• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction

    2022-08-01 06:02:20MingLangWang王明郎BoHanZhang張博涵WenFeiZhang張雯斐XinYueTian田馨月GuangPingZhang張廣平andChuanKuiWang王傳奎
    Chinese Physics B 2022年7期
    關(guān)鍵詞:廣平王明

    Ming-Lang Wang(王明郎), Bo-Han Zhang(張博涵), Wen-Fei Zhang(張雯斐),Xin-Yue Tian(田馨月), Guang-Ping Zhang(張廣平), and Chuan-Kui Wang(王傳奎)

    School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: molecular electronics,crystallographic orientations,non-equilibrium Green’s function

    1. Introduction

    Single-molecule electronics aiming to drive electronic component miniaturization have achieved considerable progress in the recent years.[1,2]Since the first rectifier was proposed by Aviram and Ratner,[3]functional single-molecule junctions have been fabricated by investigating the electron transport properties for various applications, such as molecular rectifiers,[4–6]molecular conducting wires,[7–9]molecular switches,[10–12]and molecular transistors.[13–15]In this context, understanding and controlling the electron transfer process based on the core functional molecules between electrodes is essential for developing the single-molecule junctions. The single-molecule junction conductance has been theoretically and experimentally verified to primarily depend on the molecular geometry and molecule–electrode interface,which includes factors like anchoring groups, interfacial geometry, and electrode characteristics.[16–23]Therefore, suitable anchoring groups and electrode materials must be determined for designing high-performance single-molecule devices. Common anchoring groups for attaching metal electrodes include pyridine, amino groups, carboxylic acids, nitriles, and isonitriles, among which thiol is more popular as a linker because it forms stable mechanical and electronic contacts.[24–29]After systematically comparing the conductance values of alkane molecular chains with various anchoring groups,Chenet al.demonstrated that Au–thiol contributes the lowest contact resistance,whereas the conductance decay constant is virtually independent of the anchoring groups.[30]In addition, the metal electrodes in molecular junctions can change the Fermi level and influence the energy alignment with the molecular conducting energy level. In this context,several studies have reported that the conductance is strongly dependent on the electrode materials used for constructing single-molecular devices.[31–33]Owing to their lower work function, the molecular junctions formed with Ag electrodes are less conductive than those formed with Au electrodes for amine-terminated oligophenyl and alkane molecules.[34]Furthermore, the varying of electrode crystallographic orientations can result in the large variations in electronic transport properties of molecular junctions.[35–45]Moreover, the high and low conductance measured in alkanethiol molecular junctions are attributed to the electrode orientation,which can tune the molecule–electrode interaction.[35]For aromatic thiophene-based molecules, the (110) crystallographic orientation exhibits superior constructive conductance and negative differential conductance(NDR).[40]In particular,the NDR behavior is verified based on switching molecular junctions for utilizing the electrode orientations.[37]

    As the most prevalent material in integrated circuits,bulk Si can be considered as a series of cross-linked Si monatomic chains in one-dimensional structures. Since the first report on permethyloligosilanes short chains exhibiting electronic properties different from those alkane analogs, the saturatedσconjugated permethyloligosilanes have been reported to show a variety of rich electronic properties.[46–56]After the geometry of the terminal methylthiomethyl group was connected to Au electrodes, the permethyloligosilanes demonstrated the first single-molecular switch operation via a stereoelectronic effect.[53]Moreover, the single-molecule junction conductance trend for thiol-terminated permethyloligosilanes was inversely related to metal work function.[56]To the best of our knowledge, the crystallographic orientation effect of the permethyloligosilane molecular junctions has not yet been investigated. Therefore,it is essential to bridge the knowledge gap concerning this molecule–electrode interface effect.

    In this study, the atomic structures and electronic transport properties of methylthiol-terminated permethyloligosilane molecular junctions containing permethyloligosilanes with 6, 7, and 8 Si atoms are investigated based on density functional theory through using the nonequilibrium Green’s function method. Considering the possible nanostructures formed using the scanning tunneling microscope breakjunction technology,[35,52]a face-centered crystal Au/Ag with the crystallographic orientations of (111) and (100) is used as the electrodes. The calculations reveal that the low-bias conductance calculated in the linear response limit is dominated by electronic tunneling between the terminal metal–S bonds formed at the metal–molecule interfaces for all molecular junctions considered in this work. The low-bias conductance exponentially decreases with the number of Si atoms in the permethyloligosilane backbone increasing from 6 to 8.More importantly, the results of this study suggest that the interfacial coupling is determined by the electrode characteristics. In the case of the (111) crystallographic orientation,the interfacial coupling between the interfacial Au–S states is stronger than that between the interfacial Ag–S states, resulting in a large low-bias junction conductance. In contrast, the interfacial coupling between interfacial Au–S states is weaker than that between interfacial Ag–S states for the(100)crystallographic orientations,which yields a small low-bias junction conductance.

    2. Calculation method

    We employed the Atomistix ToolKit (ATK) software package to optimize the geometric structures and evaluate the electronic structures of molecules and molecular junctions.[57,58]The ATK is a highly efficientab initiocode for implementing numerical simulations of large systems,wherein the norm-conserving Troullier–Martins pseudopotentials are used to describe the core electrons, and the finiterange numerical orbital basis set is used for describing the valence electrons.[59–61]In particular, the C, H, S, Si, Au, and Ag atoms comprising the molecules and molecular junctions considered herein are described using a double-zeta plus polarization (DZP) basis set. The generalized gradient approximation (GGA) formulated by Perdew–Burke–Ernzerhof relates to the exchange–correlation functional.[62]Additionally,the real-space grid integration was considered by an equivalent cutoff of 300.0 Ry (1 Ry=13.6056923(12) eV), and a 4×4k-point sampling was employed in the transverse direction, with a periodic boundary condition used. The geometry optimization was accomplished using the standard conjugate gradient method until the energy tolerance was lower than 1.0×10-4Hartree(1 Hartree=4.3597×10-18J)and all atomic forces were lower than 0.02 eV/?A.

    Subsequently,the transport properties of molecular junctions were evaluated using ATK,which effectively implements the nonequilibrium Green’s function calculations.[63]Moreover, the molecular junctions include a single molecule and 12 atomic layers of the metal electrodes. The periodic boundary conditions were applied to the direction perpendicular to the transport direction.The charge density was integrated over 30 energy points along the semicircle, eight points along the line in the complex plane, and eight poles in the Fermi function with an electronic temperature of 300 K.The transmission spectrumT(E)of the molecular junctions was obtained from the following equation:

    whereG0=2e2/hdenotes the conductance quantum.erepresents the electron charge,hrefers to the Planck’s constant,andEFis the Fermi energy.

    3. Results and discussion

    First, the atomic structure and the electronic structure of the isolated permethyloligosilane are investigated in a transextended conformation. The methylthiol-terminated oligosilanes with 6,7,and 8 Si atoms(denoted as Si6,Si7,and Si8,respectively)are used as the central conductive molecules.For all isolated molecules, the Si atoms in the oligosilane backbone are coplanar with the terminal S atom and C atom in methylene. The interatomic bond length is independent of the number of Si atoms, and the length of C–S, C–Si, and Si–Si bonds are 1.82,1.91,and 2.37 ?A,respectively,corresponding to the electronic structures presented in Fig. 1. The highest occupied molecular orbital(HOMO)orbital and HOMO-1 orbital, shown in the inset in Fig. 1, are degenerate, and both orbitals are contributed by terminal S 3p localized atomic orbitals perpendicular to the molecular plane. In contrast to the localized characteristics, both lowest unoccupied molecular orbital(LUMO)and HOMO-2 are delocalized across the entire molecular backbone. Although theσ-bond comprising the Si backbone is similar to that in alkane,the oligosilanes exhibit the specialσconjugation due to the reduced energy gap,with the number of Si atoms increased,as depicted in Fig.1.

    The optimized geometric structure of the Ag(111)–Si6–Ag(111)molecular junction is illustrated in Fig.2(a),wherein two methylthiol groups connect to the Ag adatoms on electrode surfaces cut from a face-centered crystal Ag bulk along the(111)direction. The optimized Ag–S covalent bond length is 2.35 ?A,whereas the C–Si bond length and Si–Si bond length are the same as those of isolated molecule,indicating that the molecular geometry is stable both before and after forming the molecular junction. The equilibrium transmission spectrum is obtained as depicted in Fig.2(b). Two prominent transmission peaks at-1.02 eV and 3.25 eV decay rapidly towardsEF. In particular,a small shoulder peak centered at-0.33 eV occurs.The transmission coefficient atEFis 8.9×10-3. To further understand these peaks,the projected density of states(PDOS)on the terminal S and Ag atoms and the eigenchannel are evaluated and shown in Figs. 2(c)–2(e). The narrow peak aboveEFis caused by the weak coupling between the Ag p-orbitals and S 3p-orbitals,which are obtained from the LUMO orbitals by comparing the eigenchannel calculated at 3.25 eV with the frontier molecular orbitals (FMOs) as indicated in the insets of Fig. 1. Although the PDOS at-0.33 eV is exceedingly high,the corresponding transmission peak is extremely small,which is caused by S 3p-orbitals perpendicular to the molecular plane,resulting in weak coupling with backboneσ-bond(Fig. 2(e)). Moreover, the broadened peak underEFextends from-0.86 eV to-1.02 eV, which is primarily contributed by Ag 4d and S 3p orbitals. Furthermore,the broadened transmission peak in Fig. 2(e) is dominated by the HOMO and HOMO-1, wherein the splitting of energy level is caused by interaction between two interfacial states after having been connected to electrodes.The eigenchannel calculated atEFexhibits the fundamental density distribution on the left-terminal S atoms and Ag atoms as depicted in Fig.2(e),indicating that the interfacial hybrid states provide a dominant contribution to electron transfer in the vicinity ofEF. As the isovalue of eigenchannel isosurface decreases from 0.15 ?A-1.5(eV)-0.5to 0.05 ?A-1.5(eV)-0.5, the eigenchannel exhibits an extension along the molecular backbone through the S–Cσchannel and Si–Siσchannel. The results further demonstrate that the states contributing to the small shoulder does not contribute to the transmission atEF,regardless of their vicinity toEF.

    Similar junctions are constructed using Si7 (Si8)molecule and denoted by Ag(111)–Si7(Si8)–Ag(111), and the optimized geometric structures are almost unchanged.The Ag–S, S–C, and C–Si bond length are calculated to be 2.37 ?A (2.36 ?A), 1.83 ?A (1.83 ?A), and 1.92 ?A (1.91 ?A) for Si7(Si8)molecular junctions,respectively. Overall,the trend of the equilibrium transmission curve is similar to that of the Ag(111)–Si6–Ag(111)junction,except that the energy gap between the HOMO and LUMO decreases,and the HOMO shifts towardEFas the molecular backbone elongates. Counter intuitively,the calculated transmission coefficient atEFdecreases from 8.9×10-3and 4.97×10-3to 3.4×10-3as the molecule changes from Si6 into Si8,which is prominently expressed in the inset with the transmission coefficients using logarithmic coordinates(Fig.2). This is ascribable to the longer molecular backbone and weaker interfacial coupling. Therefore, the conductive mechanism of the Ag(111)–Si6(Si7,Si8)–Ag(111)molecular junction is primarily dominated by the electronic tunneling between the two localized Ag–S interfacial states that can be tuned by the oligosilane chain. For the three molecular junctions, the conductance calculated in the linear response limit decreases exponentially with the number of Si atoms, which can be expressed asG~exp(-βn), whereGdenotes the junction conductance,nthe number of Si atoms,andβthe conductance decay constant. Theβvalue is fitted as 0.52 per Si atom,which corresponds well with the experimentally measured value of 0.60±0.03 per Si atom. Furthermore,the tunneling mechanism is confirmed based on the discussed length-dependent junction conductance.

    Fig. 2. Optimized atomic structure and electronic transport properties of Ag(111)–Si6–Ag(111) molecular junction with Ag electrode along (111)directions: (a) optimized atomic structure; (b) equilibrium transmission spectra calculated for Ag(111)–Si6(7,8)–Ag(111) molecular junctions, with inset showing transmission coefficients in logarithmic coordinates; (c) PDOS projected onto adatom Ag atom; (d) PDOS projected onto terminal S atom; (e)eigenchannel calculated at EF, -0.33, -0.86, -1.02, and 3.25 eV.The isovalue is 0.15 ?A-1.5 (eV)-0.5, whereas it decreases to 0.05 ?A-1.5(eV)-0.5,as shown in the inset of eigenchannel calculated at EF;(f)conductance decay constant.

    Thereafter,the Au(111)–Si6–Au(111)molecular junction is constructed, the optimized geometric structure of which is shown in Fig. 3(a). In this structure, two methylthiol groups connect the Au adatoms on the electrode surfaces cut from the face-centered crystal Au bulk along the (111) direction. The optimized bond length of the Au–S covalent bond is 2.30 ?A,and the interatomic separation of the central molecular backbone is almost identical to that in the Ag(111)–Si6–Ag(111)molecular junction. This indicates that the molecular geometry is independent of the electrode characteristics, and the Au–S bond is slightly stronger than the Ag–S bond, which may enhance the low-bias conductance. The transmission coefficient atEFis calculated to be 1.70×10-2,which is indeed higher than that of the Ag electrode. This enhanced conductance can be ascribed to the Au 5d and S 3p orbitals(Figs.3(c)and 3(d)),which are dominated by the HOMO and HOMO-1 of Si6 molecule (Fig. 3(f); inset in Fig. 1). Notably, the Au 5d and S 3p orbitals centered at-0.39 eV do not contribute to the transmission due to orbital symmetry mismatch,which also appeared in the alkane–thiol molecular junctions.[65]The eigenchannel extending along the molecular backbone through the S–C,and Si–Siσchannel is similar to that in the Ag(111)–Si6–Ag(111), which indicates that the transmission atEFis caused by the tail effect of these peaks underEF. Similarly,with the longer molecules connected to the Au electrodes,the conjugate characteristic is enhanced as the transmission coefficient atEFdecreases as depicted in the inset of Fig. 3(b).In particular,the transmission coefficients atEFare evaluated to be 8.8×10-3for Au(111)–Si7–Au(111) and 6.03×10-3for Au(111)–Si8–Au(111). According to the same analysis method, the reduced transmission coefficient primarily originates from reduced interfacial coupling between two Au–S states at both interfaces,wherein the tunneling mechanism can be further confirmed by reducing the widths of the transmission peaks contributed by the HOMO and HOMO-1 during backbone elongation. Further, the conductance decay constant per atom is evaluated to be 0.57,which is consistent with the experimental value of 0.64±0.02 per Si atom. In addition,the separation between the peaks acrossEFfor Au(111)–Si6(Si7,Si8)–Au(111) is 4.02 (3.80 and 3.64) eV, which accords well with that for the Ag(111)–Si6(Si7,Si8)–Ag(111)molecular junction. Thus, these results demonstrate that the transport properties are influenced by the electrode characteristics.

    Fig. 3. Optimized atomic structure and electronic transport properties of Au(111)–Si6–Au(111) molecular junction with Au electrode along (111)direction. (a) Optimized atomic structure; (b) equilibrium transmission spectra calculated for Au(111)–Si6(7,8)–Au(111) molecular junctions, with inset indicating transmission coefficients in logarithmic coordinates; (c) PDOS projected onto adatom Au atom; (d) PDOS projected onto terminal S atom;(e)conductance decay constant;(f)eigenchannel calculated at EF and-0.81 eV.

    Fig. 4. Conductance calculated in linear response limit as a function of Si atom number in electrode(111)direction.

    However, Liet al.recently reported that the electrical contact provided by Ag electrodes for thiol-terminal silanes is superior to that provided by Au electrodes. In addition,the higher conductance in the Ag electrode than that in the Au electrode is in discrepancy with previously calculated result.[56]Moreover, Sen and Kaun reported that Au(100)electrodes can offer a higher conductance than Au(111)electrodes in alkanedithiol single-molecule junctions.[35]Therefore, molecular junctions constructed by symmetrically connecting molecules to the pyramid tip atom on the surfaces from the face-centered crystal metal bulk along the (100) direction are investigated. The Ag(100)–Si6–Ag(100) molecular junction is presented in Fig. 5(a). The Ag–S bond length is optimized to be 2.36 ?A. Moreover, the interatomic separations of S–C, C–Si, and Si–Si are calculated to be 1.83,1.91,and 2.37 ?A,respectively,maintaining them with those of the isolated molecules. Furthermore,the equilibrium transport spectrum is similar to that of Ag(111)–Si6–Ag(111)with two prominent transmission peaks acrossEF. The small variations are that the peak underEFshifted slightly downward and the plateau becomes narrower than that of Ag(111)–Si6–Ag(111).In the PDOS depicted in Figs. 5(c) and 5(d), the peaks underEFare attributed to the Ag 4d–5s and S 3p orbitals,which are dominated by the HOMO and HOMO-1 based on the inspection of FMOs of Si6 molecule (inset of Fig. 1). Additionally,the eigenchannel in Fig.5(f)indicates that the transmission atEFis dominated by electronic extension originating from the interfacial Ag–S state, and the HOMO and HOMO-1 constitute the conductive channel. As the molecular backbone elongates, the reduced interfacial coupling narrows the plateau of the peak underEFand reduces the transmission atEF. The equilibrium transmission coefficients atEFfor Ag(100)–Si7–Ag(100) and Ag(100)–Si8–Ag(100) are calculated to be 2.23×10-3and 1.42×10-3, respectively. The fitting decay constantβis evaluated to be 0.52 per Si atom(Fig. 5(e)), which accords with the counterpart for Ag(111)–Si6(7,8)–Ag(111). These findings further corroborate that the electron tunneling passes through the same molecular orbitals.

    Fig. 5. Optimized atomic structure and electronic transport properties of Ag(100)–Si6–Ag(100) molecular junction with Au electrode along (100)direction. (a)Optimized atomic structure;(b)equilibrium transmission spectra calculated for Ag(100)–Si6(7,8)–Ag(100)molecular junction,with inset showing transmission coefficient in logarithmic coordinate; (c)PDOS projected onto adatom Ag atom; (d)PDOS projected onto terminal S atom; (e)conductance decay constant;(f)eigenchannel calculated at EF and-1.0 eV.

    Finally, we come to investigate the Au(100)–Si6–Au(100) molecular junction. The optimized geometric structure is illustrated in Fig.6(a). The optimized bond lengths of Au–S,S–C,C–Si,and Si–Si are 2.30,1.82,1.92,and 2.36 ?A,respectively,which are independent of crystallographic orientation. The prominent transmission peak underEFin Fig.6(b)is dominated by the interaction between the Au 5d and S 3p orbitals as shown in Figs. 6(c) and 6(d). Furthermore, the eigenchannel in Fig.6(f)indicates that the peak is dominated by the HOMO and HOMO-1 of the isolated Si6 molecule,and that the transmission atEForiginates from its tail effect. As the central molecule varies from Si6 to Si7 to Si8, the interfacial coupling weakens according to the narrower plateau of the peak underEF, which consequently reduces the transmission coefficient from 2.93×10-3through 1.86×10-3to 1.13×10-3, regardless of the peak progressing upward to theEF. The tunneling mechanism between the interfacial Au–S states can be corroborated by the exponential decay function defined based on the decay constantβ= 0.45 in Fig. 6(e). Moreover, the conductance in the linear response limit is derived as a function of the number of Si atoms, and the results are shown in Fig. 7. In stark contrast to the results of the electrode (111) crystallographic orientations, the low-bias conductance of the Ag(100) electrode is higher than that of Au(100), which corresponds to experimental measurement.[56]The average coupling coefficients for the Au(100)–Si6–Au(100), Au(100)–Si7–Au(100),and Au(100)–Si8–Au(100)molecular junctions are calculated to be 50.9, 38.0, and 24.5 meV,respectively. This is because the reduced coupling between the interfacial Au–S states can lead the low-bias conductance to decrease. For Ag(100)–Si6–Ag(100), Ag(100)–Si7–Ag(100), and Ag(100)–Si8–Ag(100)molecular junctions, the calculated coupling coefficients are 62.4, 39.7, and 28.3 meV, which can explain the conductance varying with the molecular length. More importantly,the Ag(100) electrode offers superior electronic contact with methylthiol-terminated permethyloligosilanes in comparison with the Au(100) electrode, consequently resulting in higher low-bias conductance.

    Fig. 6. Optimized atomic structure and electronic transport properties of Au(100)–Si6–Au(100) molecular junction with Au electrode along(100) directions. (a) Optimized atomic structure; (b) equilibrium transmission spectra calculated for Au(100)–Si6(7,8)–Au(100) molecular junctions, with inset showing transmission coefficient in logarithmic coordinates; (c)PDOS projected onto adatom Au atom; (d)PDOS projected onto terminal S atom;(e)conductance decay constant;(f)eigenchannel calculated at EF and-0.94 eV.

    Fig.7. Conductance calculated within linear response limit as a function of Si atom number for electrode with crystallographic orientation of(100).

    4. Conclusions

    The density functional theory, combined with the nonequilibrium Green’s function, is used to investigate the atomic structures and electronic transport properties of molecular junctions,wherein permethyloligosilanes with 6,7,and 8 Si atoms are symmetrically connected to a face-centered crystal Au/Ag electrode along the(111)direction and the(100)direction. The derived calculations reveal that the low-bias conductance is dominated by electronic tunneling between metal–S bonding states at both molecule–electrode interfaces. Although theσconjugation increases, the decreasing of coupling, which is due to tuning the central permethyloligosilane backbone length, leads the low-bias conductance to decay exponentially. In addition, the interfacial coupling can be mediated by the electrode crystallographic orientations.For electrodes along the (111) direction, the conductance of molecules connected to the Au electrodes is higher than that of the molecules connected to the Ag electrodes. In contrast,for electrodes along the(100)direction,the conductance of the molecular junctions connected to the Ag electrode is higher than that of the molecules connected to the Au electrode. The findings of this study are conducive to understanding the transport mechanism and mediating the interactions between the two metal–molecule interfaces by suitable electrode crystallographic orientations,thereby improving the electronic properties of permethyloligosilanes molecular junctions.

    Acknowledgements

    Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019PA022) and the National Natural Science Foundation of China (Grant No.21933002).

    猜你喜歡
    廣平王明
    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
    “廣平建行鄉(xiāng)村振興杯”首屆微型小說征文獲獎名單
    Higher Derivative Estimates for a Linear Elliptic Equation
    Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
    走過318
    北方音樂(2019年10期)2019-07-10 19:13:36
    “看不見”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    中考里的“一元二次方程”
    “方程(組)與不等式(組)”復(fù)習(xí)專題
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    An Interpretation of The Snows of Kilimanjaro from the Perspective of the Narrative Person
    91久久精品电影网| 色哟哟·www| 国产精品av视频在线免费观看| 国产男靠女视频免费网站| 国产高潮美女av| 九九在线视频观看精品| 不卡视频在线观看欧美| 午夜免费男女啪啪视频观看 | 国产爱豆传媒在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲美女久久久| 美女被艹到高潮喷水动态| 国产乱人偷精品视频| 亚洲成a人片在线一区二区| 久久午夜亚洲精品久久| 69av精品久久久久久| a级毛片免费高清观看在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 波多野结衣高清作品| 99久久精品热视频| 日韩人妻高清精品专区| 熟女电影av网| 在线观看66精品国产| 亚洲性久久影院| 大又大粗又爽又黄少妇毛片口| 久久精品国产亚洲av天美| 国产视频内射| 日韩 亚洲 欧美在线| 俺也久久电影网| 69av精品久久久久久| 噜噜噜噜噜久久久久久91| 久久精品国产清高在天天线| 一区福利在线观看| 婷婷色综合大香蕉| 亚洲精品在线观看二区| 亚洲中文字幕一区二区三区有码在线看| 色综合色国产| 久久精品国产亚洲av涩爱 | 久久久久久久久久久丰满| 久久精品国产99精品国产亚洲性色| 欧美色视频一区免费| 中国美女看黄片| 一区二区三区四区激情视频 | 国产亚洲91精品色在线| 免费电影在线观看免费观看| 婷婷六月久久综合丁香| 成人三级黄色视频| 午夜影院日韩av| 久久热精品热| 国内精品美女久久久久久| 婷婷亚洲欧美| 亚洲电影在线观看av| 夜夜看夜夜爽夜夜摸| 成人精品一区二区免费| 亚洲久久久久久中文字幕| 最近手机中文字幕大全| 久久6这里有精品| 亚洲最大成人av| 亚洲精品色激情综合| 亚洲综合色惰| 热99在线观看视频| 搡老岳熟女国产| av中文乱码字幕在线| 国内少妇人妻偷人精品xxx网站| 国产高清不卡午夜福利| 免费无遮挡裸体视频| 国产精品99久久久久久久久| 国产亚洲精品综合一区在线观看| 人妻丰满熟妇av一区二区三区| av黄色大香蕉| 九九爱精品视频在线观看| 久久精品国产99精品国产亚洲性色| 午夜激情福利司机影院| 中文字幕精品亚洲无线码一区| 在线免费十八禁| 久久午夜亚洲精品久久| 亚洲国产精品成人综合色| 嫩草影院精品99| 丰满乱子伦码专区| 久久精品综合一区二区三区| 床上黄色一级片| 日本精品一区二区三区蜜桃| 亚洲av免费在线观看| 精品久久久久久成人av| 啦啦啦啦在线视频资源| 老司机影院成人| 国产成人影院久久av| 欧美潮喷喷水| 国产真实乱freesex| 欧美国产日韩亚洲一区| av女优亚洲男人天堂| 18禁裸乳无遮挡免费网站照片| 夜夜爽天天搞| 欧美性猛交╳xxx乱大交人| 床上黄色一级片| 色吧在线观看| 久久精品国产清高在天天线| 国产一区二区在线观看日韩| 国产真实伦视频高清在线观看| 日韩人妻高清精品专区| 寂寞人妻少妇视频99o| 精品福利观看| 欧美不卡视频在线免费观看| 99久久九九国产精品国产免费| 久久久久久久久久成人| 精品久久久久久久人妻蜜臀av| 男女那种视频在线观看| 亚洲天堂国产精品一区在线| 日本在线视频免费播放| 亚洲av电影不卡..在线观看| 亚洲欧美精品综合久久99| 欧美色欧美亚洲另类二区| 美女 人体艺术 gogo| 麻豆国产97在线/欧美| 永久网站在线| 国产老妇女一区| 人人妻人人澡人人爽人人夜夜 | 久久久精品欧美日韩精品| 亚洲熟妇熟女久久| 亚洲18禁久久av| 亚洲自偷自拍三级| 亚洲精品色激情综合| 亚洲av.av天堂| 菩萨蛮人人尽说江南好唐韦庄 | 日日撸夜夜添| 国产精品免费一区二区三区在线| 高清日韩中文字幕在线| 高清日韩中文字幕在线| 日日撸夜夜添| 深夜精品福利| 国产av不卡久久| 亚洲国产欧美人成| 女生性感内裤真人,穿戴方法视频| 国产一区二区亚洲精品在线观看| 在线观看一区二区三区| 最新中文字幕久久久久| 草草在线视频免费看| 色综合亚洲欧美另类图片| 菩萨蛮人人尽说江南好唐韦庄 | 噜噜噜噜噜久久久久久91| 最近视频中文字幕2019在线8| 22中文网久久字幕| 又爽又黄无遮挡网站| 三级毛片av免费| 麻豆乱淫一区二区| 国产单亲对白刺激| 成年av动漫网址| 级片在线观看| 人人妻人人澡欧美一区二区| 3wmmmm亚洲av在线观看| 99久久精品热视频| 久久人人爽人人爽人人片va| 国产精品日韩av在线免费观看| 久久久久久久午夜电影| 嫩草影院精品99| 观看美女的网站| 亚洲婷婷狠狠爱综合网| 亚洲精品国产av成人精品 | 日本熟妇午夜| 婷婷精品国产亚洲av| 中文亚洲av片在线观看爽| 日韩欧美 国产精品| 免费看a级黄色片| 日本色播在线视频| 丰满的人妻完整版| 亚洲国产欧洲综合997久久,| 国产精品三级大全| 综合色丁香网| 久久午夜福利片| 免费观看的影片在线观看| 老熟妇仑乱视频hdxx| 日本免费一区二区三区高清不卡| av中文乱码字幕在线| 91av网一区二区| 成人国产麻豆网| 日日撸夜夜添| 国产亚洲91精品色在线| 亚洲国产欧美人成| 18禁在线播放成人免费| 69人妻影院| 亚洲高清免费不卡视频| 亚洲欧美清纯卡通| 麻豆国产av国片精品| 欧美xxxx性猛交bbbb| 欧美色欧美亚洲另类二区| 干丝袜人妻中文字幕| 日本撒尿小便嘘嘘汇集6| 午夜免费激情av| 一个人观看的视频www高清免费观看| 18禁在线无遮挡免费观看视频 | 网址你懂的国产日韩在线| 久久精品91蜜桃| 大型黄色视频在线免费观看| 村上凉子中文字幕在线| 久久久成人免费电影| 天堂√8在线中文| 听说在线观看完整版免费高清| 狠狠狠狠99中文字幕| 97热精品久久久久久| 亚洲欧美清纯卡通| 最近的中文字幕免费完整| 成年女人毛片免费观看观看9| 一卡2卡三卡四卡精品乱码亚洲| 又爽又黄a免费视频| 在线国产一区二区在线| 精品久久久久久久人妻蜜臀av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲经典国产精华液单| 久久久久久九九精品二区国产| 久久国产乱子免费精品| 免费不卡的大黄色大毛片视频在线观看 | 最新在线观看一区二区三区| 九九爱精品视频在线观看| 亚洲三级黄色毛片| 久久久久国产精品人妻aⅴ院| 国产精品一区二区性色av| 久久国产乱子免费精品| 97超视频在线观看视频| 激情 狠狠 欧美| 毛片一级片免费看久久久久| 国内精品宾馆在线| 欧美3d第一页| 日韩欧美国产在线观看| 午夜视频国产福利| 白带黄色成豆腐渣| 欧美一区二区精品小视频在线| avwww免费| 久久久久久国产a免费观看| 女人十人毛片免费观看3o分钟| 日本欧美国产在线视频| 欧美中文日本在线观看视频| 国产综合懂色| 亚洲国产日韩欧美精品在线观看| 免费av不卡在线播放| 人妻丰满熟妇av一区二区三区| 国产精品乱码一区二三区的特点| av.在线天堂| 搡女人真爽免费视频火全软件 | 简卡轻食公司| 国产精品久久电影中文字幕| a级一级毛片免费在线观看| 亚洲av二区三区四区| 神马国产精品三级电影在线观看| 久久久久久久久久黄片| 亚洲av第一区精品v没综合| 成人性生交大片免费视频hd| 99久久成人亚洲精品观看| 久久久久久久久中文| 国产精品1区2区在线观看.| 国产三级在线视频| 免费高清视频大片| 国产成人a∨麻豆精品| 亚洲成a人片在线一区二区| 99热这里只有是精品50| 少妇高潮的动态图| 日本五十路高清| 亚洲国产欧洲综合997久久,| 午夜福利在线观看吧| 成人二区视频| 99久久精品一区二区三区| 女同久久另类99精品国产91| 午夜影院日韩av| 国产欧美日韩精品亚洲av| av视频在线观看入口| 国产成人aa在线观看| av黄色大香蕉| 欧美+日韩+精品| 精品人妻一区二区三区麻豆 | 色5月婷婷丁香| 一进一出抽搐gif免费好疼| 九九久久精品国产亚洲av麻豆| 黄色视频,在线免费观看| 99在线视频只有这里精品首页| 亚洲国产精品久久男人天堂| 特级一级黄色大片| 男人舔奶头视频| 亚州av有码| 日日干狠狠操夜夜爽| videossex国产| 最后的刺客免费高清国语| 国内精品宾馆在线| av女优亚洲男人天堂| 亚洲图色成人| 久久亚洲国产成人精品v| 亚洲欧美精品自产自拍| 一a级毛片在线观看| 偷拍熟女少妇极品色| 亚洲欧美中文字幕日韩二区| 国产久久久一区二区三区| 欧美激情国产日韩精品一区| 日韩人妻高清精品专区| 在线免费观看的www视频| 久久韩国三级中文字幕| 夜夜夜夜夜久久久久| 成人一区二区视频在线观看| 一级黄色大片毛片| 亚洲精品成人久久久久久| 久久久精品欧美日韩精品| 国产片特级美女逼逼视频| 尤物成人国产欧美一区二区三区| 国产探花极品一区二区| 久久久午夜欧美精品| 九色成人免费人妻av| 99久久精品国产国产毛片| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 日韩av不卡免费在线播放| 免费电影在线观看免费观看| 亚洲欧美日韩卡通动漫| 午夜激情欧美在线| 国产精品人妻久久久久久| 国产极品精品免费视频能看的| 亚洲熟妇熟女久久| 能在线免费观看的黄片| 午夜免费男女啪啪视频观看 | 成人三级黄色视频| 婷婷精品国产亚洲av在线| 亚洲av一区综合| 麻豆精品久久久久久蜜桃| 欧美日韩国产亚洲二区| 日韩制服骚丝袜av| 欧美成人a在线观看| 丝袜喷水一区| 欧美+亚洲+日韩+国产| АⅤ资源中文在线天堂| 日韩欧美精品免费久久| 亚洲国产日韩欧美精品在线观看| 成人亚洲欧美一区二区av| 国产精品亚洲一级av第二区| 91av网一区二区| 亚洲av免费在线观看| 久99久视频精品免费| 看黄色毛片网站| 国产三级在线视频| 在线观看av片永久免费下载| 长腿黑丝高跟| 国产淫片久久久久久久久| 色视频www国产| 99热这里只有是精品50| 91在线观看av| 91午夜精品亚洲一区二区三区| 亚洲熟妇熟女久久| 中国美女看黄片| 日韩大尺度精品在线看网址| 亚洲精华国产精华液的使用体验 | 婷婷精品国产亚洲av| 久久人人爽人人爽人人片va| 麻豆成人午夜福利视频| 97超碰精品成人国产| 两个人的视频大全免费| 嫩草影院精品99| 色av中文字幕| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添小说| 欧美区成人在线视频| 1000部很黄的大片| 一级a爱片免费观看的视频| 国产真实伦视频高清在线观看| 99久久无色码亚洲精品果冻| 成人一区二区视频在线观看| 欧美三级亚洲精品| 久久中文看片网| 禁无遮挡网站| a级一级毛片免费在线观看| 久久国产乱子免费精品| 免费高清视频大片| 久久久国产成人精品二区| 一级黄色大片毛片| 一区福利在线观看| 久久久久久国产a免费观看| 1024手机看黄色片| 大香蕉久久网| 哪里可以看免费的av片| 久久九九热精品免费| 97超碰精品成人国产| 久久久午夜欧美精品| 乱人视频在线观看| 亚洲国产色片| 黄色一级大片看看| 人人妻,人人澡人人爽秒播| 国产精品人妻久久久影院| 在线看三级毛片| 看免费成人av毛片| 日韩中字成人| 亚洲国产精品成人久久小说 | 又黄又爽又免费观看的视频| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 欧美一级a爱片免费观看看| 日本黄色视频三级网站网址| 丰满的人妻完整版| 亚洲五月天丁香| 99精品在免费线老司机午夜| 91午夜精品亚洲一区二区三区| 午夜福利在线观看吧| 亚洲在线观看片| 国产三级中文精品| 免费看美女性在线毛片视频| 国产亚洲欧美98| 亚洲专区国产一区二区| 欧美bdsm另类| 国产成人福利小说| 欧美国产日韩亚洲一区| 欧美一区二区精品小视频在线| 床上黄色一级片| 狠狠狠狠99中文字幕| 日本一本二区三区精品| 亚洲专区国产一区二区| 日本 av在线| aaaaa片日本免费| 国产毛片a区久久久久| 九九热线精品视视频播放| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区人妻视频| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清专用| 十八禁国产超污无遮挡网站| 日本成人三级电影网站| 长腿黑丝高跟| 亚洲国产精品久久男人天堂| 亚洲美女搞黄在线观看 | 欧美激情在线99| 中文在线观看免费www的网站| 国产三级在线视频| 日韩欧美精品免费久久| 波多野结衣巨乳人妻| 蜜臀久久99精品久久宅男| 久久久精品欧美日韩精品| 免费在线观看成人毛片| 色5月婷婷丁香| 国产精品福利在线免费观看| 天堂√8在线中文| 国产精华一区二区三区| 亚洲,欧美,日韩| 丰满人妻一区二区三区视频av| 好男人在线观看高清免费视频| 国产探花极品一区二区| 精品久久久久久久久av| 国产91av在线免费观看| 亚洲精品日韩在线中文字幕 | 卡戴珊不雅视频在线播放| 中出人妻视频一区二区| 22中文网久久字幕| 黑人高潮一二区| 噜噜噜噜噜久久久久久91| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区 | 久久精品国产清高在天天线| 亚洲成a人片在线一区二区| 国内精品美女久久久久久| 夜夜爽天天搞| 中文资源天堂在线| 97超视频在线观看视频| 99久国产av精品| 97碰自拍视频| 春色校园在线视频观看| 熟妇人妻久久中文字幕3abv| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 村上凉子中文字幕在线| 能在线免费观看的黄片| 99视频精品全部免费 在线| 波多野结衣高清作品| 韩国av在线不卡| 97超视频在线观看视频| 99久国产av精品国产电影| 色综合色国产| 久久久精品欧美日韩精品| 国产综合懂色| 亚洲精品一区av在线观看| 好男人在线观看高清免费视频| 久久久久国产网址| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 国产在线男女| 国产成人91sexporn| 国产精品一区www在线观看| 亚洲色图av天堂| 精品久久久久久久久av| 亚洲人成网站在线播| 久久欧美精品欧美久久欧美| 亚洲精品久久国产高清桃花| 国产伦一二天堂av在线观看| 久久精品影院6| 亚洲av电影不卡..在线观看| 日韩一本色道免费dvd| 欧美xxxx黑人xx丫x性爽| 亚洲无线观看免费| 日韩欧美三级三区| 人妻久久中文字幕网| 国内少妇人妻偷人精品xxx网站| 国产成人影院久久av| 亚洲最大成人中文| 长腿黑丝高跟| 久久久久久久久久久丰满| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 国产白丝娇喘喷水9色精品| 乱人视频在线观看| 亚洲国产精品国产精品| 午夜福利高清视频| 最后的刺客免费高清国语| 日本熟妇午夜| a级毛片免费高清观看在线播放| 国产高清三级在线| 久久精品夜夜夜夜夜久久蜜豆| 免费看av在线观看网站| 日韩一本色道免费dvd| 亚洲精品久久国产高清桃花| 国产伦在线观看视频一区| 亚洲av免费在线观看| 日本三级黄在线观看| 国产一区二区三区av在线 | 少妇猛男粗大的猛烈进出视频 | 一个人免费在线观看电影| 啦啦啦观看免费观看视频高清| 久久99热这里只有精品18| 日本黄色片子视频| 22中文网久久字幕| 亚洲av免费高清在线观看| 婷婷亚洲欧美| 乱人视频在线观看| 成人一区二区视频在线观看| 国产精品一及| 性欧美人与动物交配| 中文字幕av成人在线电影| 春色校园在线视频观看| 三级经典国产精品| 免费大片18禁| 国产在线男女| 亚洲自偷自拍三级| 午夜久久久久精精品| 免费在线观看影片大全网站| 色综合站精品国产| 精品久久久久久久久久免费视频| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 国产一级毛片七仙女欲春2| 一个人观看的视频www高清免费观看| 免费无遮挡裸体视频| 亚洲av第一区精品v没综合| 国产午夜精品论理片| 成人漫画全彩无遮挡| 欧美+日韩+精品| 乱人视频在线观看| 人人妻人人看人人澡| 中文字幕熟女人妻在线| 伦精品一区二区三区| 少妇裸体淫交视频免费看高清| 内射极品少妇av片p| 日本免费a在线| 国产探花极品一区二区| av视频在线观看入口| 热99re8久久精品国产| 午夜精品一区二区三区免费看| 日日撸夜夜添| 亚洲第一电影网av| 香蕉av资源在线| 日本一本二区三区精品| 国产精品三级大全| 丝袜喷水一区| 久久久精品94久久精品| 特级一级黄色大片| 毛片一级片免费看久久久久| 国语自产精品视频在线第100页| 一级毛片我不卡| 午夜福利在线观看免费完整高清在 | 插逼视频在线观看| 国产成人影院久久av| 小说图片视频综合网站| 嫩草影院入口| 熟女电影av网| 国产淫片久久久久久久久| 国产爱豆传媒在线观看| 可以在线观看的亚洲视频| 欧美又色又爽又黄视频| 久久久久性生活片| 日日啪夜夜撸| 精品午夜福利视频在线观看一区| 男人舔女人下体高潮全视频| 亚洲第一电影网av| 菩萨蛮人人尽说江南好唐韦庄 | 又粗又爽又猛毛片免费看| 非洲黑人性xxxx精品又粗又长| 99国产极品粉嫩在线观看| 久久久国产成人精品二区| 搡女人真爽免费视频火全软件 | 99久久九九国产精品国产免费| 深爱激情五月婷婷| 亚洲最大成人中文| 国产成人a∨麻豆精品| 免费观看在线日韩| 最近的中文字幕免费完整| 亚洲自拍偷在线| 精品99又大又爽又粗少妇毛片| 国产精品一及| 真人做人爱边吃奶动态| 午夜亚洲福利在线播放| 在线观看66精品国产| 最近在线观看免费完整版| av在线观看视频网站免费| 成人亚洲精品av一区二区| 国产精品免费一区二区三区在线| 看片在线看免费视频| 日本免费a在线| 亚洲成人av在线免费| 亚洲成人久久爱视频| 国产真实伦视频高清在线观看| 国产精品永久免费网站| 亚洲精品粉嫩美女一区| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人影院久久av|