• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of three-dimensional imaging lidar optical system for large field of view scanning

    2022-08-01 05:58:56QingYanLi李青巖YuZhang張雨ShiYuYan閆詩雨BinZhang張斌andChunHuiWang王春暉
    Chinese Physics B 2022年7期
    關鍵詞:青巖張雨張斌

    Qing-Yan Li(李青巖), Yu Zhang(張雨), Shi-Yu Yan(閆詩雨),Bin Zhang(張斌), and Chun-Hui Wang(王春暉),?

    1National Key Laboratory of Tunable Laser Technology,Harbin Institute of Technology,Harbin 150001,China

    2Geling Institute of Artificial Intelligence and Robotics,Shenzhen 518063,China

    Keywords: 3D lidar,MEMS scanning system,large field of view scanning,Zemax

    1. Introduction

    With the rapid development of artificial intelligence, internet,automation and sensors,three-dimensional(3D)imaging laser radar has been widely used in many fields, such as topographic mapping,[1]atmospheric detection,[2,3]environmental sensing,[4,5]target detection[6]and automatic driving,[7]due to its high measurement accuracy, good directionality, fast speed and less affected from the ground clutter.[8,9]At present, the mainstream 3D imaging lidar solutions include mechanical rotary lidar, micro-electromechanical system(MEMS)scanning lidar,optical phased array(OPA)and flash lidar. The mechanical rotary laser 3D image sensor[10,11]was developed earliest and is the most mature technology. However, due to the limitation of the technical system, it is bulky and needs to be installed externally on the roof. In addition,its cost has become the main constraint.

    Compared with the mechanical lidar, solid-state lidar eliminates the mechanical structure of complex highfrequency rotation,greatly improves durability,and greatly reduces the volume. Pure solid-state lidar mainly includes OPA and flash lidar.Flash lidar[12,13]emits a large area of laser light to cover the detection area directly in a short period of time,and the image of the surrounding environment can be drawn through a highly sensitive receiver.Flash lidar has no scanning device,fast imaging speed,high integration,small size,chiplevel technology,suitable for mass production,and can further reduce costs and ensure the service life of the device. However,the flash lidar requires a high-power laser source,which can be dangerous to humans and animals. In addition,the detection distance is close, which is the crucial factor restricting its development. OPA scanning technology is an entirely solid-state technology. OPA lidar[14,15]uses pure solid-state devices without any mechanical removable structures and performs better in terms of durability.However,OPA lidar is easy to form side lobes,which damages the beam range and angular resolution, and requires the size of the array unit to be no more than half a wavelength. The requirements for materials and processes are extremely demanding, so the cost is correspondingly high.

    MEMS lidar[16,17]is a compromise between the mechanical and solid-state lidar, and it still has mechanical rotating parts. MEMS micromirrors have the characteristics of small size, light weight, fast scanning speed, low power consumption, relatively low price, and insensitivity to environmental impact. This makes it possible for lidar to achieve miniaturization, high frame rate, high accuracy and high precision measurement. Therefore, the MEMS scanning micromirror has become one of the extremely important components in the optical scanning system. Compared with other schemes,MEMS lidar integrates many advantages of other schemes.The future technological development must be towards solidstate and miniaturization, but because the current solid-state solution is not yet mature and the hardware cost is relatively high,it cannot be commercialized on a large scale. The hybrid solid-state lidar has better performance than the mechanical type, and the technology is more mature than the solid-state lidar. Therefore, it is the currently most feasible solution for large-scale practical applications. While the MEMS lidar is commercially available on a large scale,the technical solution must overcome the shortcomings of the small scanning angle of the MEMS scanning mirror.[18]

    In order to solve the shortcomings of the MEMS micromirrors,some solutions have been proposed. For example,Cristiano Niclasset al.[19]proposed to use three laser diodes to form a linear array that could converge the outgoing laser beam through a large positive lens to the MEMS mirror, ultimately achieving the expansion of the scanning field of view.But this method requires multiple lasers. Other researchers have also proposed a method of realizing the expansion of angle by using positive and negative lens groups.[20]With a positive lens and a negative lens placed in the front and back of the MEMS micromirror, respectively, a Galileo telescope is formed, which can increase the scanning field of view effectively.Although such a structure is simple and can help expand the field of view, the beam divergence angle is also enlarged,which would make the target spot very large and weak the echo signals when performing long-distance detections. Besides,the range of angle expansion is not enough.This method is only suitable for systems with excellent beam collimation.Another method is to use a fisheye lens[21]or a wide-angle lens,[22]but the imaging surface is distorted severely.

    In order to overcome these shortcomings and realize the field of view expansion and collimation of beam scanning,a new MEMS micromirror folding scanning emission optical system design is proposed. This article aims to design a scanning emission system with a scanning field of view greater than 40°,a divergence angle of less than 2 mrad,and a spot diameter of less than 40 cm at a detection distance of 100 m.The MEMS micromirror used in this system is the model S4342 product from American Mirrorcle company. Its mechanical rotation angle is±5°. Through the theoretical derivation of the relationship among the probe beam divergence angles,the scanning field of view and the parameters of the optical system components, the structure and parameters of the system are determined,and the compensation lens group is introduced to achieve the final parallel beam scanning. The system is designed and optimized by Zemax software. The final design results show that the designed system scan field reaches 53°×53°. The spot diagram at a distance of 100 mm from the exit surface shows that the maximum radius of the spot is 0.506 mm.The maximum radius of the spot at 100 m is 19 cm,and the diffusion angle is less than 2 mrad.

    2. The theoretical basis and model of the system

    2.1. Pulsed lidar system and its operating principle

    The laser 3D image sensor system is mainly composed of three parts: a transmitting system, a receiving system,and a signal processing system.[23–25]The transmitting system consists of a pulsed fiber laser,a scanning optical system,and an excellent MEMS scanning mirror. The receiving system includes a large field-of-view focusing lens and a highspeed photodetector time interval measurement system(timeto-digital converter TDC). The signal processing system sets the relevant parameters,sends out the synchronization signal,processes the 3D data points set,and then transmits the image to the display. Figure 1 shows the schematic diagram of the lidar system.

    Fig.1. The schematic diagram of the lidar system.

    In a lidar system,the laser source is very important. The laser beam emitted by the system must be stable, and the divergence angle must be controlled within a certain range. A 1550 nm wavelength optical fiber laser is used as the transmitting module and the output laser repetition frequency can be adjusted.Here it is temporarily set to be 250 kHz and the pulse width is 4 ns. The mechanical rotation angle of the MEMS scanning mirror is±5°,and the effective reflection surface diameter is 2000 μm. The laser beam is detected by using the beam quality analyzer PY-III-CA of Ophir-Spiricon Inc. As shown in Fig.2,the beam quality of the laser is good,the output spot diameter is 3 mm,and there is a divergence angle of 5 mrad.

    Fig.2. Tested laser beam quality.

    2.2. Theoretical derivation

    In 3D imaging lidar systems, both the beam divergence angle and the scanning field of view are very important performance parameters. A well-performing system must have both a large scan range and a relatively small beam divergence angle. The divergence angle has a great influence on the performance of the system. Even if there are only a few mrad divergence angles, after the beam is emitted for several kilometers,the diameter of the spot will become several meters or even ten meters, resulting in pretty weak spot energy on the target. Thus, the detector could not receive it. This increases the difficulty of signal reception. However,the divergence angle of the beam should not be too small. If the beam is too small,it will cause insufficient sampling of the target and may miss key information.Therefore,the angular resolution is paid large attention in the designing of the lidar transmitting optical system to achieve a suitable laser beam divergence angle.

    As shown in Fig. 3, in the scanning laser scanning 3D imaging sensor, the scanning mirror will form a spatial beam lattice in a certain scanning space according to the scanning drive signal. For laser beams with different divergence angles,the spot size of the dot matrix formed in the space of a given detection distance is different,so the sampling rate of the light spot array to the scanning space is also different. If the spot on the target is too small,it may result in under-sampling. If the divergence angle of the beam is relatively large,the spots may overlap, and the energy of the beam diverges severely, making the detector unable to receive. Therefore, in the design,the divergence angle of the laser beam should be less than the angular resolution of the system, but not less than half of the system resolution to ensure the sampling rate.

    Fig. 3. The schematic diagram of spatial sampling rate of laser beam scanning.

    According to the scanning optical system,when the scanning angle is 50°,n=m=512 (that is, 512×512 scanning points per frame), the resolution of the system is 0.1°, which is 1.77 mrad. Therefore,the divergence angle of the Gaussian beam emitted by the designed system is 2 mrad,which ensures that the spatial sampling of the system is greater than 50%and also avoids the overlap of the beam on the target surface.

    Fig.4. The overall design of the optical system for large field of view scanning of 3D imaging lidar.

    The overall design of the optical system for the large field of view scanning of 3D imaging lidar used in this paper is shown in Fig. 4. The system consists of two focusing lenses(L1, L3)and a compensating lens(L2). After pre-expansion,the size of the spot is larger than the effective surface size of the MEMS mirror. In order to focus the laser beams on the effective surface of the MEMS mirror,the beams are focused by the first focusing lens. The center position of the MEMS mirror isA, and the MEMS scanning mirror is controlled by the driving circuit and swings around the center positionAto realize the two-dimensional scanning. After the ref lection of the MEMS mirror, the beam convergence point constitutes a scanning spherical surface,withAas the center of the sphere andRas the radius. If the collimating lens group is placed behind the spherical surface at this time,the requirement of lens aperture will be relatively large,and the aberration correction is quite difficult. Therefore,the L2 is introduced here to transform the formed curved surface into a plane, and the parallel beam is emitted through L3.

    Fig.5.Relationship between scanning angle of MEMS mirror with field of view.

    The relationship between the scanning angle of the MEMS scanning mirror with the angle of view can be obtained,as shown in Fig.5. The relationship between the scan angle of MEMS mirror,θ1, and its mechanical rotation angleθis

    with

    The relationship between the scanning field angleθ2and the scanning angle of the MEMS mirrorθ1can be obtained by solving Eq.(2),and it can be expressed as

    Then the magnificationTof the scan angle can be obtained as

    3. Zemax design and performance analysis

    According to the theoretical analysis in the previous section, we can get the parameters of each lens as shown in Table 1.

    Table 1. Focal length parameters of the designed lenses.

    According to the lens parameters in Table 1,three sets of double cemented lenses are selected to obtain the initial structure. In order to compress the beam divergence angle,the introduction of the aspherical coefficient of L3 is optimized,and the final optimization structure is shown in Fig.6.

    Fig.6. Optimized optical design.

    Table 2 shows the data of the final structure. The whole system consists of four parts:focusing lens(L1),MEMS scanning mirror, compensation lens (L2), and exit lens (L3). L1 focuses on the beam so that the beam focuses completely on the MEMS scanning mirror,the light reflected by the MEMS mirror is compensated by L2,the chief ray of the outgoing ray is parallel to the optical axis, and all convergence points of the light are in the same plane. The concentrated light of the equivalent focal plane passes through L3 to achieve parallel light exit,which achieves a wide-range scanning field of view.The maximum angle is 26.5°.

    Table 2. Optical parameters of lenses.

    Figure 7 is the spot diagram of the system. The spot diagram at a distance of 100 mm from the exit surface shows that the maximum radius of the spot is 0.506 mm and the spot distribution is uniform.The maximum radius of the spot at 100 m is 19 cm,and the diffusion angle is less than 2 mrad. Figure 8 is the geometric encircled energy diagram of an outgoing light spot. Since the outgoing beam is a diffuse spot,and the energy at the centroid of the spot is the strongest, the geometrically encircled energy diagram reflects the energy concentration of the optical system. It can be seen from the figure that 90%of the spot energy is concentrated at the center of mass. The system energy is centrally optimized. Figure 9 is the wavefront diagram of the central light path. The figure shows that the RMS wavefront difference of the outgoing beam is 0.1925 waves,which is less than a quarter wavelength. The outgoing beam spot quality is good.

    Fig. 7. The point diagrams of exiting spots in different scanning fields, where the two lines from the upper left to lower right are the cases corresponding to the θ being-4°,-3°,-2°,-1°,0°,1°,2°,3°,and 4°,respectively. (a)The spot diagram at a distance of 100 mm from the exit surface. (b)The spot diagram at a distance of 100 m from the exit surface.

    Fig.8. The geometric encircled energy diagram.

    Fig.9. The wavefront map.

    4. Tolerance analysis

    When designing an optical system,it is necessary to consider not only the design index requirements,but also whether the designed lens meets the processing conditions.[26–29]If the system exceeds the processing level, the final result is much different from the design expectation in the later assembly and testing. Therefore,it is necessary to perform tolerance analysis on the system.

    Table 3. Set of tolerances used for Monte Carlo simulation.

    Zemax optical design software is used to analyze the tolerance of the designed system. The average value of RMS wavefront is used as the evaluation function standard. The standard value is 0.1925 waves. The set of tolerances are shown in Table 3, and Monte Carlo analysis runs 200 times to obtain the sensitivity data of the optical system. It can be seen from Table 4 that after 200 Monte Carlo simulation experiments,more than 80%of the Monte Carlo samples are greater than 0.1925 waves. The tolerance range given is a relatively loose value. It can be seen that the tolerance of the design is better,and the qualification rate of the lens can be guaranteed in the production process,and the material cost and labor cost are reduced.

    Table 4. Result of Monte Carlo analysis.

    5. Conclusion

    This paper presents a folded large field of view scanning optical system. Through the theoretical derivation of ray tracing,the structure and parameters of the system are determined.After design and optimization with the Zemax software, the final structure gets good beam collimation and beam expansion performance. The results show that the scanning angle can range from±5 to±26.5°. The scanning field of view is expanded by 5.3 times. The spot diagram at a distance of 100 mm from the exit surface shows that the maximum radius of the spot is 0.506 mm and the spot distribution is uniform.The maximum radius of the spot at 100 m is 19 cm, and the diffusion angle is less than 2 mrad. The energy concentration in the spot range is greater than 90%,the system energy concentration is high, and the parallelism is good. The system overcomes the shortcoming of the small scanning mechanical angle of the MEMS lidar.What is more,it has a compact structure, requires fewer lenses, and is more convenient to adjust.This is very beneficial for the miniaturization of 3D imaging lidar. It has broad application prospects in the field of laser beam collimation and beam expansion.

    Acknowledgements

    Project supported by the Shenzhen Fundamental Research Program(Grant No.JCYJ2020109150808037),the National Key Scientific Instrument and Equipment Development Projects of China(Grant No.62027823),and the National Natural Science Foundation of China(Grant No.61775048).

    猜你喜歡
    青巖張雨張斌
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    賞梅時節(jié)品詠梅詩聯
    晚晴(2021年3期)2021-05-17 13:12:03
    一路有你都是歌
    當代音樂(2021年2期)2021-03-18 09:39:08
    Dynamic measurement of beam divergence angle of different fields of view of scanning lidar?
    《花之戀》
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    青巖古鎮(zhèn)
    美麗從不是全部 張雨綺
    電影故事(2015年16期)2015-07-14 02:22:26
    Comparative study of MPS method and level-set method for sloshing flows*
    国产视频首页在线观看| av网站免费在线观看视频| 99国产精品一区二区三区| 成年美女黄网站色视频大全免费| 中文字幕av电影在线播放| 亚洲精品美女久久久久99蜜臀 | 中文字幕高清在线视频| 黄片小视频在线播放| 黑人欧美特级aaaaaa片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久免费观看电影| 精品人妻在线不人妻| 激情视频va一区二区三区| 日日夜夜操网爽| 亚洲欧美成人综合另类久久久| 国产色视频综合| 欧美精品高潮呻吟av久久| 美女扒开内裤让男人捅视频| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 黄片小视频在线播放| 国精品久久久久久国模美| 啦啦啦 在线观看视频| 少妇猛男粗大的猛烈进出视频| 看免费成人av毛片| 精品国产国语对白av| 欧美日韩亚洲综合一区二区三区_| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 男女边摸边吃奶| 国产精品国产三级国产专区5o| 两性夫妻黄色片| 欧美日韩亚洲高清精品| 国产成人一区二区三区免费视频网站 | 亚洲精品乱久久久久久| 少妇精品久久久久久久| 在线观看人妻少妇| 午夜免费观看性视频| 成人免费观看视频高清| 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 欧美成人精品欧美一级黄| 国产麻豆69| 国产又色又爽无遮挡免| 日韩熟女老妇一区二区性免费视频| videos熟女内射| 欧美中文综合在线视频| 欧美老熟妇乱子伦牲交| 国精品久久久久久国模美| 国产精品一区二区免费欧美 | 一个人免费看片子| 欧美中文综合在线视频| 久久精品国产亚洲av涩爱| 人妻人人澡人人爽人人| 天天操日日干夜夜撸| 国产精品一二三区在线看| 精品熟女少妇八av免费久了| 亚洲少妇的诱惑av| 亚洲国产中文字幕在线视频| 亚洲,欧美精品.| 欧美日韩国产mv在线观看视频| 久久人妻福利社区极品人妻图片 | 亚洲成av片中文字幕在线观看| 国产1区2区3区精品| 黄频高清免费视频| 又紧又爽又黄一区二区| 国产欧美日韩综合在线一区二区| 丝袜喷水一区| 久久午夜综合久久蜜桃| 亚洲成色77777| 曰老女人黄片| 亚洲熟女精品中文字幕| 91成人精品电影| 亚洲精品国产色婷婷电影| 黄色视频不卡| 热99国产精品久久久久久7| 汤姆久久久久久久影院中文字幕| 亚洲图色成人| 男男h啪啪无遮挡| www.精华液| 欧美激情极品国产一区二区三区| 国产精品久久久久成人av| 一区二区三区精品91| 精品人妻一区二区三区麻豆| 夫妻午夜视频| 90打野战视频偷拍视频| 久久国产精品影院| 女人精品久久久久毛片| 国产一卡二卡三卡精品| 午夜福利影视在线免费观看| 汤姆久久久久久久影院中文字幕| 亚洲少妇的诱惑av| 精品一区二区三区av网在线观看 | 欧美日韩综合久久久久久| 久久亚洲精品不卡| 日韩,欧美,国产一区二区三区| 国产成人精品在线电影| 美女中出高潮动态图| 婷婷色av中文字幕| 日韩 亚洲 欧美在线| 亚洲一区中文字幕在线| 国产麻豆69| 国产欧美日韩精品亚洲av| 曰老女人黄片| 爱豆传媒免费全集在线观看| 亚洲国产日韩一区二区| 一级a爱视频在线免费观看| 少妇人妻久久综合中文| 国产精品二区激情视频| 亚洲欧美精品综合一区二区三区| 亚洲国产av影院在线观看| 国产97色在线日韩免费| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧洲国产日韩| 汤姆久久久久久久影院中文字幕| 亚洲中文av在线| 久久精品国产亚洲av涩爱| 18禁国产床啪视频网站| 亚洲精品第二区| 国产精品欧美亚洲77777| 色网站视频免费| 三上悠亚av全集在线观看| 欧美日韩视频高清一区二区三区二| 国产女主播在线喷水免费视频网站| 丝瓜视频免费看黄片| 日日夜夜操网爽| 波多野结衣一区麻豆| 亚洲成人国产一区在线观看 | 日韩 欧美 亚洲 中文字幕| 99久久99久久久精品蜜桃| av福利片在线| 中文字幕人妻丝袜一区二区| 欧美精品亚洲一区二区| 国产男人的电影天堂91| 黑丝袜美女国产一区| 国产亚洲精品第一综合不卡| 亚洲精品国产一区二区精华液| 欧美日韩亚洲综合一区二区三区_| 999久久久国产精品视频| 免费在线观看完整版高清| 99精国产麻豆久久婷婷| 麻豆av在线久日| 日韩 欧美 亚洲 中文字幕| 我要看黄色一级片免费的| 国产精品秋霞免费鲁丝片| 国产一区二区三区综合在线观看| 国产亚洲av高清不卡| 国产亚洲午夜精品一区二区久久| 久久久久精品人妻al黑| 无限看片的www在线观看| 叶爱在线成人免费视频播放| av线在线观看网站| 少妇猛男粗大的猛烈进出视频| 日本午夜av视频| 中文字幕人妻丝袜一区二区| 妹子高潮喷水视频| 精品一区二区三区av网在线观看 | 91国产中文字幕| a级片在线免费高清观看视频| 国产黄色视频一区二区在线观看| 中文精品一卡2卡3卡4更新| 在线看a的网站| 男人添女人高潮全过程视频| 国产精品熟女久久久久浪| 777米奇影视久久| 精品免费久久久久久久清纯 | 超碰成人久久| 日韩中文字幕视频在线看片| 精品国产乱码久久久久久男人| 无遮挡黄片免费观看| 99久久综合免费| 日韩制服骚丝袜av| 国产精品一区二区在线观看99| 韩国精品一区二区三区| netflix在线观看网站| 色婷婷av一区二区三区视频| 中文字幕另类日韩欧美亚洲嫩草| 搡老岳熟女国产| 水蜜桃什么品种好| 青春草亚洲视频在线观看| 国产黄频视频在线观看| 午夜福利,免费看| 晚上一个人看的免费电影| av在线播放精品| 极品人妻少妇av视频| 亚洲欧美精品自产自拍| 久久精品aⅴ一区二区三区四区| 亚洲欧美一区二区三区国产| 国产日韩一区二区三区精品不卡| 国产一区二区三区av在线| 国产精品九九99| 亚洲伊人色综图| 亚洲自偷自拍图片 自拍| 色综合欧美亚洲国产小说| 亚洲一区二区三区欧美精品| 黄片小视频在线播放| 18禁观看日本| 午夜福利影视在线免费观看| 日本猛色少妇xxxxx猛交久久| 亚洲av国产av综合av卡| 欧美人与善性xxx| 国产爽快片一区二区三区| 精品久久久精品久久久| 中文精品一卡2卡3卡4更新| 亚洲国产精品一区三区| 久热爱精品视频在线9| 久久久精品区二区三区| 晚上一个人看的免费电影| 日韩制服丝袜自拍偷拍| 国产一区有黄有色的免费视频| 在线观看免费视频网站a站| 中文字幕亚洲精品专区| 久久精品亚洲熟妇少妇任你| 久久影院123| 日本wwww免费看| 电影成人av| 国产欧美亚洲国产| 亚洲成人国产一区在线观看 | 伊人亚洲综合成人网| 国产在线视频一区二区| 欧美精品高潮呻吟av久久| 丁香六月天网| 久久精品aⅴ一区二区三区四区| 国产高清不卡午夜福利| 汤姆久久久久久久影院中文字幕| 观看av在线不卡| 可以免费在线观看a视频的电影网站| 夫妻午夜视频| 高清不卡的av网站| 欧美精品啪啪一区二区三区 | 国产伦人伦偷精品视频| 亚洲男人天堂网一区| 精品亚洲成国产av| 亚洲精品在线美女| 不卡av一区二区三区| 一区二区三区四区激情视频| 又粗又硬又长又爽又黄的视频| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| 七月丁香在线播放| 国产精品成人在线| 亚洲七黄色美女视频| 成年人免费黄色播放视频| 精品一区二区三卡| 狠狠精品人妻久久久久久综合| 成年人午夜在线观看视频| 精品少妇久久久久久888优播| 久久久久视频综合| 男人操女人黄网站| av网站免费在线观看视频| 午夜福利免费观看在线| kizo精华| 波多野结衣av一区二区av| 岛国毛片在线播放| bbb黄色大片| 啦啦啦视频在线资源免费观看| 熟女少妇亚洲综合色aaa.| 亚洲人成电影免费在线| 久久天躁狠狠躁夜夜2o2o | 国产片内射在线| 日韩大片免费观看网站| 两性夫妻黄色片| 久久久久久久久久久久大奶| 视频区欧美日本亚洲| 赤兔流量卡办理| 欧美av亚洲av综合av国产av| 女人被躁到高潮嗷嗷叫费观| 久热爱精品视频在线9| 夜夜骑夜夜射夜夜干| 日日摸夜夜添夜夜爱| 国产精品一区二区在线不卡| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人一区二区三区免费视频网站 | 久久久欧美国产精品| 午夜影院在线不卡| 国产爽快片一区二区三区| 亚洲成人免费电影在线观看 | 久久av网站| 久热这里只有精品99| 午夜影院在线不卡| 日本五十路高清| 中文字幕亚洲精品专区| 麻豆乱淫一区二区| 欧美日韩av久久| 不卡av一区二区三区| 午夜91福利影院| 久久精品久久精品一区二区三区| 伦理电影免费视频| 日本猛色少妇xxxxx猛交久久| 久久久久视频综合| 桃花免费在线播放| 操出白浆在线播放| 波多野结衣一区麻豆| 超色免费av| 麻豆av在线久日| 母亲3免费完整高清在线观看| 99国产综合亚洲精品| 色94色欧美一区二区| 亚洲精品美女久久av网站| 18禁国产床啪视频网站| 两个人免费观看高清视频| 免费少妇av软件| 国产精品麻豆人妻色哟哟久久| 日韩制服丝袜自拍偷拍| 久久久久久久国产电影| 晚上一个人看的免费电影| 国产精品久久久久久精品古装| 精品少妇一区二区三区视频日本电影| 手机成人av网站| 欧美+亚洲+日韩+国产| kizo精华| 婷婷色综合大香蕉| 亚洲七黄色美女视频| 国产精品香港三级国产av潘金莲 | 欧美日韩视频精品一区| 免费久久久久久久精品成人欧美视频| 婷婷丁香在线五月| 成人三级做爰电影| 一边亲一边摸免费视频| 国产激情久久老熟女| 国产一区亚洲一区在线观看| e午夜精品久久久久久久| 极品人妻少妇av视频| av片东京热男人的天堂| 亚洲伊人久久精品综合| 我要看黄色一级片免费的| 蜜桃在线观看..| 亚洲国产精品999| 亚洲av美国av| 国产在线视频一区二区| 久久久久精品人妻al黑| www.av在线官网国产| 看免费成人av毛片| 日韩熟女老妇一区二区性免费视频| 69精品国产乱码久久久| 午夜福利视频精品| 又紧又爽又黄一区二区| 国产xxxxx性猛交| 狠狠婷婷综合久久久久久88av| 99热国产这里只有精品6| 午夜免费鲁丝| 黄网站色视频无遮挡免费观看| 91字幕亚洲| 搡老岳熟女国产| kizo精华| 性高湖久久久久久久久免费观看| 叶爱在线成人免费视频播放| 99国产精品一区二区蜜桃av | h视频一区二区三区| 亚洲男人天堂网一区| 女警被强在线播放| 欧美精品亚洲一区二区| 新久久久久国产一级毛片| 美女中出高潮动态图| 欧美老熟妇乱子伦牲交| www.av在线官网国产| 亚洲色图 男人天堂 中文字幕| 一级毛片我不卡| 18禁观看日本| 国产亚洲欧美在线一区二区| 成人黄色视频免费在线看| 国产高清videossex| 久热爱精品视频在线9| 两个人免费观看高清视频| 交换朋友夫妻互换小说| 成人三级做爰电影| 欧美日韩视频高清一区二区三区二| 99九九在线精品视频| 亚洲专区国产一区二区| 飞空精品影院首页| 少妇精品久久久久久久| 国产91精品成人一区二区三区 | 99久久精品国产亚洲精品| 多毛熟女@视频| 高清不卡的av网站| 亚洲精品日本国产第一区| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 婷婷色综合大香蕉| 女人精品久久久久毛片| 搡老乐熟女国产| 99久久99久久久精品蜜桃| 九色亚洲精品在线播放| 久久久久久久国产电影| 日韩电影二区| 91精品三级在线观看| 久久99精品国语久久久| 99九九在线精品视频| av在线老鸭窝| 婷婷色综合大香蕉| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品久久久久久精品电影小说| 久久亚洲精品不卡| 青草久久国产| 夜夜骑夜夜射夜夜干| 国产免费又黄又爽又色| 女警被强在线播放| 制服人妻中文乱码| 精品亚洲成国产av| 如日韩欧美国产精品一区二区三区| 国产精品一区二区在线不卡| 亚洲av在线观看美女高潮| 亚洲av欧美aⅴ国产| 国产成人一区二区三区免费视频网站 | 在线 av 中文字幕| videos熟女内射| 免费高清在线观看视频在线观看| 五月天丁香电影| 精品人妻熟女毛片av久久网站| 男女国产视频网站| 免费黄频网站在线观看国产| 观看av在线不卡| 国产精品一区二区精品视频观看| 叶爱在线成人免费视频播放| 青青草视频在线视频观看| 久久狼人影院| 久久久精品国产亚洲av高清涩受| 天堂俺去俺来也www色官网| 日本a在线网址| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 80岁老熟妇乱子伦牲交| 国产精品久久久久久精品电影小说| 欧美日韩黄片免| 亚洲av日韩精品久久久久久密 | 国产一级毛片在线| 亚洲第一青青草原| 亚洲一码二码三码区别大吗| 久久国产精品人妻蜜桃| 精品少妇一区二区三区视频日本电影| 国产野战对白在线观看| 大香蕉久久网| 亚洲美女黄色视频免费看| 国产精品免费大片| 99九九在线精品视频| 久久久久久久大尺度免费视频| 热99久久久久精品小说推荐| 亚洲欧美精品自产自拍| 日韩制服骚丝袜av| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人免费电影在线观看 | 日本五十路高清| 大陆偷拍与自拍| 欧美人与性动交α欧美精品济南到| 亚洲欧洲精品一区二区精品久久久| 色婷婷久久久亚洲欧美| 国产日韩欧美亚洲二区| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到| 亚洲精品国产色婷婷电影| 亚洲午夜精品一区,二区,三区| 日本91视频免费播放| 国产男女超爽视频在线观看| 日韩伦理黄色片| 亚洲精品久久午夜乱码| 秋霞在线观看毛片| 91麻豆精品激情在线观看国产 | 国产在视频线精品| 国产在线一区二区三区精| 国产一区二区激情短视频 | 女性生殖器流出的白浆| 日本av免费视频播放| 亚洲国产精品一区三区| www日本在线高清视频| 亚洲av成人不卡在线观看播放网 | 久久亚洲国产成人精品v| 又粗又硬又长又爽又黄的视频| 一本大道久久a久久精品| 久久精品国产a三级三级三级| 亚洲成av片中文字幕在线观看| 亚洲五月婷婷丁香| 亚洲情色 制服丝袜| 精品少妇一区二区三区视频日本电影| 亚洲精品久久成人aⅴ小说| 亚洲国产精品一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 日日爽夜夜爽网站| 女人被躁到高潮嗷嗷叫费观| 在线精品无人区一区二区三| 免费看十八禁软件| 久久久久精品国产欧美久久久 | 亚洲情色 制服丝袜| 亚洲欧美日韩另类电影网站| 人妻 亚洲 视频| 国产精品 国内视频| 男女高潮啪啪啪动态图| 老司机深夜福利视频在线观看 | 一二三四在线观看免费中文在| 考比视频在线观看| 日韩av在线免费看完整版不卡| 多毛熟女@视频| 一边摸一边做爽爽视频免费| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 国产一级毛片在线| 香蕉国产在线看| 久久 成人 亚洲| 亚洲少妇的诱惑av| 国产成人精品久久久久久| 午夜久久久在线观看| 亚洲中文字幕日韩| 久久精品国产亚洲av涩爱| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 亚洲国产精品国产精品| 国产成人精品久久久久久| 多毛熟女@视频| 免费看av在线观看网站| 国产亚洲欧美在线一区二区| 一级毛片 在线播放| 曰老女人黄片| 免费在线观看完整版高清| 亚洲人成电影免费在线| 一区二区三区乱码不卡18| 亚洲国产看品久久| 十八禁人妻一区二区| 高清不卡的av网站| 午夜福利免费观看在线| 午夜福利视频精品| 成人亚洲欧美一区二区av| 精品高清国产在线一区| 亚洲,欧美,日韩| 午夜激情久久久久久久| 亚洲av在线观看美女高潮| 久久性视频一级片| 国产精品99久久99久久久不卡| 大陆偷拍与自拍| 日日爽夜夜爽网站| 啦啦啦 在线观看视频| 青青草视频在线视频观看| 精品人妻1区二区| 别揉我奶头~嗯~啊~动态视频 | 欧美亚洲日本最大视频资源| 夫妻性生交免费视频一级片| av网站在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 少妇的丰满在线观看| 性色av一级| 免费观看av网站的网址| 国产成人精品久久二区二区免费| 九草在线视频观看| 大码成人一级视频| 亚洲精品在线美女| 亚洲国产精品一区三区| 久久精品国产综合久久久| 久久精品国产亚洲av涩爱| 大片免费播放器 马上看| 国产免费现黄频在线看| 国产高清国产精品国产三级| 巨乳人妻的诱惑在线观看| 99热网站在线观看| 亚洲av成人不卡在线观看播放网 | 亚洲熟女毛片儿| 成年人黄色毛片网站| 国产高清视频在线播放一区 | 在线精品无人区一区二区三| 成年女人毛片免费观看观看9 | 国产熟女午夜一区二区三区| 我要看黄色一级片免费的| 99re6热这里在线精品视频| 精品欧美一区二区三区在线| 飞空精品影院首页| 老鸭窝网址在线观看| 真人做人爱边吃奶动态| 国产免费又黄又爽又色| 亚洲精品国产色婷婷电影| 欧美人与善性xxx| 一级片'在线观看视频| 91字幕亚洲| 汤姆久久久久久久影院中文字幕| 午夜福利影视在线免费观看| 精品少妇黑人巨大在线播放| 免费久久久久久久精品成人欧美视频| 久久久久久久国产电影| 亚洲精品自拍成人| 日韩免费高清中文字幕av| 亚洲成av片中文字幕在线观看| 午夜激情久久久久久久| 亚洲图色成人| 欧美日韩成人在线一区二区| 精品久久久精品久久久| 国产不卡av网站在线观看| 18禁裸乳无遮挡动漫免费视频| 欧美日韩黄片免| 一级毛片 在线播放| 国产高清视频在线播放一区 | 国产欧美日韩精品亚洲av| 欧美国产精品一级二级三级| 国产亚洲av片在线观看秒播厂| 国产熟女午夜一区二区三区| 亚洲五月色婷婷综合| 久久99一区二区三区| 一级毛片我不卡| 黄色一级大片看看| av天堂久久9| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 久久人人97超碰香蕉20202| 国产色视频综合| 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av | 久久 成人 亚洲| 亚洲久久久国产精品| 欧美精品av麻豆av| 日本91视频免费播放| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 免费女性裸体啪啪无遮挡网站| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| 中国国产av一级| 久久毛片免费看一区二区三区| 国产一区亚洲一区在线观看| 精品亚洲成a人片在线观看|