eV)-0.5,as shown in the inset of eigenchannel calculated at EF;(f)conductance decay constant.

    Thereafter,the Au(111)–Si6–Au(111)molecular junction is constructed, the optimized geometric structure of which is shown in Fig. 3(a). In this structure, two methylthiol groups connect the Au adatoms on the electrode surfaces cut from the face-centered crystal Au bulk along the (111) direction. The optimized bond length of the Au–S covalent bond is 2.30 ?A,and the interatomic separation of the central molecular backbone is almost identical to that in the Ag(111)–Si6–Ag(111)molecular junction. This indicates that the molecular geometry is independent of the electrode characteristics, and the Au–S bond is slightly stronger than the Ag–S bond, which may enhance the low-bias conductance. The transmission coefficient atEFis calculated to be 1.70×10-2,which is indeed higher than that of the Ag electrode. This enhanced conductance can be ascribed to the Au 5d and S 3p orbitals(Figs.3(c)and 3(d)),which are dominated by the HOMO and HOMO-1 of Si6 molecule (Fig. 3(f); inset in Fig. 1). Notably, the Au 5d and S 3p orbitals centered at-0.39 eV do not contribute to the transmission due to orbital symmetry mismatch,which also appeared in the alkane–thiol molecular junctions.[65]The eigenchannel extending along the molecular backbone through the S–C,and Si–Siσchannel is similar to that in the Ag(111)–Si6–Ag(111), which indicates that the transmission atEFis caused by the tail effect of these peaks underEF. Similarly,with the longer molecules connected to the Au electrodes,the conjugate characteristic is enhanced as the transmission coefficient atEFdecreases as depicted in the inset of Fig. 3(b).In particular,the transmission coefficients atEFare evaluated to be 8.8×10-3for Au(111)–Si7–Au(111) and 6.03×10-3for Au(111)–Si8–Au(111). According to the same analysis method, the reduced transmission coefficient primarily originates from reduced interfacial coupling between two Au–S states at both interfaces,wherein the tunneling mechanism can be further confirmed by reducing the widths of the transmission peaks contributed by the HOMO and HOMO-1 during backbone elongation. Further, the conductance decay constant per atom is evaluated to be 0.57,which is consistent with the experimental value of 0.64±0.02 per Si atom. In addition,the separation between the peaks acrossEFfor Au(111)–Si6(Si7,Si8)–Au(111) is 4.02 (3.80 and 3.64) eV, which accords well with that for the Ag(111)–Si6(Si7,Si8)–Ag(111)molecular junction. Thus, these results demonstrate that the transport properties are influenced by the electrode characteristics.

    Fig. 3. Optimized atomic structure and electronic transport properties of Au(111)–Si6–Au(111) molecular junction with Au electrode along (111)direction. (a) Optimized atomic structure; (b) equilibrium transmission spectra calculated for Au(111)–Si6(7,8)–Au(111) molecular junctions, with inset indicating transmission coefficients in logarithmic coordinates; (c) PDOS projected onto adatom Au atom; (d) PDOS projected onto terminal S atom;(e)conductance decay constant;(f)eigenchannel calculated at EF and-0.81 eV.

    Fig. 4. Conductance calculated in linear response limit as a function of Si atom number in electrode(111)direction.

    However, Liet al.recently reported that the electrical contact provided by Ag electrodes for thiol-terminal silanes is superior to that provided by Au electrodes. In addition,the higher conductance in the Ag electrode than that in the Au electrode is in discrepancy with previously calculated result.[56]Moreover, Sen and Kaun reported that Au(100)electrodes can offer a higher conductance than Au(111)electrodes in alkanedithiol single-molecule junctions.[35]Therefore, molecular junctions constructed by symmetrically connecting molecules to the pyramid tip atom on the surfaces from the face-centered crystal metal bulk along the (100) direction are investigated. The Ag(100)–Si6–Ag(100) molecular junction is presented in Fig. 5(a). The Ag–S bond length is optimized to be 2.36 ?A. Moreover, the interatomic separations of S–C, C–Si, and Si–Si are calculated to be 1.83,1.91,and 2.37 ?A,respectively,maintaining them with those of the isolated molecules. Furthermore,the equilibrium transport spectrum is similar to that of Ag(111)–Si6–Ag(111)with two prominent transmission peaks acrossEF. The small variations are that the peak underEFshifted slightly downward and the plateau becomes narrower than that of Ag(111)–Si6–Ag(111).In the PDOS depicted in Figs. 5(c) and 5(d), the peaks underEFare attributed to the Ag 4d–5s and S 3p orbitals,which are dominated by the HOMO and HOMO-1 based on the inspection of FMOs of Si6 molecule (inset of Fig. 1). Additionally,the eigenchannel in Fig.5(f)indicates that the transmission atEFis dominated by electronic extension originating from the interfacial Ag–S state, and the HOMO and HOMO-1 constitute the conductive channel. As the molecular backbone elongates, the reduced interfacial coupling narrows the plateau of the peak underEFand reduces the transmission atEF. The equilibrium transmission coefficients atEFfor Ag(100)–Si7–Ag(100) and Ag(100)–Si8–Ag(100) are calculated to be 2.23×10-3and 1.42×10-3, respectively. The fitting decay constantβis evaluated to be 0.52 per Si atom(Fig. 5(e)), which accords with the counterpart for Ag(111)–Si6(7,8)–Ag(111). These findings further corroborate that the electron tunneling passes through the same molecular orbitals.

    Fig. 5. Optimized atomic structure and electronic transport properties of Ag(100)–Si6–Ag(100) molecular junction with Au electrode along (100)direction. (a)Optimized atomic structure;(b)equilibrium transmission spectra calculated for Ag(100)–Si6(7,8)–Ag(100)molecular junction,with inset showing transmission coefficient in logarithmic coordinate; (c)PDOS projected onto adatom Ag atom; (d)PDOS projected onto terminal S atom; (e)conductance decay constant;(f)eigenchannel calculated at EF and-1.0 eV.

    Finally, we come to investigate the Au(100)–Si6–Au(100) molecular junction. The optimized geometric structure is illustrated in Fig.6(a). The optimized bond lengths of Au–S,S–C,C–Si,and Si–Si are 2.30,1.82,1.92,and 2.36 ?A,respectively,which are independent of crystallographic orientation. The prominent transmission peak underEFin Fig.6(b)is dominated by the interaction between the Au 5d and S 3p orbitals as shown in Figs. 6(c) and 6(d). Furthermore, the eigenchannel in Fig.6(f)indicates that the peak is dominated by the HOMO and HOMO-1 of the isolated Si6 molecule,and that the transmission atEForiginates from its tail effect. As the central molecule varies from Si6 to Si7 to Si8, the interfacial coupling weakens according to the narrower plateau of the peak underEF, which consequently reduces the transmission coefficient from 2.93×10-3through 1.86×10-3to 1.13×10-3, regardless of the peak progressing upward to theEF. The tunneling mechanism between the interfacial Au–S states can be corroborated by the exponential decay function defined based on the decay constantβ= 0.45 in Fig. 6(e). Moreover, the conductance in the linear response limit is derived as a function of the number of Si atoms, and the results are shown in Fig. 7. In stark contrast to the results of the electrode (111) crystallographic orientations, the low-bias conductance of the Ag(100) electrode is higher than that of Au(100), which corresponds to experimental measurement.[56]The average coupling coefficients for the Au(100)–Si6–Au(100), Au(100)–Si7–Au(100),and Au(100)–Si8–Au(100)molecular junctions are calculated to be 50.9, 38.0, and 24.5 meV,respectively. This is because the reduced coupling between the interfacial Au–S states can lead the low-bias conductance to decrease. For Ag(100)–Si6–Ag(100), Ag(100)–Si7–Ag(100), and Ag(100)–Si8–Ag(100)molecular junctions, the calculated coupling coefficients are 62.4, 39.7, and 28.3 meV, which can explain the conductance varying with the molecular length. More importantly,the Ag(100) electrode offers superior electronic contact with methylthiol-terminated permethyloligosilanes in comparison with the Au(100) electrode, consequently resulting in higher low-bias conductance.

    Fig. 6. Optimized atomic structure and electronic transport properties of Au(100)–Si6–Au(100) molecular junction with Au electrode along(100) directions. (a) Optimized atomic structure; (b) equilibrium transmission spectra calculated for Au(100)–Si6(7,8)–Au(100) molecular junctions, with inset showing transmission coefficient in logarithmic coordinates; (c)PDOS projected onto adatom Au atom; (d)PDOS projected onto terminal S atom;(e)conductance decay constant;(f)eigenchannel calculated at EF and-0.94 eV.

    Fig.7. Conductance calculated within linear response limit as a function of Si atom number for electrode with crystallographic orientation of(100).

    4. Conclusions

    The density functional theory, combined with the nonequilibrium Green’s function, is used to investigate the atomic structures and electronic transport properties of molecular junctions,wherein permethyloligosilanes with 6,7,and 8 Si atoms are symmetrically connected to a face-centered crystal Au/Ag electrode along the(111)direction and the(100)direction. The derived calculations reveal that the low-bias conductance is dominated by electronic tunneling between metal–S bonding states at both molecule–electrode interfaces. Although theσconjugation increases, the decreasing of coupling, which is due to tuning the central permethyloligosilane backbone length, leads the low-bias conductance to decay exponentially. In addition, the interfacial coupling can be mediated by the electrode crystallographic orientations.For electrodes along the (111) direction, the conductance of molecules connected to the Au electrodes is higher than that of the molecules connected to the Ag electrodes. In contrast,for electrodes along the(100)direction,the conductance of the molecular junctions connected to the Ag electrode is higher than that of the molecules connected to the Au electrode. The findings of this study are conducive to understanding the transport mechanism and mediating the interactions between the two metal–molecule interfaces by suitable electrode crystallographic orientations,thereby improving the electronic properties of permethyloligosilanes molecular junctions.

    Acknowledgements

    Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019PA022) and the National Natural Science Foundation of China (Grant No.21933002).

    猜你喜歡
    廣平王明
    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
    “廣平建行鄉(xiāng)村振興杯”首屆微型小說征文獲獎名單
    Higher Derivative Estimates for a Linear Elliptic Equation
    Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
    走過318
    北方音樂(2019年10期)2019-07-10 19:13:36
    “看不見”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    中考里的“一元二次方程”
    “方程(組)與不等式(組)”復(fù)習(xí)專題
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    An Interpretation of The Snows of Kilimanjaro from the Perspective of the Narrative Person
    中文字幕亚洲精品专区| 国产 一区精品| 丰满迷人的少妇在线观看| 欧美日本中文国产一区发布| 久久国内精品自在自线图片| 高清黄色对白视频在线免费看| 亚洲精品国产av成人精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲少妇的诱惑av| 国产日韩欧美视频二区| 精品久久久精品久久久| 亚洲综合色惰| 美女大奶头黄色视频| 人人妻人人爽人人添夜夜欢视频| 妹子高潮喷水视频| 色婷婷久久久亚洲欧美| 2018国产大陆天天弄谢| av天堂久久9| 999精品在线视频| 亚洲五月色婷婷综合| 国内精品宾馆在线| 国产亚洲一区二区精品| 国产日韩欧美亚洲二区| 亚洲精品一二三| kizo精华| 中国美白少妇内射xxxbb| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品一区二区三区在线| 久久久久精品人妻al黑| 国产精品嫩草影院av在线观看| 精品一区在线观看国产| 最近最新中文字幕免费大全7| 伊人亚洲综合成人网| 99国产综合亚洲精品| a级片在线免费高清观看视频| 午夜福利视频在线观看免费| 欧美丝袜亚洲另类| 国产精品久久久久久精品电影小说| 久久国内精品自在自线图片| 久久热在线av| 国产一区二区在线观看日韩| 天天操日日干夜夜撸| 日韩人妻精品一区2区三区| 国产成人精品久久久久久| 永久免费av网站大全| 国产在线免费精品| 日韩精品免费视频一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 满18在线观看网站| 精品亚洲成国产av| 久久精品久久久久久久性| av国产久精品久网站免费入址| 亚洲欧洲精品一区二区精品久久久 | 免费观看性生交大片5| 国产男人的电影天堂91| 日本午夜av视频| 男女免费视频国产| 色网站视频免费| 99精国产麻豆久久婷婷| 国产在线视频一区二区| 熟女av电影| 精品亚洲成国产av| 自线自在国产av| 人妻系列 视频| 9191精品国产免费久久| 中国国产av一级| 我的女老师完整版在线观看| 91国产中文字幕| 欧美xxⅹ黑人| 性高湖久久久久久久久免费观看| 精品人妻在线不人妻| 在线观看人妻少妇| 超碰97精品在线观看| 欧美日韩国产mv在线观看视频| 两个人看的免费小视频| 啦啦啦在线观看免费高清www| 婷婷色综合大香蕉| 日韩一本色道免费dvd| 亚洲av日韩在线播放| 90打野战视频偷拍视频| 深夜精品福利| 国产又爽黄色视频| 亚洲精品一区蜜桃| 国产爽快片一区二区三区| 三级国产精品片| 黄色视频在线播放观看不卡| 亚洲成人手机| 久久ye,这里只有精品| 九色成人免费人妻av| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩成人在线一区二区| 1024视频免费在线观看| 寂寞人妻少妇视频99o| 久久久国产精品麻豆| 青春草视频在线免费观看| 精品人妻一区二区三区麻豆| 新久久久久国产一级毛片| 乱码一卡2卡4卡精品| 国产爽快片一区二区三区| 99热全是精品| a级毛片黄视频| 好男人视频免费观看在线| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美清纯卡通| 99香蕉大伊视频| 久久av网站| 国产午夜精品一二区理论片| 国产免费又黄又爽又色| 午夜影院在线不卡| 久久久久久久大尺度免费视频| 三级国产精品片| 欧美 亚洲 国产 日韩一| 少妇猛男粗大的猛烈进出视频| 狂野欧美激情性xxxx在线观看| 婷婷色麻豆天堂久久| av视频免费观看在线观看| 秋霞在线观看毛片| 我要看黄色一级片免费的| 激情五月婷婷亚洲| 91国产中文字幕| 亚洲,欧美精品.| 侵犯人妻中文字幕一二三四区| √禁漫天堂资源中文www| av网站免费在线观看视频| 久久久久久久亚洲中文字幕| 亚洲精品日本国产第一区| 国产成人av激情在线播放| 视频中文字幕在线观看| 日韩成人av中文字幕在线观看| 免费观看无遮挡的男女| 啦啦啦视频在线资源免费观看| 欧美变态另类bdsm刘玥| 赤兔流量卡办理| 国产精品人妻久久久久久| 国产伦理片在线播放av一区| 亚洲精品美女久久av网站| 看免费成人av毛片| 成人亚洲欧美一区二区av| av.在线天堂| 亚洲av欧美aⅴ国产| 免费高清在线观看视频在线观看| 男人操女人黄网站| 亚洲国产av影院在线观看| 亚洲一级一片aⅴ在线观看| 久久久精品94久久精品| 国产精品女同一区二区软件| 高清不卡的av网站| av国产久精品久网站免费入址| 中文字幕精品免费在线观看视频 | 免费黄频网站在线观看国产| 亚洲三级黄色毛片| 在线精品无人区一区二区三| 岛国毛片在线播放| 香蕉丝袜av| 一级片免费观看大全| av播播在线观看一区| 亚洲综合色惰| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美在线一区| 欧美另类一区| av在线播放精品| 午夜福利影视在线免费观看| 99热6这里只有精品| 黄色 视频免费看| 成人综合一区亚洲| 国产精品人妻久久久久久| 少妇高潮的动态图| 免费观看在线日韩| 蜜臀久久99精品久久宅男| 成人国产麻豆网| 午夜激情久久久久久久| 国产综合精华液| 成人无遮挡网站| 亚洲av免费高清在线观看| 国产精品一二三区在线看| 精品亚洲乱码少妇综合久久| 一区二区日韩欧美中文字幕 | 亚洲国产精品一区二区三区在线| 最近最新中文字幕大全免费视频 | 成年美女黄网站色视频大全免费| 亚洲欧美精品自产自拍| 欧美精品一区二区大全| 午夜福利在线观看免费完整高清在| 一级,二级,三级黄色视频| 22中文网久久字幕| 中文字幕人妻丝袜制服| 日本-黄色视频高清免费观看| 91午夜精品亚洲一区二区三区| 免费高清在线观看视频在线观看| 国产精品一国产av| 日韩制服骚丝袜av| 亚洲成国产人片在线观看| 亚洲欧洲日产国产| 中国国产av一级| 日韩成人av中文字幕在线观看| 国产成人a∨麻豆精品| 我要看黄色一级片免费的| 中文字幕免费在线视频6| 亚洲国产精品国产精品| 久久久欧美国产精品| 午夜免费男女啪啪视频观看| 成人免费观看视频高清| 99国产综合亚洲精品| 国产精品久久久久久久电影| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 男女边摸边吃奶| 午夜av观看不卡| 美女国产视频在线观看| 久久人人爽人人爽人人片va| 狂野欧美激情性xxxx在线观看| 亚洲av电影在线观看一区二区三区| 久久97久久精品| 午夜福利影视在线免费观看| 春色校园在线视频观看| 成年人午夜在线观看视频| 亚洲人与动物交配视频| 国产一级毛片在线| 成人综合一区亚洲| 亚洲在久久综合| 男女免费视频国产| 亚洲激情五月婷婷啪啪| 街头女战士在线观看网站| 亚洲美女视频黄频| 青春草亚洲视频在线观看| 啦啦啦中文免费视频观看日本| 丝袜美足系列| 欧美精品亚洲一区二区| 中文字幕制服av| 久久精品国产亚洲av天美| 国产色爽女视频免费观看| 精品视频人人做人人爽| 久久久久国产网址| 纵有疾风起免费观看全集完整版| 亚洲美女黄色视频免费看| 国产成人91sexporn| 免费不卡的大黄色大毛片视频在线观看| 欧美国产精品一级二级三级| 一二三四中文在线观看免费高清| 亚洲国产色片| 老女人水多毛片| 久久久久久久久久久免费av| 这个男人来自地球电影免费观看 | 亚洲国产色片| videos熟女内射| 国产在线视频一区二区| 国产精品偷伦视频观看了| 亚洲av福利一区| 王馨瑶露胸无遮挡在线观看| 黄色 视频免费看| 热99久久久久精品小说推荐| 亚洲一码二码三码区别大吗| 草草在线视频免费看| 国产精品人妻久久久影院| 亚洲av福利一区| 国产av国产精品国产| 男人爽女人下面视频在线观看| 午夜精品国产一区二区电影| 久久久久久久亚洲中文字幕| 国产成人精品在线电影| 母亲3免费完整高清在线观看 | 极品少妇高潮喷水抽搐| 免费看不卡的av| 大陆偷拍与自拍| 日韩人妻精品一区2区三区| 亚洲av成人精品一二三区| 丰满乱子伦码专区| 老司机影院成人| 高清毛片免费看| 亚洲精品一二三| 国产有黄有色有爽视频| av在线观看视频网站免费| 国产激情久久老熟女| 日本av手机在线免费观看| 亚洲四区av| 国产69精品久久久久777片| 乱码一卡2卡4卡精品| 欧美+日韩+精品| 交换朋友夫妻互换小说| 最新中文字幕久久久久| 国产亚洲最大av| 最后的刺客免费高清国语| 国产一级毛片在线| 考比视频在线观看| 久久女婷五月综合色啪小说| 亚洲av中文av极速乱| 国产男人的电影天堂91| 最近手机中文字幕大全| 久久精品国产鲁丝片午夜精品| a级片在线免费高清观看视频| freevideosex欧美| 中文精品一卡2卡3卡4更新| 黄色怎么调成土黄色| 99热全是精品| 国产成人午夜福利电影在线观看| 国产精品 国内视频| 国产精品人妻久久久影院| 老司机影院成人| 国产亚洲av片在线观看秒播厂| 伦理电影大哥的女人| 亚洲色图 男人天堂 中文字幕 | 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| kizo精华| 91午夜精品亚洲一区二区三区| 日韩中文字幕视频在线看片| 咕卡用的链子| 久久久久久人妻| 亚洲人成77777在线视频| 亚洲美女视频黄频| 亚洲,一卡二卡三卡| 久久久久久久大尺度免费视频| av天堂久久9| 一本久久精品| 国产爽快片一区二区三区| 色5月婷婷丁香| 男女边摸边吃奶| 国产精品人妻久久久影院| 亚洲婷婷狠狠爱综合网| 麻豆乱淫一区二区| 美女中出高潮动态图| 国产av码专区亚洲av| 国产欧美日韩综合在线一区二区| 亚洲国产精品一区三区| 熟女人妻精品中文字幕| 成人综合一区亚洲| 九九在线视频观看精品| 中文字幕人妻熟女乱码| 免费播放大片免费观看视频在线观看| 国产精品免费大片| 色哟哟·www| 国产精品久久久久久av不卡| 男人舔女人的私密视频| 国产伦理片在线播放av一区| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| 亚洲精品国产av成人精品| 高清毛片免费看| 99国产精品免费福利视频| 1024视频免费在线观看| 少妇的逼好多水| av不卡在线播放| 美女中出高潮动态图| 欧美精品一区二区大全| 日韩av免费高清视频| 国产黄色视频一区二区在线观看| 秋霞伦理黄片| 欧美精品人与动牲交sv欧美| 亚洲综合色网址| 水蜜桃什么品种好| 成年动漫av网址| 22中文网久久字幕| 97在线视频观看| 麻豆乱淫一区二区| 久久av网站| 大香蕉久久成人网| 亚洲 欧美一区二区三区| 黄网站色视频无遮挡免费观看| 日本黄色日本黄色录像| 草草在线视频免费看| 国精品久久久久久国模美| 性色av一级| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲人与动物交配视频| 日韩一区二区视频免费看| 日本-黄色视频高清免费观看| 中国三级夫妇交换| 人妻人人澡人人爽人人| 亚洲欧美色中文字幕在线| 亚洲第一区二区三区不卡| 亚洲综合色惰| 欧美 亚洲 国产 日韩一| 秋霞伦理黄片| 18在线观看网站| 色哟哟·www| 国产黄色视频一区二区在线观看| 日本欧美视频一区| 欧美精品人与动牲交sv欧美| 黑人猛操日本美女一级片| 丰满饥渴人妻一区二区三| 久热这里只有精品99| 高清黄色对白视频在线免费看| 亚洲精品色激情综合| 亚洲国产色片| 亚洲精华国产精华液的使用体验| 国产黄色免费在线视频| 丰满迷人的少妇在线观看| 欧美xxxx性猛交bbbb| 中国美白少妇内射xxxbb| 久久久亚洲精品成人影院| 一级片'在线观看视频| 人妻少妇偷人精品九色| 赤兔流量卡办理| 在线观看一区二区三区激情| 午夜精品国产一区二区电影| 夫妻性生交免费视频一级片| 在线观看三级黄色| 18禁在线无遮挡免费观看视频| 在线亚洲精品国产二区图片欧美| 99精国产麻豆久久婷婷| 黑人高潮一二区| 人妻系列 视频| 久久久久国产网址| 视频区图区小说| 在现免费观看毛片| 精品视频人人做人人爽| 哪个播放器可以免费观看大片| 亚洲欧美中文字幕日韩二区| 午夜免费观看性视频| 91aial.com中文字幕在线观看| 男男h啪啪无遮挡| 亚洲欧美色中文字幕在线| 国产精品无大码| 中文字幕精品免费在线观看视频 | 国产欧美日韩综合在线一区二区| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 国产极品粉嫩免费观看在线| 女性被躁到高潮视频| 97超碰精品成人国产| 中文字幕人妻熟女乱码| 亚洲国产色片| 女性生殖器流出的白浆| 国产成人精品婷婷| 午夜激情av网站| 日本黄色日本黄色录像| 桃花免费在线播放| 国产精品99久久99久久久不卡 | 国产熟女午夜一区二区三区| 亚洲国产最新在线播放| 国产xxxxx性猛交| 最新的欧美精品一区二区| 高清不卡的av网站| 极品少妇高潮喷水抽搐| 中文天堂在线官网| 性色avwww在线观看| 国产欧美亚洲国产| 天美传媒精品一区二区| 亚洲国产看品久久| 久久精品久久久久久噜噜老黄| 精品国产乱码久久久久久小说| 国产精品熟女久久久久浪| 考比视频在线观看| 欧美日韩精品成人综合77777| 99九九在线精品视频| 国产免费又黄又爽又色| 亚洲精品久久久久久婷婷小说| 91精品国产国语对白视频| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| www日本在线高清视频| 赤兔流量卡办理| 日韩中字成人| 春色校园在线视频观看| 国产午夜精品一二区理论片| 久久97久久精品| 9191精品国产免费久久| 国产成人午夜福利电影在线观看| 亚洲av日韩在线播放| 国产成人免费无遮挡视频| 亚洲三级黄色毛片| 美女主播在线视频| 欧美xxxx性猛交bbbb| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看| 老司机亚洲免费影院| 国产在线视频一区二区| 国产综合精华液| 久久亚洲国产成人精品v| 桃花免费在线播放| 日韩 亚洲 欧美在线| 91精品三级在线观看| 777米奇影视久久| 亚洲国产欧美日韩在线播放| 熟女电影av网| 黄色怎么调成土黄色| 午夜免费观看性视频| 国产极品粉嫩免费观看在线| 天堂俺去俺来也www色官网| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 国产精品女同一区二区软件| 国产xxxxx性猛交| 最新中文字幕久久久久| 亚洲成人一二三区av| 视频在线观看一区二区三区| 欧美国产精品va在线观看不卡| 亚洲av电影在线进入| 亚洲国产精品一区三区| 亚洲精品一区蜜桃| 日韩人妻精品一区2区三区| 国产免费一区二区三区四区乱码| 日韩一区二区视频免费看| 欧美日韩视频精品一区| 99久国产av精品国产电影| 老司机影院毛片| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看| 日本vs欧美在线观看视频| 久久精品久久久久久久性| 成年美女黄网站色视频大全免费| 国产av国产精品国产| 国产午夜精品一二区理论片| 精品午夜福利在线看| 国产在线一区二区三区精| 久久精品久久久久久噜噜老黄| 性色av一级| 22中文网久久字幕| 精品久久久精品久久久| 免费在线观看完整版高清| 国产男人的电影天堂91| 亚洲美女搞黄在线观看| 国产黄色免费在线视频| 久久国内精品自在自线图片| 亚洲精品美女久久av网站| 黑人猛操日本美女一级片| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看av| 亚洲精品456在线播放app| 日本与韩国留学比较| 51国产日韩欧美| 亚洲第一区二区三区不卡| 丝袜美足系列| 高清视频免费观看一区二区| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 精品一区二区免费观看| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 精品久久久精品久久久| 久久久久久久久久人人人人人人| 一二三四中文在线观看免费高清| 免费大片黄手机在线观看| 国产日韩一区二区三区精品不卡| 两个人免费观看高清视频| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 男女高潮啪啪啪动态图| 日韩在线高清观看一区二区三区| 久久综合国产亚洲精品| av视频免费观看在线观看| 国产男人的电影天堂91| 国产色爽女视频免费观看| 桃花免费在线播放| 中文字幕免费在线视频6| 这个男人来自地球电影免费观看 | 飞空精品影院首页| 亚洲av中文av极速乱| av女优亚洲男人天堂| 欧美xxⅹ黑人| av电影中文网址| 久久久久久久久久久免费av| 亚洲精品久久午夜乱码| 尾随美女入室| 亚洲情色 制服丝袜| 国产伦理片在线播放av一区| 美女xxoo啪啪120秒动态图| 久热这里只有精品99| 国产男女内射视频| 欧美精品高潮呻吟av久久| 99热网站在线观看| 韩国精品一区二区三区 | 啦啦啦中文免费视频观看日本| 日韩在线高清观看一区二区三区| 一级a做视频免费观看| 日本欧美视频一区| 久久久久视频综合| 伊人久久国产一区二区| 国产极品粉嫩免费观看在线| 欧美 日韩 精品 国产| a级毛片在线看网站| 午夜激情av网站| 国产永久视频网站| 曰老女人黄片| 满18在线观看网站| 女性被躁到高潮视频| 国产成人精品无人区| 一二三四在线观看免费中文在 | 各种免费的搞黄视频| 国产亚洲av片在线观看秒播厂| 久久久久久伊人网av| 丁香六月天网| 亚洲精品乱久久久久久| 少妇精品久久久久久久| av又黄又爽大尺度在线免费看| 亚洲第一av免费看| 97在线视频观看| 人妻一区二区av| 亚洲婷婷狠狠爱综合网| 亚洲精品美女久久av网站| 亚洲成人手机| 国产av精品麻豆| 欧美精品一区二区免费开放| 丰满饥渴人妻一区二区三| 一区二区三区精品91| 日韩一区二区三区影片| 欧美日韩视频精品一区| 中文字幕制服av| 久久精品久久久久久噜噜老黄| 99热全是精品| 久久99精品国语久久久| 9热在线视频观看99| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| freevideosex欧美| 国产乱来视频区| 亚洲精品视频女| 天堂俺去俺来也www色官网| 哪个播放器可以免费观看大片| 九九爱精品视频在线观看| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 青青草视频在线视频观看| 日韩熟女老妇一区二区性免费视频|