• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback

    2022-08-01 06:01:28DongZhouZhong鐘東洲ZheXu徐喆YaLanHu胡亞蘭KeKeZhao趙可可JinBoZhang張金波PengHou侯鵬WanAnDeng鄧萬安andJiangTaoXi習(xí)江濤
    Chinese Physics B 2022年7期
    關(guān)鍵詞:萬安東洲

    Dong-Zhou Zhong(鐘東洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亞蘭), Ke-Ke Zhao(趙可可), Jin-Bo Zhang(張金波),Peng Hou(侯鵬), Wan-An Deng(鄧萬安), and Jiang-Tao Xi(習(xí)江濤),2

    1Intelligent Manufacturing Faculty,Wuyi University,Jiangmen 529020,China

    2School of Electrical,Computer,Telecommunications Engineering,University of WollongGong,2522,Australia

    Keywords: coupled semiconductor lasers,lidar ranging,optical reservoir computing,chaos synchronization

    1. Introduction

    The chaotic lidar is a lidar system utilizing the nonlinear dynamics of semiconductor lasers.[1–3]A chaotic lidar can be used as an enabling technology for many applications, such as artificial intelligence,precision range finding,object tracking and locating,through-wall detection,driverless navigation system and so on.[4–7,13–19]Among other applications,chaotic lidar ranging (CLR) has attracted considerable attention due to its advantages over short-pulse and continuous wave(CW)lidar ranging, such as low probability of intercept, high resolution in ranging and velocity,strong anti-interference ability,easy generation and low cost.[1–3,8]

    There are mainly two ways for the implementation of CLRs. The first one is based on the computation of the cross-correlation between the reflected return signal and the replica of the signal transmitted.[1–9,15,16]Such correlationbased methods take advantage of the broad bandwidth of the chaotic laser and can achieve resolution up to centimeter-level.Although progress was made to increase the resolution[4–9]in recent years, further improvement becomes very difficult due to the limit of the correlation and the interference of spontaneous emission noise and channel noise. Another way of implementing CRLs is with a synchronized chaotic lidar. A synchronization chaotic lidar system has two chaotic lasers:one called the drive laser, used to generate the probe signal,and the other referred to as response laser that is used to synchronize with the drive laser. In order to probe the target,the drive laser output is modulated with a microwave signal. The chaotic probe signal with a microwave signal is reflected by the target, then delayed, finally synchronized with a chaotic signal from the response laser output. The delayed microwave signal is decoded by using high-quality chaotic synchronization. The delay time in the microwave is extracted by using Hilbert transform. The distance of the target at an arbitrary position can be calculated by using delay time. In contrast to a cross-correlation-based chaotic lidar, synchronized chaotic lidars has the potential to provide improved ranging performance in accuracy and anti-noise ability since the quality of synchronization is very robust to noise.[18–20]

    The accuracy of the target ranging associated with synchronized chaotic lidar systems heavily depends on the quality and stability of chaotic synchronization. However,all existing techniques for completing chaos synchronization rely on the assumptions that the drive and the response laser systems are identical,i.e.,the rate-equations describing the two lasers must be the same and known a priori.[21–23]However,these assumptions do not hold in practice,as an inevitable mismatch always exists between the driving and response lasers.

    In recent years, reservoir computing (RC) has been proven to be an effective approach in the prediction of chaotic systems from data.[24–27]The delay-based RC first proposed by Appeltantet al.,[28]composed of a nonlinear node and a delay feedback loop, is proved to be an effective and simple hardware implementation for neural network computing in hardware.[29–38]Many hardware implementations of such delay-based RC have been reported in literature, such as the electronic system,[29,30]opto-electronic system,[31,32]all-optical system,[33–35]and laser dynamical system.[36–38]Among these techniques,the delay-based RC using nonlinear semiconductor lasers has the advantages of fast-speed, high efficiency and parallel computing capability for many benchmark tasks,[33–48]such as time series prediction,[39–43]optical packet header recognition,[44]speech recognition,[45]nonlinear channel equalization[46]and so on. A growing number of studies have shown that a well-trained reservoir computer can be well synchronized with its learned chaotic system by using a delay-based RC approach.[24–27]For example, in 2017,Anoniket al.proved experimentally that a reservoir can be trained to yield similar dynamics to its learned chaotic system (similar spectrum, Lyapunov index, etc).[47]Our previous work further shows that high-quality chaotic synchronization between the driving laser array and its trained reservoir in the existence of mismatch between their rate equations can be achieved by using a delay-based optical reservoir computing approach.[42]

    The 1-D lateral laser array(laterally coupled semiconductor lasers)with rich chaos dynamics represents an ideal candidate of an integrated chaotic light source,which has potential applications in multi-target chaotic lidar synchronous ranging.Compared with the multi-target ranging based on three uncoupled semiconductor lasers,the ranging to multi-target based on the 1-D lateral laser array are advantageous by a simple structure and thus there is easy fabrication on a single chip. For the application for the multi-target ranging using the 1-D lateral laser array, it is necessary to overcome the limitations of traditional optical chaos synchronization theory as described above.[21–23]The delay-based RC technology in training optical chaos synchronization provides a possible solution for this problem.[42]The stable and high-accuracy ranging to the multi-target can be achieved in the delay-based optical reservoir computing system based on the 1-D lateral laser array,owing to the realization of stable and high-quality chaos synchronization by the predictive learning,even if the existences of parameter mismatches between the driving laser element and its trained reservoir.

    Motivated by these described above, in this paper, as shown in Fig. 1, we propose three parallel delay-based optical chaotic RCs using laterally coupled semiconductor lasers both subject to self-feedback and optical injection, where the light injected into each laser is modulated by a delayed reflection probe signal from a target. These RCs can be described by the coupled wave theory developed by our previous work.[48]Based on these three-parallel delay-based RCs and Hilbert phase transformation principle,we further propose a novel scheme for multi-channel synchronized chaotic lidar ranging for multiple targets. For this scheme,we demonstrate the quality and stability of the lag chaos synchronization between a well-trained reservoir computer and its learned delay probe signal with a microwave signal. We explore the influences of the delay-time of RC and the interval of the virtual nodes on the training errors. Finally, we discuss the accuracies and the relative errors of the multi-target ranging.

    2. Experimental setup and theoretical method

    2.1. Experimental setup

    Figure 1 depicts a schematic diagram of synchronized chaotic lidar ranging for multi-targets by using three parallel delay-based RCs. Here, TLC-SL represents three laterally coupled semiconductor lasers,also referred to as a threeelement laser array. The TLC-SL1and TLC-SL2are the driving and response laser arrays, respectively. They both have three identical laser waveguides (LWGs) of width 2a, which are edge-to-edge separated 2d. The LWG A locates between the LWG B and the LWG C. The LWGs A, B, and C in the TLC-SL1are also denoted as lasers A1, B1and C1, respectively, and those in the TLC-SL2are also called as lasers A2,B2, and C2, respectively. The three driving laser elements in the TLC-SL1are chaotic radar sources to be learned for their synchronizations. With both delay-time feedback and optical injection,the three response laser elements in the TLC-SL2are utilized as nonlinear nodes to realize three-parallel delay RCs.The six neutral density filters(NDFs)are used to control light strength.The variable attenuators(VAs)are used to control the feedback strengths. The optical isolators (ISs) are applied to avoid light feedback.The AM1,AM2,and AM3are amplitude modulators.mA,mBandmCare the sinusoidal microwave signals. The fiber beam splitters (FBSs) (s=1–3) separate the output light into the photodetector and the input layer,respectively. The FBS4divides the external light from the driving semiconductor laser (D-SL) into three identical components,which are respectively injected into three phase modulations(PM1,PM2and PM3).

    The system presented by Fig. 1 is composed of the transmitting module (TM), multi-target detection module(MTDM), three input layers, three parallel reservoirs, three output layers and ranging calculation modules(RCMs). In the TM and MTDM, three beams of chaotic light waves are respectively emitted by lasers A1,B1and C1with self-feedback,and they are respectively modulated withmA,mB,andmC(sinusoidal microwave signals)using amplitude modulators,and these amplitude-modulated chaotic light waveforms are called the probe signals,such as PS-A,PS-B,and PS-C.These three probe signals are transmitted to by the optical transmitting antennas(OTA1–3),then reflected by the three targets and back to the optical receiving antennas(ORAs).Note that the signals collected by the receiving antennas can be considered as a delayed version of the three probe signals,which are denoted asuA(t-τA),uB(t-τB)anduC(t-τC).

    Fig.1. Schematic diagram of synchronized chaotic lidar ranging for the multi-target by utilizing three parallel delay-based optical reservoir computers using three laterally coupled semiconductor lasers(see texts for the detailed description).

    2.2. Theoretical method

    The nonlinear dynamics of the three laser-elements in the TCL-SL1with self-feedback can be described by the coupled mode theory developed by our previous work presented in Ref.[48]as follows:

    In the reservoir layers, the dynamics of the three laserelements in the TCL-SL2with both delay-time feedback and optical injection can be modeled as

    whereEdis the amplitude of CW output from the D-SL;cis the speed of light in vacuum;n0is the refractive index of the laser waveguides A, B, and C in the TCL-SL2. Thej-th masked input signalSj(t)is multiplied by thej-th input datauj(n′j), the mask signal, thej-th modulated signal and the scaling factorγ,which can be expressed as

    where the term Mask is chaos signal and presented in Ref. [49]. In these three input data,kA=τA/h,kB=τB/h,andkC=τC/h.his the step size.τAis the channel delay between the TA1and RA1.τBis that between the TA2and RA2.τCis that between the TA3and RA3.

    whereωjis the angular frequency of thej-th microwave signal;andAis the amplitude.By using the synchronous division presented in Fig. 1, these three-channel decoding microwave signals can be obtained by

    Under three lag synchronization solutions(see Eq.(22)),these decoding microwave signals are derived from Eqs.(25)and(26)as follows:

    According to Hilbert transform, the analytic signal ofmj(t)is written as

    and the distance of these three targets can be derived as

    wherecis the speed of light in vacuum.

    3. Results and discussion

    We calculate numerically Eqs.(1)–(14)by using the fourorder Runge–Kutta method with a stephof 1 ps. For the numerically solving Eqs.(1)–(7)for the TCL-SL1,6000 samples of input data are recorded under the sampling interval of 10 ps.After discarding the first 1000 samples(to eliminate transient states),we use the 3000 points for training the three reservoirs(RA,RB,and RC),and take their remaining 2000 points to test these reservoirs. Moreover,three mask signals are all chaotic signals generated by two mutually-coupled SLs, as presented in Ref.[49].The intervals of these mask signals are all denoted byθand set to 20 ps. The amplitudes of the mask signals are adjusted, making their standard deviations to be 1 and mean values of 0. The periodTof the input data is set as 8 ns,and hence the data processing speed is 125 Mb/s. The number of virtual nodesNis considered as 400, whereN=T/θ. The delay timeτ2=T+θ. The scaling factorγis set as 1.

    For the prediction tasks of the nonlinear dynamics of the lasers A1,B1,and C1,the training error,i.e.,thej-th normalized mean-square error(NMSEj)between thej-th input data(uj(n-kj))and thej-th reservoir(Rj)outputyj(n),is calculated to measure the performance of the Rj, which is defined as

    whereLis the total number of data in the testing data set;the term var represents the variance. The NMSE with subscripts ofjindicates how far the time seriesyj(n) generated by thej-th reservoir (Rj) deviates from thej-th delayed time seriesuj(n′j). NMSEj= 0 means thatyj(n) is perfectly matched withuj(n′j). When NMSEj=1 indicates that they are no similarities at all. Moreover, while NMSEjis less than 0.1, the trained reservoirs(RA,RBand RC)can infer the output chaotic trajectories from the lasers A1, B1, and C1, respectively. In other words,thej-th delayed input time seriesuj(n′j)from the laser-jelement in the TCL-SL1wishes to synchronize with the trained predicted valuesyj(n) from the Rjoutput, which can be characterized by using the correlation coefficient as follows:

    3.1. Training errors for the chaotic dynamics

    To further explore the predictive performances of three parallel trained reservoirs to the chaotic trajectories of threechannel delayed probe signals. Figure 3 displays three training errors(NMSEA,NMSEBand NMSEC)as a function of the delay-timeτ2underθ=20 ps,τA=10 ns,τB=15 ns, andτC=20 ns. It can be clearly seen from Fig.3 that in the region ofτ2between 1 ns and 10 ns,these training errors are less than 0.065, but they show a rise in oscillation with the increase ofτ2. The reason that a longer delay-timeτ2results in an oscillation rising training error may be explained as follows. In this work,whenθis fixed at 20 ps,T=τ2-θandN=τ2/θ-1,a largerNis accompanied by a largerτ2,indicating that a higher dimension state space. In such a case, the predictions of the trained reservoirs to the delayed probe signals becomes unstable and more difficult,resulting in a larger NMSE. Moreover,for the prediction of three-channel delayed probe signals,figure 4 shows their training errors as a function of the virtual node intervalθ. One sees from this figure that withTfixed at 8 ns,these three training errors appear in a cliff-like decline whenθincreases from 4 ps to 12 ps,then gradually stabilize to 0.0474 with the increase ofθfrom 12 ps to 200 ps. The reason is explained as follows: a smallθinduces to the reduction of the trained reservoirs response,showing larger training errors. Asθincreases from 15 ps to 200 ps, the response of the trained reservoir will be further enhanced, resulting in less training errors. In addition,although the dimension of the state space further decreases with the increase ofθ, there are still enough virtual nodes for training reservoir,making these training errors small and varied between 0.0474 and 0.055.

    Fig.3. (a)The NMSEA as a function of the delay-time τ2 for the prediction of the trained reservoir RA to uA(n′A); (b)the NMSEB as a function of τ2 for the prediction of the trained reservoir RB to uB(n′B);(c)the NMSEC as a function of τ2 for the prediction of the reservoir RC to uC(n′C). Here,τA =10 ns;τB=15 ns;τC=20 ns and other parameters except for τ2 are the same as those in Fig.2.

    Fig.4. (a)The NMSEA as a function of the virtual node interval θ for the prediction of the trained reservoir RA to uA(n′A);(b)the NMSEB as a function of θ for the prediction of the trained reservoir RB to uB(n′B);(c)the NMSEC as a function of θ for the prediction of the reservoir RC to uC(n′C). Here,τA=10 ns;τB=15 ns;τC=20 ns and other parameters except for θ are the same as those in Fig.2.

    3.2. Predictive learning of three-channel lag chaotic synchronizations

    3.3. Synchronized chaotic lidar ranging to multi-target

    Fig.7. (a)Time traces of the phases φmA and φ′mA;(b)those of the phases φmB and φ′mB;and(c)those of the phases. Here,τA=10 ns,τB=15 ns,τC=20 ns and other parameters are the same as those in Fig.2.

    Fig. 8. (a) The temporal trace of the measured distance dA for the target TA; (b) that of the measured distance dB for the target TB; and (c) that of the measured distance dC for the target TC. Here,τA=10 ns,τB=15 ns,τC=20 ns and other parameters are the same as those in Fig.2.

    Fig.9. Maps of the three relative errors evolutions in the parameter space of τ and τA (τB or τC). Here,(a)REA;(b)REB;(c)REC. State 1: 0 <RE j ≤0.1%and dark-blue; state 2: 0.1%<REj ≤0.2%and light-blue; state 3: 0.2%<REj ≤0.3%and blue-green; state 4: 0.3%<RE j ≤0.4%and green; state 5:0.4%<RE j ≤0.6%and yellow.

    Finally,the relative errors REA,REB,and RECare introduced to describe the accuracy of the target ranging as follows:

    where the symbol“||”represents absolute value. We quantize these relative errors for observation. State 1: 0<REA, REB,REC≤0.1%;state 2: 0.1%<REA,REB,REC≤0.2%;state 3: 0.2%<REA, REB, REC≤0.3%; state 4: 0.3%<REA,REB,REC≤0.4%;state 5: 0.4%<REA,REB,REC≤0.6%.Under high-quality lag chaotic synchronizations, figure 9 depicts the evolutions of these three relative errors in the parameter spaces ofτandτA,τandτB,τandτC. It is found from Fig. 9 that their relative errors are all less than 1%, and stay in state 1 in these three large parameter spaces. In addition,when the channel delaysτA,τB,andτCare all fixed at 10 ns or 16 ns,their relative errors appear an increase in a slight fluctuation and reach to 0.55%.Therefore,all relative errors of these three targets ranging are small and less than 0.6%, indicating that the ranging scheme can achieve high accuracy.

    From these results observed from Figs.6–8, under highquality lag chaotic synchronization obtained by the delayedbased reservoir computing approach, the ranging to three targets has good real-time stability. Their absolute errors reach millimeter magnitude, and their relative errors are very small and less than 0.6%.

    4. Conclusions

    To sum up,we proposed to use a machine-learning technique by means of three parallel optical chaotic reservoirs for realizing the ranging to three targets, respectively. The system proposed consists of the driving three-element laser array with self-feedback, multi-target detection, three input layers,three parallel reservoirs, three output layers, and ranging calculation. Here,these three optical reservoir computers are implemented by the chaotic three-element laser array with both delay-time feedback and optical injection. Three-channel delayed probe signals from the driving three-element laser array with self-feedback are modeled by these three trained reservoir computers,respectively. Our findings show that any onechannel delayed probe signal can synchronize well with its corresponding trained reservoir computer. In other words,high-quality lag chaotic synchronization between them can be achieved even despite the existence of some mismatches between the key parameters of the response three-element laser array and the driving three-element laser array. In addition,the three-channel synchronized probe signals are utilized for the ranging to three targets. Our investigation results indicate that stable and real-time ranging can be achieved for three targets.

    Significantly,most previous works focused on laser-based on chaotic radar ranging by using the cross-correlation between the reflected return signal and the replica of the signal transmitted.[1–9,15,16]In these works, the resolution is used to judge the accuracy of the ranging to target. Such correlationbased methods take advantage of the broad bandwidth of the chaotic laser and can achieve resolution up to centimeterlevel,indicating that the absolute errors for the ranging to target reach centimeter level. Our previous works reported in Refs.[18,19]explored another new way of implementing the ranging to target by using the synchronized chaotic lidar between driving laser and response one,where the relative errors for the ranging were obtained as less than 2.7%and 11%,respectively,based on the traditional complete chaos theory. By comparison,in this paper,based on the optical reservoir computing approach, the absolute errors for the ranging to multitarget reach millimeter level, and the corresponding relative errors are very small and less than 0.6%. Therefore, the results presented in this paper are better than those in the other reported works. Moreover,when the driving lasers and the response ones consist of four or more-element laser array, four or more-channel delayed probe signals from the driving four or more-element laser array with self-feedback can be modeled by the four or more reservoir computers implemented by the response four or more-element laser array with both delay-time feedback and optical injection,respectively. Using the reservoir computing method,any one of the four or morechannel delayed probe signals can synchronize well with its corresponding trained reservoir computer. Under this condition, the stable and real-time ranging can be realized for four or more targets.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 62075168), GuangDong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011088), and Special Project in Key Fields of Guangdong Provincial Department of Education of China(Grant No.2020ZDZX3052 and 2019KZDZX1025).

    猜你喜歡
    萬安東洲
    做蛋撻
    浙江萬安科技股份有限公司
    專用汽車(2020年2期)2020-04-08 10:57:50
    貓鼠會(huì)談
    新成員來了
    蘇萬安
    寶藏(2019年3期)2019-03-28 05:24:22
    特別企劃
    蘇萬安 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:16
    圣誕節(jié)的那雙手套
    我家的走調(diào)大王
    東洲曲
    一边亲一边摸免费视频| 欧美精品亚洲一区二区| 七月丁香在线播放| 婷婷色综合大香蕉| 后天国语完整版免费观看| 欧美在线一区亚洲| videosex国产| 久久久久精品人妻al黑| 欧美激情 高清一区二区三区| 老熟女久久久| 性色av一级| 一级黄片播放器| 欧美成人午夜精品| 免费日韩欧美在线观看| 咕卡用的链子| 中文字幕精品免费在线观看视频| 高清不卡的av网站| 久久久久久久久免费视频了| 国产精品人妻久久久影院| e午夜精品久久久久久久| 人人妻人人爽人人添夜夜欢视频| 欧美激情 高清一区二区三区| 国产不卡av网站在线观看| 少妇被粗大的猛进出69影院| 久久天堂一区二区三区四区| av视频免费观看在线观看| avwww免费| 国产又色又爽无遮挡免| 另类亚洲欧美激情| 亚洲人成网站在线观看播放| 欧美黄色片欧美黄色片| 日本黄色日本黄色录像| 国产精品九九99| 人人妻人人澡人人爽人人夜夜| 久久久国产精品麻豆| 色94色欧美一区二区| 亚洲九九香蕉| 老司机影院毛片| 欧美激情高清一区二区三区| 色精品久久人妻99蜜桃| 亚洲av欧美aⅴ国产| 久久人妻熟女aⅴ| 成在线人永久免费视频| 精品久久久久久久毛片微露脸 | 亚洲精品日本国产第一区| 久久精品亚洲熟妇少妇任你| 亚洲欧美中文字幕日韩二区| 国产老妇伦熟女老妇高清| 国产老妇伦熟女老妇高清| 丝袜脚勾引网站| 午夜两性在线视频| 超碰97精品在线观看| 999精品在线视频| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲高清精品| 国产深夜福利视频在线观看| 女人高潮潮喷娇喘18禁视频| 成人国产一区最新在线观看 | 国产国语露脸激情在线看| 亚洲欧洲国产日韩| 一级毛片 在线播放| 国产一区亚洲一区在线观看| 搡老乐熟女国产| 人人妻人人添人人爽欧美一区卜| 真人做人爱边吃奶动态| 亚洲国产欧美网| 老司机深夜福利视频在线观看 | 黄网站色视频无遮挡免费观看| 美女视频免费永久观看网站| 纯流量卡能插随身wifi吗| 久久久久久久国产电影| av天堂在线播放| 波多野结衣av一区二区av| 国产不卡av网站在线观看| 岛国毛片在线播放| 日韩,欧美,国产一区二区三区| 欧美日韩亚洲综合一区二区三区_| 久久精品国产亚洲av高清一级| 国产福利在线免费观看视频| 亚洲精品自拍成人| 国产成人影院久久av| 免费人妻精品一区二区三区视频| 欧美人与性动交α欧美精品济南到| 国产成人av教育| 婷婷丁香在线五月| 夫妻午夜视频| 久久影院123| 黄色毛片三级朝国网站| 精品久久久精品久久久| 一本久久精品| 成年人午夜在线观看视频| 超碰成人久久| 国产黄色视频一区二区在线观看| 国产精品99久久99久久久不卡| 欧美精品亚洲一区二区| 亚洲专区国产一区二区| 丝袜在线中文字幕| 午夜精品国产一区二区电影| www.自偷自拍.com| 涩涩av久久男人的天堂| 久久狼人影院| 国产欧美日韩一区二区三 | 高潮久久久久久久久久久不卡| 亚洲欧洲精品一区二区精品久久久| 9色porny在线观看| 午夜日韩欧美国产| 水蜜桃什么品种好| 亚洲中文字幕日韩| 男人舔女人的私密视频| 国产日韩欧美在线精品| 国产精品国产av在线观看| 黄片小视频在线播放| 日韩熟女老妇一区二区性免费视频| 肉色欧美久久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 男女下面插进去视频免费观看| 久久久久久久久久久久大奶| 欧美成狂野欧美在线观看| 99精品久久久久人妻精品| 久久久久精品人妻al黑| 久久亚洲国产成人精品v| 国产一区二区激情短视频 | 黄色视频不卡| 看十八女毛片水多多多| 中文字幕另类日韩欧美亚洲嫩草| 久久久亚洲精品成人影院| 亚洲色图 男人天堂 中文字幕| 69精品国产乱码久久久| 成人国产av品久久久| 中文字幕av电影在线播放| 日日爽夜夜爽网站| 一本久久精品| www日本在线高清视频| 国产片特级美女逼逼视频| 久久国产精品影院| 国产高清视频在线播放一区 | 中文字幕制服av| 少妇粗大呻吟视频| 精品亚洲乱码少妇综合久久| 精品人妻在线不人妻| 国产亚洲欧美在线一区二区| 国产成人精品无人区| 国产欧美日韩综合在线一区二区| 精品欧美一区二区三区在线| 久久久久精品国产欧美久久久 | 久久精品亚洲av国产电影网| 免费不卡黄色视频| 国产亚洲午夜精品一区二区久久| 啦啦啦视频在线资源免费观看| 国语对白做爰xxxⅹ性视频网站| 国产片特级美女逼逼视频| 亚洲精品国产区一区二| 在线观看人妻少妇| 宅男免费午夜| 最近中文字幕2019免费版| 亚洲精品日韩在线中文字幕| 又大又黄又爽视频免费| 可以免费在线观看a视频的电影网站| 国产高清videossex| 丁香六月欧美| 中文乱码字字幕精品一区二区三区| 婷婷色av中文字幕| 精品亚洲乱码少妇综合久久| 熟女av电影| 欧美日韩综合久久久久久| 日韩一本色道免费dvd| 黄色片一级片一级黄色片| 欧美日韩亚洲国产一区二区在线观看 | 侵犯人妻中文字幕一二三四区| 国产精品久久久久久精品古装| 欧美av亚洲av综合av国产av| 亚洲成人国产一区在线观看 | 国产av国产精品国产| 亚洲欧美一区二区三区国产| 每晚都被弄得嗷嗷叫到高潮| 两个人免费观看高清视频| 国产亚洲欧美在线一区二区| 大话2 男鬼变身卡| 欧美日韩福利视频一区二区| 日本猛色少妇xxxxx猛交久久| 久久 成人 亚洲| 五月天丁香电影| 欧美成人精品欧美一级黄| 91麻豆精品激情在线观看国产 | 久久久久久久大尺度免费视频| 久久狼人影院| 久久久久精品人妻al黑| 国产成人精品久久久久久| 国产极品粉嫩免费观看在线| 久久ye,这里只有精品| 一本大道久久a久久精品| 悠悠久久av| kizo精华| 亚洲九九香蕉| 日本色播在线视频| 亚洲欧洲日产国产| 亚洲av片天天在线观看| 亚洲中文字幕日韩| 精品一区二区三卡| 亚洲av电影在线进入| 欧美成狂野欧美在线观看| 亚洲国产中文字幕在线视频| 高清欧美精品videossex| 一边摸一边做爽爽视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 成人亚洲精品一区在线观看| 亚洲美女黄色视频免费看| 男女边吃奶边做爰视频| 超碰成人久久| 久久精品国产a三级三级三级| 亚洲精品一二三| 天天躁夜夜躁狠狠久久av| 成年女人毛片免费观看观看9 | √禁漫天堂资源中文www| 亚洲国产欧美网| 飞空精品影院首页| kizo精华| 欧美精品人与动牲交sv欧美| 亚洲免费av在线视频| 国产精品熟女久久久久浪| 999久久久国产精品视频| 国产主播在线观看一区二区 | 91精品国产国语对白视频| 亚洲欧美一区二区三区国产| 亚洲欧美色中文字幕在线| 亚洲精品美女久久久久99蜜臀 | 一级黄色大片毛片| 天天躁狠狠躁夜夜躁狠狠躁| 90打野战视频偷拍视频| 亚洲五月婷婷丁香| 黑人猛操日本美女一级片| 99国产精品一区二区三区| av天堂在线播放| 性高湖久久久久久久久免费观看| 国产精品一国产av| 伦理电影免费视频| 老司机深夜福利视频在线观看 | 成年av动漫网址| 熟女av电影| 国产福利在线免费观看视频| 一级毛片 在线播放| 美女福利国产在线| 狂野欧美激情性bbbbbb| av天堂在线播放| 90打野战视频偷拍视频| 香蕉国产在线看| av一本久久久久| 少妇 在线观看| 巨乳人妻的诱惑在线观看| 亚洲,欧美,日韩| 满18在线观看网站| 成人三级做爰电影| 99久久综合免费| 韩国高清视频一区二区三区| av视频免费观看在线观看| 满18在线观看网站| 国产激情久久老熟女| 成年人午夜在线观看视频| h视频一区二区三区| 国产成人精品久久久久久| 亚洲国产av影院在线观看| 黄色毛片三级朝国网站| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 欧美精品人与动牲交sv欧美| 爱豆传媒免费全集在线观看| 美国免费a级毛片| 97在线人人人人妻| 色网站视频免费| 色婷婷av一区二区三区视频| 热re99久久国产66热| 天天躁夜夜躁狠狠躁躁| 人人妻人人爽人人添夜夜欢视频| 电影成人av| 精品久久久久久电影网| 黄色a级毛片大全视频| 精品国产超薄肉色丝袜足j| 国产精品久久久人人做人人爽| 国产成人精品久久久久久| 国产精品人妻久久久影院| 一本大道久久a久久精品| 新久久久久国产一级毛片| 五月开心婷婷网| 免费在线观看黄色视频的| 国产成人av激情在线播放| 麻豆乱淫一区二区| a级片在线免费高清观看视频| 母亲3免费完整高清在线观看| 国产精品三级大全| 亚洲国产精品成人久久小说| 考比视频在线观看| 汤姆久久久久久久影院中文字幕| 男女国产视频网站| 国产精品一区二区精品视频观看| 美女午夜性视频免费| 亚洲国产精品一区二区三区在线| 国产成人欧美在线观看 | 欧美国产精品va在线观看不卡| 女人被躁到高潮嗷嗷叫费观| 美女高潮到喷水免费观看| 亚洲欧洲国产日韩| 中文字幕精品免费在线观看视频| av在线app专区| 国产免费福利视频在线观看| 精品久久蜜臀av无| 777久久人妻少妇嫩草av网站| 久久亚洲精品不卡| 视频在线观看一区二区三区| 久久影院123| 亚洲三区欧美一区| 日本黄色日本黄色录像| 日韩伦理黄色片| 日韩免费高清中文字幕av| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 久久午夜综合久久蜜桃| 黄色 视频免费看| av有码第一页| 极品人妻少妇av视频| 我要看黄色一级片免费的| 久久亚洲精品不卡| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 蜜桃国产av成人99| 欧美激情极品国产一区二区三区| 女警被强在线播放| 色播在线永久视频| 精品亚洲成国产av| 大型av网站在线播放| 日韩一卡2卡3卡4卡2021年| 国产精品熟女久久久久浪| 成人午夜精彩视频在线观看| 中国美女看黄片| 校园人妻丝袜中文字幕| 男人舔女人的私密视频| 性高湖久久久久久久久免费观看| 十分钟在线观看高清视频www| 午夜福利影视在线免费观看| 少妇精品久久久久久久| 国产福利在线免费观看视频| 国产高清videossex| 悠悠久久av| 性色av乱码一区二区三区2| 国产高清videossex| 国产一级毛片在线| 成人亚洲欧美一区二区av| 精品国产超薄肉色丝袜足j| 国产亚洲欧美在线一区二区| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 国产欧美日韩综合在线一区二区| 三上悠亚av全集在线观看| 亚洲天堂av无毛| 日韩 亚洲 欧美在线| 精品福利永久在线观看| 欧美日韩精品网址| 免费看十八禁软件| 在线观看www视频免费| 日韩av不卡免费在线播放| 水蜜桃什么品种好| 最新的欧美精品一区二区| 又紧又爽又黄一区二区| 丝袜人妻中文字幕| 亚洲av综合色区一区| 香蕉国产在线看| 久久久久久免费高清国产稀缺| 在线观看免费日韩欧美大片| 久久久久久免费高清国产稀缺| 91国产中文字幕| 手机成人av网站| 亚洲国产精品一区二区三区在线| 欧美日韩精品网址| 久久天躁狠狠躁夜夜2o2o | 亚洲国产欧美一区二区综合| 亚洲午夜精品一区,二区,三区| 精品免费久久久久久久清纯 | 中文字幕另类日韩欧美亚洲嫩草| 欧美性长视频在线观看| 亚洲欧美精品自产自拍| 无限看片的www在线观看| www.av在线官网国产| 国产亚洲午夜精品一区二区久久| 久久久精品免费免费高清| 久久久精品94久久精品| 亚洲国产精品999| 黄色a级毛片大全视频| 国产成人一区二区在线| 校园人妻丝袜中文字幕| 色94色欧美一区二区| 亚洲成人手机| 国产有黄有色有爽视频| 中文字幕精品免费在线观看视频| 精品福利永久在线观看| 午夜两性在线视频| 成人黄色视频免费在线看| 欧美 日韩 精品 国产| 美女主播在线视频| 97在线人人人人妻| av网站在线播放免费| 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡| 国产在线视频一区二区| netflix在线观看网站| 一级毛片黄色毛片免费观看视频| 美女国产高潮福利片在线看| 老鸭窝网址在线观看| 丝袜脚勾引网站| 久久精品成人免费网站| 国产一级毛片在线| 极品人妻少妇av视频| 丝袜喷水一区| 免费av中文字幕在线| 国产不卡av网站在线观看| 久久久久久久久免费视频了| 性高湖久久久久久久久免费观看| 夜夜骑夜夜射夜夜干| 亚洲欧美精品自产自拍| 亚洲五月色婷婷综合| 香蕉国产在线看| 午夜精品国产一区二区电影| 最新在线观看一区二区三区 | 久久这里只有精品19| 精品亚洲成国产av| 多毛熟女@视频| 欧美黄色片欧美黄色片| 精品高清国产在线一区| 国产免费福利视频在线观看| 久久人人爽人人片av| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| 99久久精品国产亚洲精品| 国产日韩欧美在线精品| 欧美精品av麻豆av| 亚洲精品美女久久久久99蜜臀 | 男女之事视频高清在线观看 | 午夜福利在线免费观看网站| 大型av网站在线播放| 欧美性长视频在线观看| 香蕉丝袜av| 9热在线视频观看99| 日韩大码丰满熟妇| 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 成人免费观看视频高清| 色婷婷久久久亚洲欧美| 最新的欧美精品一区二区| 免费在线观看影片大全网站 | 啦啦啦啦在线视频资源| 亚洲av成人精品一二三区| 男女午夜视频在线观看| 国产精品欧美亚洲77777| 亚洲,欧美,日韩| 亚洲成人手机| 欧美精品一区二区大全| 婷婷成人精品国产| 菩萨蛮人人尽说江南好唐韦庄| 午夜影院在线不卡| 精品第一国产精品| 夫妻性生交免费视频一级片| 9热在线视频观看99| 久久精品亚洲av国产电影网| 乱人伦中国视频| 亚洲成国产人片在线观看| 日韩欧美一区视频在线观看| 黄色a级毛片大全视频| 亚洲av电影在线进入| 亚洲一区中文字幕在线| 欧美成狂野欧美在线观看| 亚洲av在线观看美女高潮| 91麻豆av在线| 欧美黑人欧美精品刺激| 国语对白做爰xxxⅹ性视频网站| 老鸭窝网址在线观看| 蜜桃国产av成人99| 欧美黄色淫秽网站| 免费看不卡的av| 久久 成人 亚洲| 一级毛片黄色毛片免费观看视频| 久久人人爽人人片av| 日本一区二区免费在线视频| 国产又爽黄色视频| 我的亚洲天堂| 中文字幕人妻丝袜制服| 日韩中文字幕欧美一区二区 | 国产日韩欧美在线精品| 久久综合国产亚洲精品| 国产熟女欧美一区二区| 亚洲熟女毛片儿| 亚洲av成人精品一二三区| 亚洲第一av免费看| 黄色a级毛片大全视频| 最近中文字幕2019免费版| 午夜激情av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美色中文字幕在线| 久久国产精品人妻蜜桃| 老司机影院毛片| 国产精品一区二区精品视频观看| 日韩伦理黄色片| 欧美在线黄色| 看免费av毛片| 满18在线观看网站| 欧美成人精品欧美一级黄| 少妇的丰满在线观看| 国产不卡av网站在线观看| 亚洲成人手机| 视频在线观看一区二区三区| av线在线观看网站| 黑人猛操日本美女一级片| 大香蕉久久网| 手机成人av网站| 99精品久久久久人妻精品| 国产成人系列免费观看| 人人妻人人添人人爽欧美一区卜| 少妇裸体淫交视频免费看高清 | 国产精品久久久久久精品古装| 七月丁香在线播放| 18禁国产床啪视频网站| 女人爽到高潮嗷嗷叫在线视频| 又大又爽又粗| 成年av动漫网址| www.精华液| 亚洲中文av在线| 老司机在亚洲福利影院| 操出白浆在线播放| 久久亚洲精品不卡| 热re99久久国产66热| 久久天躁狠狠躁夜夜2o2o | 午夜久久久在线观看| 亚洲,欧美,日韩| 欧美 亚洲 国产 日韩一| 两性夫妻黄色片| 国产亚洲精品第一综合不卡| 久久综合国产亚洲精品| 天堂中文最新版在线下载| 亚洲精品国产区一区二| 中文精品一卡2卡3卡4更新| 亚洲精品美女久久av网站| 国产老妇伦熟女老妇高清| 欧美av亚洲av综合av国产av| 91老司机精品| 满18在线观看网站| 三上悠亚av全集在线观看| 亚洲欧洲日产国产| 午夜福利在线免费观看网站| 又紧又爽又黄一区二区| 桃花免费在线播放| 亚洲国产精品999| netflix在线观看网站| 亚洲av国产av综合av卡| av在线app专区| 黑人欧美特级aaaaaa片| 亚洲欧美精品自产自拍| 久久久久久久大尺度免费视频| 一边亲一边摸免费视频| 成人亚洲精品一区在线观看| 99热全是精品| 一本色道久久久久久精品综合| 久久精品国产亚洲av涩爱| 亚洲一区中文字幕在线| 人人妻人人澡人人看| 久久天堂一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频| 成人手机av| 精品一区二区三卡| 男男h啪啪无遮挡| 18在线观看网站| 日本91视频免费播放| 国产精品一区二区在线不卡| 免费女性裸体啪啪无遮挡网站| 婷婷色av中文字幕| 一级片'在线观看视频| 大香蕉久久网| 秋霞在线观看毛片| 久久久久视频综合| 黄色一级大片看看| 一级a爱视频在线免费观看| 99热网站在线观看| 精品少妇黑人巨大在线播放| 欧美日韩精品网址| 日韩一卡2卡3卡4卡2021年| 欧美黄色片欧美黄色片| 国产老妇伦熟女老妇高清| 国产成人av教育| 亚洲第一青青草原| 在现免费观看毛片| 国产成人一区二区三区免费视频网站 | 国产91精品成人一区二区三区 | 王馨瑶露胸无遮挡在线观看| 免费人妻精品一区二区三区视频| 美女午夜性视频免费| 99国产精品99久久久久| 欧美日韩成人在线一区二区| 国产真人三级小视频在线观看| 午夜福利视频精品| 大香蕉久久成人网| 亚洲国产看品久久| 99久久99久久久精品蜜桃| 成年人黄色毛片网站| 久久亚洲精品不卡| 午夜福利影视在线免费观看| av福利片在线| 欧美老熟妇乱子伦牲交| 亚洲一区中文字幕在线| 国产成人91sexporn| 亚洲,欧美,日韩| 欧美精品亚洲一区二区| 成人国产av品久久久| 久久久国产欧美日韩av| 国精品久久久久久国模美| 国产精品国产三级专区第一集| 久久国产精品男人的天堂亚洲| 精品高清国产在线一区|