• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback

    2022-08-01 06:01:28DongZhouZhong鐘東洲ZheXu徐喆YaLanHu胡亞蘭KeKeZhao趙可可JinBoZhang張金波PengHou侯鵬WanAnDeng鄧萬安andJiangTaoXi習(xí)江濤
    Chinese Physics B 2022年7期
    關(guān)鍵詞:萬安東洲

    Dong-Zhou Zhong(鐘東洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亞蘭), Ke-Ke Zhao(趙可可), Jin-Bo Zhang(張金波),Peng Hou(侯鵬), Wan-An Deng(鄧萬安), and Jiang-Tao Xi(習(xí)江濤),2

    1Intelligent Manufacturing Faculty,Wuyi University,Jiangmen 529020,China

    2School of Electrical,Computer,Telecommunications Engineering,University of WollongGong,2522,Australia

    Keywords: coupled semiconductor lasers,lidar ranging,optical reservoir computing,chaos synchronization

    1. Introduction

    The chaotic lidar is a lidar system utilizing the nonlinear dynamics of semiconductor lasers.[1–3]A chaotic lidar can be used as an enabling technology for many applications, such as artificial intelligence,precision range finding,object tracking and locating,through-wall detection,driverless navigation system and so on.[4–7,13–19]Among other applications,chaotic lidar ranging (CLR) has attracted considerable attention due to its advantages over short-pulse and continuous wave(CW)lidar ranging, such as low probability of intercept, high resolution in ranging and velocity,strong anti-interference ability,easy generation and low cost.[1–3,8]

    There are mainly two ways for the implementation of CLRs. The first one is based on the computation of the cross-correlation between the reflected return signal and the replica of the signal transmitted.[1–9,15,16]Such correlationbased methods take advantage of the broad bandwidth of the chaotic laser and can achieve resolution up to centimeter-level.Although progress was made to increase the resolution[4–9]in recent years, further improvement becomes very difficult due to the limit of the correlation and the interference of spontaneous emission noise and channel noise. Another way of implementing CRLs is with a synchronized chaotic lidar. A synchronization chaotic lidar system has two chaotic lasers:one called the drive laser, used to generate the probe signal,and the other referred to as response laser that is used to synchronize with the drive laser. In order to probe the target,the drive laser output is modulated with a microwave signal. The chaotic probe signal with a microwave signal is reflected by the target, then delayed, finally synchronized with a chaotic signal from the response laser output. The delayed microwave signal is decoded by using high-quality chaotic synchronization. The delay time in the microwave is extracted by using Hilbert transform. The distance of the target at an arbitrary position can be calculated by using delay time. In contrast to a cross-correlation-based chaotic lidar, synchronized chaotic lidars has the potential to provide improved ranging performance in accuracy and anti-noise ability since the quality of synchronization is very robust to noise.[18–20]

    The accuracy of the target ranging associated with synchronized chaotic lidar systems heavily depends on the quality and stability of chaotic synchronization. However,all existing techniques for completing chaos synchronization rely on the assumptions that the drive and the response laser systems are identical,i.e.,the rate-equations describing the two lasers must be the same and known a priori.[21–23]However,these assumptions do not hold in practice,as an inevitable mismatch always exists between the driving and response lasers.

    In recent years, reservoir computing (RC) has been proven to be an effective approach in the prediction of chaotic systems from data.[24–27]The delay-based RC first proposed by Appeltantet al.,[28]composed of a nonlinear node and a delay feedback loop, is proved to be an effective and simple hardware implementation for neural network computing in hardware.[29–38]Many hardware implementations of such delay-based RC have been reported in literature, such as the electronic system,[29,30]opto-electronic system,[31,32]all-optical system,[33–35]and laser dynamical system.[36–38]Among these techniques,the delay-based RC using nonlinear semiconductor lasers has the advantages of fast-speed, high efficiency and parallel computing capability for many benchmark tasks,[33–48]such as time series prediction,[39–43]optical packet header recognition,[44]speech recognition,[45]nonlinear channel equalization[46]and so on. A growing number of studies have shown that a well-trained reservoir computer can be well synchronized with its learned chaotic system by using a delay-based RC approach.[24–27]For example, in 2017,Anoniket al.proved experimentally that a reservoir can be trained to yield similar dynamics to its learned chaotic system (similar spectrum, Lyapunov index, etc).[47]Our previous work further shows that high-quality chaotic synchronization between the driving laser array and its trained reservoir in the existence of mismatch between their rate equations can be achieved by using a delay-based optical reservoir computing approach.[42]

    The 1-D lateral laser array(laterally coupled semiconductor lasers)with rich chaos dynamics represents an ideal candidate of an integrated chaotic light source,which has potential applications in multi-target chaotic lidar synchronous ranging.Compared with the multi-target ranging based on three uncoupled semiconductor lasers,the ranging to multi-target based on the 1-D lateral laser array are advantageous by a simple structure and thus there is easy fabrication on a single chip. For the application for the multi-target ranging using the 1-D lateral laser array, it is necessary to overcome the limitations of traditional optical chaos synchronization theory as described above.[21–23]The delay-based RC technology in training optical chaos synchronization provides a possible solution for this problem.[42]The stable and high-accuracy ranging to the multi-target can be achieved in the delay-based optical reservoir computing system based on the 1-D lateral laser array,owing to the realization of stable and high-quality chaos synchronization by the predictive learning,even if the existences of parameter mismatches between the driving laser element and its trained reservoir.

    Motivated by these described above, in this paper, as shown in Fig. 1, we propose three parallel delay-based optical chaotic RCs using laterally coupled semiconductor lasers both subject to self-feedback and optical injection, where the light injected into each laser is modulated by a delayed reflection probe signal from a target. These RCs can be described by the coupled wave theory developed by our previous work.[48]Based on these three-parallel delay-based RCs and Hilbert phase transformation principle,we further propose a novel scheme for multi-channel synchronized chaotic lidar ranging for multiple targets. For this scheme,we demonstrate the quality and stability of the lag chaos synchronization between a well-trained reservoir computer and its learned delay probe signal with a microwave signal. We explore the influences of the delay-time of RC and the interval of the virtual nodes on the training errors. Finally, we discuss the accuracies and the relative errors of the multi-target ranging.

    2. Experimental setup and theoretical method

    2.1. Experimental setup

    Figure 1 depicts a schematic diagram of synchronized chaotic lidar ranging for multi-targets by using three parallel delay-based RCs. Here, TLC-SL represents three laterally coupled semiconductor lasers,also referred to as a threeelement laser array. The TLC-SL1and TLC-SL2are the driving and response laser arrays, respectively. They both have three identical laser waveguides (LWGs) of width 2a, which are edge-to-edge separated 2d. The LWG A locates between the LWG B and the LWG C. The LWGs A, B, and C in the TLC-SL1are also denoted as lasers A1, B1and C1, respectively, and those in the TLC-SL2are also called as lasers A2,B2, and C2, respectively. The three driving laser elements in the TLC-SL1are chaotic radar sources to be learned for their synchronizations. With both delay-time feedback and optical injection,the three response laser elements in the TLC-SL2are utilized as nonlinear nodes to realize three-parallel delay RCs.The six neutral density filters(NDFs)are used to control light strength.The variable attenuators(VAs)are used to control the feedback strengths. The optical isolators (ISs) are applied to avoid light feedback.The AM1,AM2,and AM3are amplitude modulators.mA,mBandmCare the sinusoidal microwave signals. The fiber beam splitters (FBSs) (s=1–3) separate the output light into the photodetector and the input layer,respectively. The FBS4divides the external light from the driving semiconductor laser (D-SL) into three identical components,which are respectively injected into three phase modulations(PM1,PM2and PM3).

    The system presented by Fig. 1 is composed of the transmitting module (TM), multi-target detection module(MTDM), three input layers, three parallel reservoirs, three output layers and ranging calculation modules(RCMs). In the TM and MTDM, three beams of chaotic light waves are respectively emitted by lasers A1,B1and C1with self-feedback,and they are respectively modulated withmA,mB,andmC(sinusoidal microwave signals)using amplitude modulators,and these amplitude-modulated chaotic light waveforms are called the probe signals,such as PS-A,PS-B,and PS-C.These three probe signals are transmitted to by the optical transmitting antennas(OTA1–3),then reflected by the three targets and back to the optical receiving antennas(ORAs).Note that the signals collected by the receiving antennas can be considered as a delayed version of the three probe signals,which are denoted asuA(t-τA),uB(t-τB)anduC(t-τC).

    Fig.1. Schematic diagram of synchronized chaotic lidar ranging for the multi-target by utilizing three parallel delay-based optical reservoir computers using three laterally coupled semiconductor lasers(see texts for the detailed description).

    2.2. Theoretical method

    The nonlinear dynamics of the three laser-elements in the TCL-SL1with self-feedback can be described by the coupled mode theory developed by our previous work presented in Ref.[48]as follows:

    In the reservoir layers, the dynamics of the three laserelements in the TCL-SL2with both delay-time feedback and optical injection can be modeled as

    whereEdis the amplitude of CW output from the D-SL;cis the speed of light in vacuum;n0is the refractive index of the laser waveguides A, B, and C in the TCL-SL2. Thej-th masked input signalSj(t)is multiplied by thej-th input datauj(n′j), the mask signal, thej-th modulated signal and the scaling factorγ,which can be expressed as

    where the term Mask is chaos signal and presented in Ref. [49]. In these three input data,kA=τA/h,kB=τB/h,andkC=τC/h.his the step size.τAis the channel delay between the TA1and RA1.τBis that between the TA2and RA2.τCis that between the TA3and RA3.

    whereωjis the angular frequency of thej-th microwave signal;andAis the amplitude.By using the synchronous division presented in Fig. 1, these three-channel decoding microwave signals can be obtained by

    Under three lag synchronization solutions(see Eq.(22)),these decoding microwave signals are derived from Eqs.(25)and(26)as follows:

    According to Hilbert transform, the analytic signal ofmj(t)is written as

    and the distance of these three targets can be derived as

    wherecis the speed of light in vacuum.

    3. Results and discussion

    We calculate numerically Eqs.(1)–(14)by using the fourorder Runge–Kutta method with a stephof 1 ps. For the numerically solving Eqs.(1)–(7)for the TCL-SL1,6000 samples of input data are recorded under the sampling interval of 10 ps.After discarding the first 1000 samples(to eliminate transient states),we use the 3000 points for training the three reservoirs(RA,RB,and RC),and take their remaining 2000 points to test these reservoirs. Moreover,three mask signals are all chaotic signals generated by two mutually-coupled SLs, as presented in Ref.[49].The intervals of these mask signals are all denoted byθand set to 20 ps. The amplitudes of the mask signals are adjusted, making their standard deviations to be 1 and mean values of 0. The periodTof the input data is set as 8 ns,and hence the data processing speed is 125 Mb/s. The number of virtual nodesNis considered as 400, whereN=T/θ. The delay timeτ2=T+θ. The scaling factorγis set as 1.

    For the prediction tasks of the nonlinear dynamics of the lasers A1,B1,and C1,the training error,i.e.,thej-th normalized mean-square error(NMSEj)between thej-th input data(uj(n-kj))and thej-th reservoir(Rj)outputyj(n),is calculated to measure the performance of the Rj, which is defined as

    whereLis the total number of data in the testing data set;the term var represents the variance. The NMSE with subscripts ofjindicates how far the time seriesyj(n) generated by thej-th reservoir (Rj) deviates from thej-th delayed time seriesuj(n′j). NMSEj= 0 means thatyj(n) is perfectly matched withuj(n′j). When NMSEj=1 indicates that they are no similarities at all. Moreover, while NMSEjis less than 0.1, the trained reservoirs(RA,RBand RC)can infer the output chaotic trajectories from the lasers A1, B1, and C1, respectively. In other words,thej-th delayed input time seriesuj(n′j)from the laser-jelement in the TCL-SL1wishes to synchronize with the trained predicted valuesyj(n) from the Rjoutput, which can be characterized by using the correlation coefficient as follows:

    3.1. Training errors for the chaotic dynamics

    To further explore the predictive performances of three parallel trained reservoirs to the chaotic trajectories of threechannel delayed probe signals. Figure 3 displays three training errors(NMSEA,NMSEBand NMSEC)as a function of the delay-timeτ2underθ=20 ps,τA=10 ns,τB=15 ns, andτC=20 ns. It can be clearly seen from Fig.3 that in the region ofτ2between 1 ns and 10 ns,these training errors are less than 0.065, but they show a rise in oscillation with the increase ofτ2. The reason that a longer delay-timeτ2results in an oscillation rising training error may be explained as follows. In this work,whenθis fixed at 20 ps,T=τ2-θandN=τ2/θ-1,a largerNis accompanied by a largerτ2,indicating that a higher dimension state space. In such a case, the predictions of the trained reservoirs to the delayed probe signals becomes unstable and more difficult,resulting in a larger NMSE. Moreover,for the prediction of three-channel delayed probe signals,figure 4 shows their training errors as a function of the virtual node intervalθ. One sees from this figure that withTfixed at 8 ns,these three training errors appear in a cliff-like decline whenθincreases from 4 ps to 12 ps,then gradually stabilize to 0.0474 with the increase ofθfrom 12 ps to 200 ps. The reason is explained as follows: a smallθinduces to the reduction of the trained reservoirs response,showing larger training errors. Asθincreases from 15 ps to 200 ps, the response of the trained reservoir will be further enhanced, resulting in less training errors. In addition,although the dimension of the state space further decreases with the increase ofθ, there are still enough virtual nodes for training reservoir,making these training errors small and varied between 0.0474 and 0.055.

    Fig.3. (a)The NMSEA as a function of the delay-time τ2 for the prediction of the trained reservoir RA to uA(n′A); (b)the NMSEB as a function of τ2 for the prediction of the trained reservoir RB to uB(n′B);(c)the NMSEC as a function of τ2 for the prediction of the reservoir RC to uC(n′C). Here,τA =10 ns;τB=15 ns;τC=20 ns and other parameters except for τ2 are the same as those in Fig.2.

    Fig.4. (a)The NMSEA as a function of the virtual node interval θ for the prediction of the trained reservoir RA to uA(n′A);(b)the NMSEB as a function of θ for the prediction of the trained reservoir RB to uB(n′B);(c)the NMSEC as a function of θ for the prediction of the reservoir RC to uC(n′C). Here,τA=10 ns;τB=15 ns;τC=20 ns and other parameters except for θ are the same as those in Fig.2.

    3.2. Predictive learning of three-channel lag chaotic synchronizations

    3.3. Synchronized chaotic lidar ranging to multi-target

    Fig.7. (a)Time traces of the phases φmA and φ′mA;(b)those of the phases φmB and φ′mB;and(c)those of the phases. Here,τA=10 ns,τB=15 ns,τC=20 ns and other parameters are the same as those in Fig.2.

    Fig. 8. (a) The temporal trace of the measured distance dA for the target TA; (b) that of the measured distance dB for the target TB; and (c) that of the measured distance dC for the target TC. Here,τA=10 ns,τB=15 ns,τC=20 ns and other parameters are the same as those in Fig.2.

    Fig.9. Maps of the three relative errors evolutions in the parameter space of τ and τA (τB or τC). Here,(a)REA;(b)REB;(c)REC. State 1: 0 <RE j ≤0.1%and dark-blue; state 2: 0.1%<REj ≤0.2%and light-blue; state 3: 0.2%<REj ≤0.3%and blue-green; state 4: 0.3%<RE j ≤0.4%and green; state 5:0.4%<RE j ≤0.6%and yellow.

    Finally,the relative errors REA,REB,and RECare introduced to describe the accuracy of the target ranging as follows:

    where the symbol“||”represents absolute value. We quantize these relative errors for observation. State 1: 0<REA, REB,REC≤0.1%;state 2: 0.1%<REA,REB,REC≤0.2%;state 3: 0.2%<REA, REB, REC≤0.3%; state 4: 0.3%<REA,REB,REC≤0.4%;state 5: 0.4%<REA,REB,REC≤0.6%.Under high-quality lag chaotic synchronizations, figure 9 depicts the evolutions of these three relative errors in the parameter spaces ofτandτA,τandτB,τandτC. It is found from Fig. 9 that their relative errors are all less than 1%, and stay in state 1 in these three large parameter spaces. In addition,when the channel delaysτA,τB,andτCare all fixed at 10 ns or 16 ns,their relative errors appear an increase in a slight fluctuation and reach to 0.55%.Therefore,all relative errors of these three targets ranging are small and less than 0.6%, indicating that the ranging scheme can achieve high accuracy.

    From these results observed from Figs.6–8, under highquality lag chaotic synchronization obtained by the delayedbased reservoir computing approach, the ranging to three targets has good real-time stability. Their absolute errors reach millimeter magnitude, and their relative errors are very small and less than 0.6%.

    4. Conclusions

    To sum up,we proposed to use a machine-learning technique by means of three parallel optical chaotic reservoirs for realizing the ranging to three targets, respectively. The system proposed consists of the driving three-element laser array with self-feedback, multi-target detection, three input layers,three parallel reservoirs, three output layers, and ranging calculation. Here,these three optical reservoir computers are implemented by the chaotic three-element laser array with both delay-time feedback and optical injection. Three-channel delayed probe signals from the driving three-element laser array with self-feedback are modeled by these three trained reservoir computers,respectively. Our findings show that any onechannel delayed probe signal can synchronize well with its corresponding trained reservoir computer. In other words,high-quality lag chaotic synchronization between them can be achieved even despite the existence of some mismatches between the key parameters of the response three-element laser array and the driving three-element laser array. In addition,the three-channel synchronized probe signals are utilized for the ranging to three targets. Our investigation results indicate that stable and real-time ranging can be achieved for three targets.

    Significantly,most previous works focused on laser-based on chaotic radar ranging by using the cross-correlation between the reflected return signal and the replica of the signal transmitted.[1–9,15,16]In these works, the resolution is used to judge the accuracy of the ranging to target. Such correlationbased methods take advantage of the broad bandwidth of the chaotic laser and can achieve resolution up to centimeterlevel,indicating that the absolute errors for the ranging to target reach centimeter level. Our previous works reported in Refs.[18,19]explored another new way of implementing the ranging to target by using the synchronized chaotic lidar between driving laser and response one,where the relative errors for the ranging were obtained as less than 2.7%and 11%,respectively,based on the traditional complete chaos theory. By comparison,in this paper,based on the optical reservoir computing approach, the absolute errors for the ranging to multitarget reach millimeter level, and the corresponding relative errors are very small and less than 0.6%. Therefore, the results presented in this paper are better than those in the other reported works. Moreover,when the driving lasers and the response ones consist of four or more-element laser array, four or more-channel delayed probe signals from the driving four or more-element laser array with self-feedback can be modeled by the four or more reservoir computers implemented by the response four or more-element laser array with both delay-time feedback and optical injection,respectively. Using the reservoir computing method,any one of the four or morechannel delayed probe signals can synchronize well with its corresponding trained reservoir computer. Under this condition, the stable and real-time ranging can be realized for four or more targets.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 62075168), GuangDong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011088), and Special Project in Key Fields of Guangdong Provincial Department of Education of China(Grant No.2020ZDZX3052 and 2019KZDZX1025).

    猜你喜歡
    萬安東洲
    做蛋撻
    浙江萬安科技股份有限公司
    專用汽車(2020年2期)2020-04-08 10:57:50
    貓鼠會(huì)談
    新成員來了
    蘇萬安
    寶藏(2019年3期)2019-03-28 05:24:22
    特別企劃
    蘇萬安 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:16
    圣誕節(jié)的那雙手套
    我家的走調(diào)大王
    東洲曲
    亚洲人成77777在线视频| 麻豆av在线久日| 99热国产这里只有精品6| 熟女少妇亚洲综合色aaa.| 一级毛片高清免费大全| 亚洲欧美激情在线| 国产精品免费一区二区三区在线 | 久久影院123| 亚洲午夜理论影院| 婷婷精品国产亚洲av在线 | 欧美乱码精品一区二区三区| 新久久久久国产一级毛片| 国产欧美亚洲国产| 欧美色视频一区免费| 制服人妻中文乱码| 麻豆乱淫一区二区| 免费在线观看完整版高清| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 欧美日韩国产mv在线观看视频| 久久久久久人人人人人| av有码第一页| 人人妻人人澡人人看| 精品国产乱子伦一区二区三区| 亚洲五月色婷婷综合| av在线播放免费不卡| 性色av乱码一区二区三区2| 无人区码免费观看不卡| 啦啦啦在线免费观看视频4| 国产无遮挡羞羞视频在线观看| 91麻豆精品激情在线观看国产 | 水蜜桃什么品种好| 一区在线观看完整版| av国产精品久久久久影院| 国产精品免费大片| 欧美日韩亚洲国产一区二区在线观看 | 成年人免费黄色播放视频| 满18在线观看网站| 在线观看日韩欧美| 多毛熟女@视频| 天天躁日日躁夜夜躁夜夜| 天堂俺去俺来也www色官网| 亚洲美女黄片视频| 久久精品aⅴ一区二区三区四区| 亚洲av电影在线进入| 青草久久国产| 一级片'在线观看视频| 免费在线观看日本一区| 久久久久国产精品人妻aⅴ院 | 免费看十八禁软件| 最新在线观看一区二区三区| 久久久久久久久免费视频了| 欧美中文综合在线视频| 在线观看舔阴道视频| 亚洲中文字幕日韩| 日韩精品免费视频一区二区三区| 天天添夜夜摸| 一进一出抽搐动态| 国产精品免费大片| 精品高清国产在线一区| 亚洲午夜理论影院| 中文亚洲av片在线观看爽 | 亚洲精华国产精华精| 一区二区三区精品91| 国产精品美女特级片免费视频播放器 | 午夜福利一区二区在线看| 一进一出好大好爽视频| 亚洲av日韩精品久久久久久密| 在线看a的网站| 精品国产乱码久久久久久男人| 人人妻人人澡人人爽人人夜夜| videos熟女内射| 久久人人97超碰香蕉20202| 757午夜福利合集在线观看| 91在线观看av| 日日摸夜夜添夜夜添小说| 国产在视频线精品| 亚洲午夜精品一区,二区,三区| 国产精品98久久久久久宅男小说| 757午夜福利合集在线观看| 老司机亚洲免费影院| 欧美成人午夜精品| 亚洲 国产 在线| 一本大道久久a久久精品| 99久久99久久久精品蜜桃| 咕卡用的链子| 成年版毛片免费区| 十八禁高潮呻吟视频| 日本五十路高清| 一本一本久久a久久精品综合妖精| 男女床上黄色一级片免费看| 99热只有精品国产| 午夜福利在线免费观看网站| 18在线观看网站| 久久精品亚洲av国产电影网| 日韩大码丰满熟妇| 久久香蕉国产精品| 91精品三级在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲av片天天在线观看| 黑人欧美特级aaaaaa片| 国产极品粉嫩免费观看在线| 欧美日韩亚洲综合一区二区三区_| 波多野结衣av一区二区av| 丰满饥渴人妻一区二区三| 黄片播放在线免费| 法律面前人人平等表现在哪些方面| 操美女的视频在线观看| 成熟少妇高潮喷水视频| 亚洲人成伊人成综合网2020| 国产精品秋霞免费鲁丝片| 亚洲人成电影免费在线| 高清av免费在线| 久久人人爽av亚洲精品天堂| 中文字幕av电影在线播放| av不卡在线播放| 国产精品1区2区在线观看. | 免费在线观看视频国产中文字幕亚洲| 精品国产国语对白av| 夜夜躁狠狠躁天天躁| 高潮久久久久久久久久久不卡| 韩国av一区二区三区四区| 一二三四在线观看免费中文在| 欧美亚洲日本最大视频资源| 天天躁狠狠躁夜夜躁狠狠躁| 80岁老熟妇乱子伦牲交| 久久久久久久午夜电影 | 国产精品九九99| 99国产综合亚洲精品| 国产色视频综合| 少妇的丰满在线观看| 怎么达到女性高潮| 淫妇啪啪啪对白视频| 亚洲成人手机| 午夜福利欧美成人| 别揉我奶头~嗯~啊~动态视频| 热re99久久国产66热| 亚洲美女黄片视频| 成人手机av| 真人做人爱边吃奶动态| 久久精品国产亚洲av香蕉五月 | 亚洲专区中文字幕在线| а√天堂www在线а√下载 | 国产精品.久久久| 最新在线观看一区二区三区| 热re99久久精品国产66热6| 女性生殖器流出的白浆| 免费av中文字幕在线| 久久婷婷成人综合色麻豆| 女人久久www免费人成看片| 在线av久久热| 国产精品国产高清国产av | 麻豆av在线久日| 亚洲熟女精品中文字幕| 成人黄色视频免费在线看| 欧美精品一区二区免费开放| 亚洲人成电影免费在线| 777米奇影视久久| av国产精品久久久久影院| 亚洲五月色婷婷综合| 亚洲av成人不卡在线观看播放网| 人人妻,人人澡人人爽秒播| 亚洲中文字幕日韩| 亚洲欧美精品综合一区二区三区| 美国免费a级毛片| 美女国产高潮福利片在线看| 女同久久另类99精品国产91| 飞空精品影院首页| 麻豆成人av在线观看| 免费在线观看完整版高清| 极品少妇高潮喷水抽搐| 亚洲久久久国产精品| 高清毛片免费观看视频网站 | 狠狠婷婷综合久久久久久88av| 18禁黄网站禁片午夜丰满| 精品国产乱子伦一区二区三区| 国产亚洲精品久久久久久毛片 | 一级片'在线观看视频| 欧美乱码精品一区二区三区| 好男人电影高清在线观看| 男女床上黄色一级片免费看| 高清毛片免费观看视频网站 | 18禁裸乳无遮挡动漫免费视频| 老司机在亚洲福利影院| 俄罗斯特黄特色一大片| 一级毛片女人18水好多| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 80岁老熟妇乱子伦牲交| 成人国语在线视频| 12—13女人毛片做爰片一| 午夜亚洲福利在线播放| 久久人人爽av亚洲精品天堂| 免费少妇av软件| 欧美日韩视频精品一区| 9热在线视频观看99| 日韩三级视频一区二区三区| 欧美精品av麻豆av| 精品一区二区三卡| aaaaa片日本免费| 国产精品1区2区在线观看. | 中文字幕高清在线视频| 久久精品国产清高在天天线| 777米奇影视久久| 悠悠久久av| 日本a在线网址| 黄色a级毛片大全视频| 日本五十路高清| 一边摸一边抽搐一进一小说 | 日韩人妻精品一区2区三区| 日日夜夜操网爽| 成年动漫av网址| 人人妻人人澡人人看| 水蜜桃什么品种好| 午夜福利在线免费观看网站| 免费在线观看日本一区| 日韩欧美一区视频在线观看| 99热网站在线观看| 纯流量卡能插随身wifi吗| 国产成人精品无人区| 亚洲色图综合在线观看| 亚洲第一青青草原| www.精华液| 大型黄色视频在线免费观看| 久久九九热精品免费| 午夜福利影视在线免费观看| 国产一区二区激情短视频| 午夜成年电影在线免费观看| 色在线成人网| 很黄的视频免费| 国产亚洲精品久久久久久毛片 | 麻豆乱淫一区二区| 亚洲一码二码三码区别大吗| 男男h啪啪无遮挡| tube8黄色片| 黄色视频,在线免费观看| 精品国产亚洲在线| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人| 夜夜爽天天搞| 狂野欧美激情性xxxx| 精品国内亚洲2022精品成人 | 村上凉子中文字幕在线| 99精国产麻豆久久婷婷| 无人区码免费观看不卡| 日日爽夜夜爽网站| 嫩草影视91久久| 黄色视频,在线免费观看| 18禁裸乳无遮挡动漫免费视频| av不卡在线播放| 人妻 亚洲 视频| 国产精品成人在线| 丰满迷人的少妇在线观看| 在线观看免费午夜福利视频| 久久精品国产综合久久久| 村上凉子中文字幕在线| 夜夜爽天天搞| 精品久久久久久久久久免费视频 | 国产亚洲精品一区二区www | 日本vs欧美在线观看视频| 精品熟女少妇八av免费久了| 黑丝袜美女国产一区| 这个男人来自地球电影免费观看| 国产成人啪精品午夜网站| 9热在线视频观看99| 国产精品久久久人人做人人爽| 黄片大片在线免费观看| 窝窝影院91人妻| 91成人精品电影| 黄色视频,在线免费观看| 国产欧美日韩一区二区精品| 窝窝影院91人妻| 国产野战对白在线观看| 丝袜美腿诱惑在线| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 午夜福利视频在线观看免费| 亚洲精品一二三| 国产成人精品在线电影| 国产精品偷伦视频观看了| 法律面前人人平等表现在哪些方面| 欧美国产精品一级二级三级| 黄色毛片三级朝国网站| 黑人操中国人逼视频| 一区二区三区激情视频| 午夜福利免费观看在线| 丝袜美腿诱惑在线| 国产精品成人在线| 久久热在线av| 在线观看免费视频日本深夜| 久久人人97超碰香蕉20202| 亚洲第一av免费看| 欧美黑人欧美精品刺激| 男女之事视频高清在线观看| 久久精品91无色码中文字幕| 精品一区二区三区四区五区乱码| 国产日韩一区二区三区精品不卡| 成年人午夜在线观看视频| 国产欧美日韩一区二区三| 中文欧美无线码| 国产aⅴ精品一区二区三区波| 黑人欧美特级aaaaaa片| 女人爽到高潮嗷嗷叫在线视频| 精品国产乱子伦一区二区三区| 国精品久久久久久国模美| 三上悠亚av全集在线观看| 免费高清在线观看日韩| 亚洲免费av在线视频| 久久精品亚洲熟妇少妇任你| 国产91精品成人一区二区三区| 国产精品美女特级片免费视频播放器 | 亚洲成人免费av在线播放| 三级毛片av免费| 身体一侧抽搐| 国产熟女午夜一区二区三区| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 变态另类成人亚洲欧美熟女 | 精品国产一区二区三区久久久樱花| 日日爽夜夜爽网站| 国产精品.久久久| 久久青草综合色| 高清视频免费观看一区二区| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国产xxxxx性猛交| www.999成人在线观看| 免费在线观看完整版高清| 黄色视频,在线免费观看| 嫁个100分男人电影在线观看| 亚洲欧美激情综合另类| svipshipincom国产片| 韩国av一区二区三区四区| 亚洲色图av天堂| 亚洲欧美色中文字幕在线| а√天堂www在线а√下载 | 国产成人系列免费观看| 麻豆av在线久日| xxxhd国产人妻xxx| 韩国精品一区二区三区| 狠狠婷婷综合久久久久久88av| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 18禁裸乳无遮挡动漫免费视频| 久久国产精品影院| 一本一本久久a久久精品综合妖精| 女性生殖器流出的白浆| 国产精品一区二区在线观看99| 国产精品久久视频播放| 国产欧美日韩综合在线一区二区| 久久草成人影院| 我的亚洲天堂| 黑人猛操日本美女一级片| 热re99久久国产66热| 美女福利国产在线| www日本在线高清视频| 日本欧美视频一区| 亚洲黑人精品在线| 国产男女内射视频| 老熟妇乱子伦视频在线观看| 亚洲精品美女久久久久99蜜臀| 日本a在线网址| 99热国产这里只有精品6| 成人精品一区二区免费| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久男人| 男人操女人黄网站| 色婷婷av一区二区三区视频| 久久草成人影院| 丰满饥渴人妻一区二区三| 日韩欧美免费精品| 久久影院123| 18禁观看日本| 男人的好看免费观看在线视频 | av网站免费在线观看视频| 在线av久久热| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 十分钟在线观看高清视频www| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人| 一级毛片女人18水好多| 午夜福利欧美成人| 久久99一区二区三区| 99热国产这里只有精品6| 亚洲情色 制服丝袜| 久久久精品区二区三区| 欧美午夜高清在线| 国产成人影院久久av| 老司机午夜福利在线观看视频| 在线观看舔阴道视频| 国产成人欧美| 午夜福利一区二区在线看| 久久精品亚洲av国产电影网| 少妇猛男粗大的猛烈进出视频| 乱人伦中国视频| 俄罗斯特黄特色一大片| 欧美成人免费av一区二区三区 | 中文字幕人妻丝袜一区二区| 免费一级毛片在线播放高清视频 | 91麻豆精品激情在线观看国产 | 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 成熟少妇高潮喷水视频| 丁香欧美五月| 国产片内射在线| 日韩欧美三级三区| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 天天躁日日躁夜夜躁夜夜| 日本a在线网址| 国产精品一区二区精品视频观看| 久久久久久久精品吃奶| 国产成人精品久久二区二区免费| 精品人妻在线不人妻| 日韩有码中文字幕| 韩国av一区二区三区四区| 日韩欧美一区视频在线观看| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久免费视频 | 精品高清国产在线一区| 老汉色∧v一级毛片| 国产精品一区二区在线观看99| 两人在一起打扑克的视频| 色婷婷久久久亚洲欧美| 日韩欧美一区视频在线观看| 91av网站免费观看| 日本撒尿小便嘘嘘汇集6| 国产免费男女视频| 一a级毛片在线观看| a在线观看视频网站| 在线播放国产精品三级| 亚洲中文字幕日韩| 国产91精品成人一区二区三区| a在线观看视频网站| 久久国产精品人妻蜜桃| 国产日韩欧美亚洲二区| 最近最新中文字幕大全免费视频| avwww免费| 亚洲欧洲精品一区二区精品久久久| 美女高潮喷水抽搐中文字幕| 亚洲av片天天在线观看| 满18在线观看网站| 丰满饥渴人妻一区二区三| 亚洲人成电影免费在线| 亚洲国产毛片av蜜桃av| 国产人伦9x9x在线观看| av有码第一页| 欧美国产精品va在线观看不卡| av网站免费在线观看视频| 成人特级黄色片久久久久久久| 精品熟女少妇八av免费久了| 在线视频色国产色| 午夜久久久在线观看| 午夜福利,免费看| 一区二区三区国产精品乱码| 51午夜福利影视在线观看| 在线观看66精品国产| 免费观看a级毛片全部| 极品少妇高潮喷水抽搐| 最新在线观看一区二区三区| 在线永久观看黄色视频| 国产1区2区3区精品| 欧美日韩亚洲综合一区二区三区_| 欧美不卡视频在线免费观看 | 久久久久国产一级毛片高清牌| 国产高清激情床上av| 91老司机精品| 一个人免费在线观看的高清视频| 手机成人av网站| 大香蕉久久成人网| av天堂在线播放| 国产精品久久电影中文字幕 | 免费av中文字幕在线| 一二三四社区在线视频社区8| 中文字幕高清在线视频| 啪啪无遮挡十八禁网站| 飞空精品影院首页| 成年女人毛片免费观看观看9 | 婷婷丁香在线五月| 中文字幕人妻丝袜一区二区| 香蕉久久夜色| 日韩大码丰满熟妇| 99久久人妻综合| 亚洲国产中文字幕在线视频| 亚洲精品美女久久av网站| 在线国产一区二区在线| 啪啪无遮挡十八禁网站| 中文字幕制服av| 亚洲第一欧美日韩一区二区三区| 99热只有精品国产| 咕卡用的链子| 麻豆av在线久日| 亚洲专区中文字幕在线| 国产麻豆69| 99久久人妻综合| 亚洲人成伊人成综合网2020| 久久精品国产a三级三级三级| 99香蕉大伊视频| 一级a爱视频在线免费观看| 人成视频在线观看免费观看| 夜夜夜夜夜久久久久| 免费看a级黄色片| 国产成人免费观看mmmm| 国产欧美日韩一区二区三区在线| 麻豆国产av国片精品| 国产高清视频在线播放一区| bbb黄色大片| 国产精品影院久久| 精品久久久久久电影网| 涩涩av久久男人的天堂| 亚洲成a人片在线一区二区| 男女午夜视频在线观看| 操美女的视频在线观看| 亚洲少妇的诱惑av| 99久久精品国产亚洲精品| 午夜福利视频在线观看免费| 18禁裸乳无遮挡动漫免费视频| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9 | 老司机午夜福利在线观看视频| 亚洲av美国av| 高清欧美精品videossex| 十八禁人妻一区二区| 国产男靠女视频免费网站| 国产人伦9x9x在线观看| 99精国产麻豆久久婷婷| 亚洲三区欧美一区| 免费不卡黄色视频| 精品乱码久久久久久99久播| 亚洲专区字幕在线| 亚洲色图 男人天堂 中文字幕| 日韩成人在线观看一区二区三区| 两个人看的免费小视频| 午夜福利免费观看在线| 亚洲精品成人av观看孕妇| 精品无人区乱码1区二区| 他把我摸到了高潮在线观看| 天天躁日日躁夜夜躁夜夜| 在线观看免费日韩欧美大片| 亚洲国产毛片av蜜桃av| 一级毛片女人18水好多| 天天操日日干夜夜撸| 12—13女人毛片做爰片一| 熟女少妇亚洲综合色aaa.| a级片在线免费高清观看视频| 精品一区二区三区av网在线观看| 岛国毛片在线播放| 在线观看免费高清a一片| 国产免费现黄频在线看| 亚洲欧美一区二区三区久久| 午夜亚洲福利在线播放| 高清欧美精品videossex| 男女下面插进去视频免费观看| 久久国产精品影院| 1024视频免费在线观看| 精品国产亚洲在线| 久久九九热精品免费| 免费在线观看影片大全网站| 欧美精品啪啪一区二区三区| 国内毛片毛片毛片毛片毛片| 丁香六月欧美| 亚洲,欧美精品.| 国产精品电影一区二区三区 | bbb黄色大片| 午夜免费成人在线视频| 最新在线观看一区二区三区| 新久久久久国产一级毛片| 亚洲免费av在线视频| 国产不卡一卡二| 久久香蕉精品热| 久久九九热精品免费| 大型黄色视频在线免费观看| 亚洲人成伊人成综合网2020| 国产精品久久久av美女十八| 丰满人妻熟妇乱又伦精品不卡| 精品乱码久久久久久99久播| 热re99久久国产66热| 一夜夜www| 水蜜桃什么品种好| 国产成人影院久久av| 大型黄色视频在线免费观看| 成熟少妇高潮喷水视频| 国产精品二区激情视频| 黑人操中国人逼视频| 久久久久久久久久久久大奶| 在线观看www视频免费| 视频区图区小说| 国产精品香港三级国产av潘金莲| 久久人人爽av亚洲精品天堂| 国产精品一区二区在线观看99| 激情在线观看视频在线高清 | 亚洲欧美激情在线| 操出白浆在线播放| 亚洲国产看品久久| 黑人欧美特级aaaaaa片| 久久久国产精品麻豆| 岛国在线观看网站| 久久午夜亚洲精品久久| 精品亚洲成a人片在线观看| 国产精品免费大片| 高清视频免费观看一区二区| 搡老熟女国产l中国老女人| 在线看a的网站| 亚洲欧美日韩另类电影网站| 男人操女人黄网站| 国产亚洲一区二区精品| 两人在一起打扑克的视频| 啦啦啦在线免费观看视频4| 午夜福利视频在线观看免费| 波多野结衣一区麻豆| 极品少妇高潮喷水抽搐|