• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of observation time on source identification of diffusion in complex networks

    2022-08-01 05:58:26ChaoyiShi史朝義QiZhang張琦andTianguangChu楚天廣
    Chinese Physics B 2022年7期
    關(guān)鍵詞:張琦

    Chaoyi Shi(史朝義), Qi Zhang(張琦), and Tianguang Chu(楚天廣),?

    1College of Engineering,Peking University,Beijing 100871,China

    2School of Information Technology and Management,University of International Business and Economics,Beijing 100105,China

    Keywords: complex network,source identification,statistical inference,partial observation

    1. Introduction

    Recent years, researchers have witnessed tremendous growth in studies concerning the diffusion processes in complex networks, such as modeling epidemic spreading,[1–4]identifying influential spreaders,[5–9]and analyzing diffusion dynamics.[10–12]Among a plethora of research thrusts, the problem of identifying the diffusion sources in complex networks based on observed information has gathered increasing attention due to its broad applications in such problems as identifying the origin of a rumor,[13,14]locating the source of epidemic,[15–18]and so on. Clearly, studies in this direction are crucial in preventing or controlling spread of adverse or detrimental influences in a network system consisting of large amount of interconnected individuals or nodes.

    Basically, source identification problem aims at estimating the location of source node that initiates the diffusion in a network by using certain observation information of the diffusion. So far, several approaches have been proposed to solve the source identification problem with observations that involve the states of observed nodes,[13,15–18]or the (infection) time at which the diffusion arrives at the observed nodes.[14,19–22]Early studies often assume complete observation condition, i.e., the state of each node is observed, and make use of the measures of certain centricity to evaluate the source detection probability of the maximum likelihood(ML)estimator.[13,15]However, it is usually hard in practice to obtain complete observations of a network, since the costs for observing all nodes can be expensive and the states of some nodes may be hidden.[3,14]In view of these, considerable efforts have been devoted to the study of source identification problems under partial observation conditions, i.e., the states or infection time of only a fraction of nodes can be available.For instance,in Refs.[16–18]the authors considered a single snapshot of partial observations at a given time and proposed different propagation algorithms to find the source of diffusion in networks.There have been also works addressing source localization by exploiting observed information of propagation delays from the source, under various assumptions on delay distributions, e.g., Gaussian and uniform distributions.[19–21]Another effective approach to locating diffusion source via incomplete observations in a network makes use of statistical inference based on Monte Carlo simulations.[22–24]The basic idea of this approach is to infer the diffusion source by evaluating the similarity between the simulation data and the observed data. Essentially,the approach applies to arbitrary network structures and therefore has wide applications. Notice that most existing studies assume that the initial time of diffusion is known in estimating source location,some of them are also concerned with the impact of the size of observation set on the results.[13,15–18]

    In this paper,we intend to discuss the effect of the observation time on source identification in a diffusive network. So far in literature,little has been available concerning such an issue. Generally speaking,identification of diffusion source in a network essentially relies on the diffusion model,the observation condition,and the underlying network structure. Here we consider the case that the diffusion process is described by a discrete-time SIR model,with the initial condition of all nodes in susceptible states except one in infected state as the source.In literature, this type of models is often used to describe the spread of epidemics[16,17]and computer virus.[15,19]We consider the problem of estimating both the source location and the initial time of diffusion with snapshot of partial nodes,and formulate it as an ML estimator in terms of the marginal probabilities of a node in different states. A method based on Monte Carlo simulation(MCS)is developed to evaluate the marginal probabilities of a candidate source node,whereby to examine the effect of the observation time as well as the fraction of the observers on solutions of the concerned problem with numerical experiments on typical synthetic and real-world networks.

    2. Problem formulation

    We consider the case that the diffusion outbreak occurs at a single node and the states of only a fraction of nodes can be observed with a snapshot. The task of source identification is to determine the location of source and the initial time of diffusion in a network based on the partial observation. In the following, we will introduce the diffusion model and the ML estimator for the source identification problem.

    2.1. The diffusion model

    To describe the discrete-time SIR diffusion process, we model the underlying contact network as an undirected graphG(V,E)withNnodes,whereVis the set of nodes,E ∈V×Vis the set of edges. At timet, each nodei ∈Vhas three possible states represented by a variableXti: susceptible,Xti=S;infected,Xti=I;or recovered,Xti=R.In each time step,an infected nodeiinfects its susceptible neighborjwith probabilityλij,or recovers with probabilityμi,and no longer get infected.Thus,a susceptible nodeibecomes infected with probability,

    where?iis the set of neighbors of nodei.As mentioned above,we assume that at an unknown initial timet0,all nodes are in stateSexcept only one infected nodei0,the source,that initiates diffusion process in the network.

    2.2. Snapshot observation

    Figure 1 shows an example of the diffusion process and snapshot observation on an arbitrary graphG.

    Fig. 1. Visualization of the diffusion process and observed data on graph G. At unknown time t0, the source node i0 (red) initiates the diffusion. The red edges are the links on which the spread occurs. In this example, a snapshot of the observers (green) is taken at time T,which has three types of nodes with the state S, I, or R for each. The goal is to identify the source location and initial time of diffusion from the snapshot observation.

    2.3. Maximum likelihood estimator

    Therefore,we can formulate the source identification problem as the following ML estimator:

    and clearly,

    We will make use of the marginal probabilities instead of the joint probability in the estimator(1)to infer the source node and initial time of diffusion.

    3. Monte Carlo simulation

    Now we present an MCS approach to estimate the marginal probabilities of a node. The basic idea is that for a candidate source nodei0∈V?OTS,we perform simulations ofmtimes for the diffusion process following the SIR model on time interval [0,tmax], and sample the state of every observeri ∈Oat timet ∈Z∩[0,tmax]. Then, by examining the similarity of the samples and the snapshot to determine the source and initial time of the diffusion.

    To be specific,letYti(i0,l)be the state of nodeiat timetfor thel-th simulation with the candidate source nodei0,it is clear that

    and fort=0,

    forl=1,...,m. In simulations,a node in the network updates its state by the following rule.

    For a susceptible nodeiat timet-1,each infected neighborjwill execute an independent infection attempt with success probabilityλji,triggered by a Bernoulli trial(flipping an independent coin)that generates a random numberr0from the uniform distribution between 0 and 1 as threshold. Namely,the state of nodeiin the next steptis given by

    Similarly, for a nodeiin the stateIat time stept-1, it will execute a recovery attempt with success probabilityμiaccording to a Bernoulli trial numberr0as before, and updates its state at time steptas follows:

    According to the specification of the SIR model described before,all recovered nodes will not be infected anymore and remain the recovered state during the simulation process,i.e.,

    whereδ(·,·)denotes the Kronecker delta function. Similarly,the marginal probabilities of the nodeibeing in statesIandRat timeTare given respectively by

    Algorithm 1 MSC-based source identification algorithm Input: G(V,E);λij;μi;OTS;OTI ;OTR,tmax Output: the source location ?i0;the initial time of diffusion ?t0 for a candidate source node i0 ∈V?OTS do for l=1 to m do Sample the state Yti(i0,l)of each observer i ∈O at time t ∈Z∩[0,tmax]end for for a candidate initial time t0 ∈Z∩[T-tmax,T-1]do Evaluate the marginal probabilities P(XTi =S|i0,t0),P(XTi =I|i0,t0),i ∈O Evaluate the joint probability P(OTS,OTI ,OTR|i0,t0)by Eq.(2)),P(XTi =R|i0,t0 end for end for{?i0,?t0}=argmax )i0∈V?OTS t0∈Z∩[T-tmax,T-1]P(OTS,OTI ,OTR|i0,t0

    We remark that the algorithmic complexity for a single SIR simulation isO(N〈k〉tmax), where〈k〉is the average degree of the graphG, thus runningmsimulations for a candidate source nodei0requiresO(mN〈k〉tmax) time. In experiments we found that it is enough to takem=200 for obtaining a satisfactory identification result, further increasing the simulation times does not improve the accuracy of identification significantly.

    Compared with some related studies, our method can be implemented directly by Monte Carlo simulations,without the need of complicated calculations or additional assumptions.For instance, the methods proposed in Refs. [21,22] require to calculate the multiple integrations of joint probability for partial observations. In Ref. [24], the source likelihood was estimated by using the Gaussian weighting function.

    4. Experiments and discussion

    We give numerical experiments to examine the effect of the observation time as well as the fraction of the observers on source identification for synthetic networks and real-world networks.In all the cases a fractionγ=K/Nof nodes is available in observation at timeTfor the source identification problem, and the sourcei0and the initial timet0are estimated by Algorithm 1. The performance of the method is assessed in terms of the success rate of locating source node for different fractionγand snapshot timeT.

    4.1. Synthetic networks

    We consider three typical synthetic networks,i.e.,Erd¨os–R′enyi(ER)random network,Barab′asi–Albert(BA)scale-free network, and Watts–Strogtz (WS) small world network,[1]all containingN= 1000 nodes with average degree〈k〉 ≈6. For convenience in simulation and without loss of generality,[13,17,24]we consider uniform infection and recovery probabilities by lettingλi j=λandμi=μ. In each experiment, a node is randomly selected to initiate the diffusion at timet=0 and we run SIR process fortmaxsteps,which can be approximated by

    wheredis the diameter of a network,the first term on the left side is the maximum infection time of a node, and the second term is the average recovery time of a node. Then, the state of a fractionγof nodes is observed at timeT,whereγ ∈{0.1,0.2,...,0.9,1.0}and the snapshot timeT ∈{1,...,tmax}.We repeated the experiment 4000 times for each case to get the average success rate of located source.

    Fig.2. Effects of the snapshot time T and the fraction γ of observers on source identification results: (a)–(c)λ =0.4,μ=0.2,(d)–(f)λ =0.8,μ =0.2. The success rate of locating source on ER,BA,and WS networks,with N=1000 nodes and average degree,〈k〉≈6. The diffusion starts at t=0,a fraction γ ∈{0.2,0.4,0.6,0.8}of nodes is observed at time 1 ≤T ≤10.

    We examine the effect of the snapshot timeTand the fractionγof observers on source identification results. Existing studies mainly considered the effect ofγon source localization accuracy, regardless of considering the snapshot timeT.Our results as illustrated in Fig.2 reveal an involved influence of the two factors on source identification problem. We can see that, in general, the source identification problem will be hard to attack for observations with large time delay; and the greater the number of observed nodes,the more accurately our methods can infer the true source. Indeed, a large value ofTallows for a full development of diffusion(hence infection)in a network,this would reduce effectiveness of the snapshot information. The cases for different infection probabilityλand recovery probabilityμare similar and hence omitted.

    In more detail,F(xiàn)ig.2 indicates different trends of the success rate of source localization with respect toTandγ. For very large values ofγ(e.g.,not less than 0.8),the success rate decreases monotonically with the increase ofT; whereas for the major portion of values ofγ(e.g., (0,0.8)), the success rate first rises to a highest level and then drops down with the increase ofT. This implies that one could try to choose an optimal timeTfor observation to get more reliable results. As shown in Fig. 2, it is better in general to take a snapshot at early stage of the diffusion process, and the range for such a timeTalso depends on SIR model parametersλandμ. However,for very smallγ(e.g.,0.2)the accuracy of source localization is low in early stages of diffusion as little information about infected nodes is available. Thus, it may be difficult to infer the source at early stages of diffusion from a very small observation set.

    Figure 3 illustrates the impact of the snapshot timeTand the infection probabilityλon the success rate of locating the source, where the value ofλvaries from 0.1 to 1.0. The results are different, depending on the network structures. For the ER network,the observation timeThas little effect on the source localization when the infection probabilityλis small(e.g., (0.1,0.3)). For the other two types of networks, this is true for relatively large values ofλ(e.g., (0.1,0.4) for BA,(0.1,0.7)for WS).On the other hand,for a large value ofλ,a relatively earlier observation is in favor of source localization in ER and BA networks.For the WS network,the effect of different observation timeTis less evident in the case of larger values ofλ.

    Figure 4 depicts the average snapshot timeTof successfully locating the source for different observation fractionγ. It shows that in generalTdecreases monotonically with the increase ofγfor all networks. This implies that a snapshot of a larger observation set facilitates the inference of the source at early stages of diffusion. This is consistent with the results as shown in Fig.2. In particular,given an observation fractionγ,one could try to choose an appropriate timeTfor observation by Fig.4 to get more reliable results.

    Fig. 3. Effects of the snapshot time T and infection probability λ on success rate of locating source for ER, BA, and WS networks, with N =1000 nodes and average degree 〈k〉≈6. The diffusion starts at t =0 with λ =0.1,...,1.0 and μ =0.1, a fraction γ =0.4 of nodes is observed at time 1 ≤T ≤10.

    Fig.4. Observation time T of successfully locating the source for different fraction γ on ER,BA,and WS networks,all containing N=1000 nodes with average degree〈k〉≈6: (a)λ =0.4,μ =0.2,(b)λ =0.3,μ =0.1. The diffusion process starts at t=0 from a randomly selected node,and a snapshot of γN nodes is taken for γ ∈{0.1,0.2,...,0.9,1}.

    Fig.5. Source localization and initial time estimate results on ER,BA,and WS networks,all containing N=1000 nodes with average degree〈k〉≈6. The diffusion process starts at t =0 from a randomly selected node with λ =0.4 and μ =0.2,and a snapshot of γN nodes is taken at time T for γ ∈{0.1,0.2,...,0.9,1}and 1 ≤T ≤10. (a)Success rates of locating source node for different fraction γ. The lower and upper values of the success rate are calculated by using snapshot observation at different time T. (b)MSEs of the initial time estimates for different snapshot time T. The lower and upper values of each MSE are computed with different γ.

    Figure 5 shows the source localization and initial time estimate results for different fractionγof observers and snapshot timeT. From Fig.5(a)we can see that the success rate of locating source increases rapidly asγincreasing from a small value till to certain value (e.g., 0.6), after that, adding more observer nodes does not improve the identification accuracy significantly. Figure 5(b) gives the mean square error (MSE)of the initial time estimates for different snapshot timeT, it indicates that the snapshots taken at early stage of diffusion result in small MSE values for different graph structures.

    4.2. Real-world networks

    Furthermore,we consider two real-world network examples of email[26]and US West-Coast power grid,[27]as detailed in Table 1, which are often cited to test source identification methods in the literature.[17,18]In our experiments, the diffusion process starts att=0 from a randomly selected node,withλ ∈{0.1,0.2,..., 0.8, 0.9}andμ=0.2 respectively in each running, and a snapshot ofγNnodes is taken at timeTforγ ∈{0.05,0.1,...,0.45,0.5}and 1≤T ≤10 respectively in each time.

    Table 1. The network parameters in the experiments,N and|E|denote the network size and the number of edges,respectively.

    Fig. 6. Effects of the snapshot time T and the fraction γ of observers on source identification results for email and US West-Coast power grid. The diffusion process starts at t =0 with λ ∈{0.1,0.2,...,0.8,0.9} and μ =0.2, and a snapshot of γN nodes is taken at time T for γ ∈{0.05,0.1,...,0.45,0.5}and 1 ≤T ≤10. (a)–(d)Success rate of locating source node for different T and γ.

    Figure 6 depicts the average results over 1000 experiments. It shows an evident impact of the observation time as well as the fraction of the observers on the source identification problem,which is similar to the case of the synthetic networks. Particularly, Figs. 6(a) and 6(c) indicate that the success rate of locating source is small at early stage of the diffusion process,and it will be hard to locate the source for large observation time. Figures 6(b)and 6(d)show that,in general,the success rate of locating source increases with the number of observer for different snapshot timeT. For a small value ofT(e.g., 1), the success rate of locating source increases rapidly as the fractionγof observers increasing,whereas for a big value ofT(e.g.,7),adding more observer nodes does not improve the source localization accuracy significantly.

    5. Summary

    We have discussed the effect of the observation time as well as the size of the observation set on source identification of diffusion in a network with discrete-time SIR spreading process, under incomplete observation conditions. The method makes use of the Monte Carlo simulation in evaluation of the marginal probabilities of a node that are involved in ML estimator of the source. Numerical experiments in synthetic networks and real-world networks reveal interesting yet involved nonlinear effects of the observation time and the fraction of observers on source identification. In general,a large value of snapshot time will not be in favor of the source identification for most values of the fraction of observers,since it allows for a full development of diffusion(hence infection)in a network,reducing effectiveness of the snapshot information. In particular,for very large values of the fraction of observers,the success rate of source localization decreases monotonically with the increase of the observation time. On the other hand,however, for a very small observation set, it is usually difficult to infer the source at early stages of diffusion because little information about infected nodes is available. More complicated and interesting cases occur for neither too small nor too large values of the fraction of observers, where the success rate of source localization first rises to a highest level and then drops down with the increase of the snapshot time,indicating possible choice of an optimal observation time to get more reliable results.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61673027 and 62106047), the Beijing Social Science Foundation (Grant No. 21GLC042),and the Humanity and Social Science Youth foundation of Ministry of Education,China(Grant No.20YJCZH228).

    猜你喜歡
    張琦
    Self-screening of the polarized electric field in wurtzite gallium nitride along[0001]direction
    Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
    全民張琦
    商界評論(2022年12期)2022-03-06 13:02:12
    自相似視角下相對貧困成因分析
    基于TXL的源代碼插樁技術(shù)研究
    張琦:家風敗壞的海南第四“虎”
    “海南虎”張琦:一位闖海者的隕落
    雜文選刊(2020年4期)2020-04-19 10:04:31
    ??谑形瘯洀堢糯蠛蠛D稀笆谆ⅰ?/a>
    曹夢媛、崔琪、張琦、趙承鋮作品
    西部縣域經(jīng)濟發(fā)展模式亟待創(chuàng)新
    亚洲色图 男人天堂 中文字幕| 最近在线观看免费完整版| 少妇裸体淫交视频免费看高清 | 欧美日韩一级在线毛片| 中文在线观看免费www的网站 | 亚洲欧美日韩无卡精品| 久久中文字幕一级| 国产区一区二久久| 欧美一级a爱片免费观看看 | 亚洲精品国产精品久久久不卡| 麻豆av在线久日| 亚洲第一欧美日韩一区二区三区| 精品国内亚洲2022精品成人| 亚洲精品中文字幕在线视频| 日韩欧美三级三区| 国产欧美日韩一区二区精品| 黑人欧美特级aaaaaa片| 国产精品亚洲一级av第二区| 日本 av在线| av在线天堂中文字幕| 欧美乱妇无乱码| 亚洲一区高清亚洲精品| 久久精品亚洲精品国产色婷小说| 久久欧美精品欧美久久欧美| 久久香蕉国产精品| 99热6这里只有精品| 人人澡人人妻人| 黑人巨大精品欧美一区二区mp4| 精华霜和精华液先用哪个| 欧美性猛交╳xxx乱大交人| 99精品久久久久人妻精品| 国产在线精品亚洲第一网站| 色哟哟哟哟哟哟| 亚洲激情在线av| 一个人观看的视频www高清免费观看 | 欧美绝顶高潮抽搐喷水| 男人舔女人下体高潮全视频| 午夜福利在线观看吧| 亚洲avbb在线观看| 一级黄色大片毛片| 国产精品一区二区三区四区久久 | 色婷婷久久久亚洲欧美| 久久精品aⅴ一区二区三区四区| 成人午夜高清在线视频 | 欧美午夜高清在线| 亚洲色图 男人天堂 中文字幕| 人人澡人人妻人| 在线观看www视频免费| 1024香蕉在线观看| 欧美成狂野欧美在线观看| 最新美女视频免费是黄的| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品电影 | 久久久久久人人人人人| 欧美性猛交╳xxx乱大交人| 日本撒尿小便嘘嘘汇集6| 成人精品一区二区免费| 波多野结衣av一区二区av| 成人免费观看视频高清| а√天堂www在线а√下载| 亚洲美女黄片视频| 很黄的视频免费| 别揉我奶头~嗯~啊~动态视频| 黄色片一级片一级黄色片| 久久久久久久久免费视频了| 嫩草影视91久久| 视频区欧美日本亚洲| 热99re8久久精品国产| 亚洲国产欧美网| 男人舔奶头视频| 成人亚洲精品一区在线观看| 成年免费大片在线观看| 欧美日韩精品网址| 国产精品,欧美在线| 18禁裸乳无遮挡免费网站照片 | 妹子高潮喷水视频| or卡值多少钱| 国产v大片淫在线免费观看| 欧美日韩瑟瑟在线播放| 在线免费观看的www视频| 欧美乱妇无乱码| 脱女人内裤的视频| 久久国产乱子伦精品免费另类| 一夜夜www| 色综合欧美亚洲国产小说| 又黄又爽又免费观看的视频| 日韩欧美三级三区| 1024手机看黄色片| 国产亚洲精品综合一区在线观看 | 免费观看人在逋| 免费看日本二区| 亚洲自偷自拍图片 自拍| 成人三级黄色视频| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 精品少妇一区二区三区视频日本电影| 久久久水蜜桃国产精品网| 国产av又大| 伦理电影免费视频| 亚洲一区二区三区色噜噜| 亚洲av成人av| 欧美黄色淫秽网站| 国产精品1区2区在线观看.| 日韩欧美一区二区三区在线观看| 久久久久九九精品影院| 亚洲av中文字字幕乱码综合 | 在线播放国产精品三级| 久久久久久九九精品二区国产 | 老司机午夜十八禁免费视频| 岛国在线观看网站| 两个人免费观看高清视频| 午夜免费激情av| 亚洲在线自拍视频| 自线自在国产av| 叶爱在线成人免费视频播放| 久久伊人香网站| 欧美成人午夜精品| 久久精品影院6| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 国产av不卡久久| 美女 人体艺术 gogo| 又黄又粗又硬又大视频| 午夜福利一区二区在线看| 俺也久久电影网| 国产成人av激情在线播放| 亚洲av成人不卡在线观看播放网| 亚洲aⅴ乱码一区二区在线播放 | 老熟妇仑乱视频hdxx| 91成年电影在线观看| 欧美丝袜亚洲另类 | 在线观看舔阴道视频| 一级a爱片免费观看的视频| 啪啪无遮挡十八禁网站| 免费一级毛片在线播放高清视频| 午夜福利18| 男女视频在线观看网站免费 | 一区二区三区激情视频| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 深夜精品福利| 国产日本99.免费观看| 欧美 亚洲 国产 日韩一| 亚洲免费av在线视频| 一级毛片精品| av中文乱码字幕在线| 欧美日韩乱码在线| 黑人欧美特级aaaaaa片| 欧美av亚洲av综合av国产av| 亚洲色图 男人天堂 中文字幕| 精品国产国语对白av| 在线观看一区二区三区| 在线观看日韩欧美| 国产免费男女视频| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 香蕉久久夜色| 精品乱码久久久久久99久播| 久久久国产成人精品二区| 一级a爱视频在线免费观看| 国产精品二区激情视频| 亚洲成国产人片在线观看| 侵犯人妻中文字幕一二三四区| 哪里可以看免费的av片| 欧美成人免费av一区二区三区| 熟女电影av网| 欧美成人性av电影在线观看| 欧美最黄视频在线播放免费| 美女午夜性视频免费| 一本久久中文字幕| 99国产精品一区二区三区| 香蕉av资源在线| 国产极品粉嫩免费观看在线| 国产乱人伦免费视频| 亚洲国产欧洲综合997久久, | 一区二区日韩欧美中文字幕| 日韩一卡2卡3卡4卡2021年| 欧美激情久久久久久爽电影| 国产成年人精品一区二区| 精品无人区乱码1区二区| 在线国产一区二区在线| 亚洲中文日韩欧美视频| 黄片大片在线免费观看| 成人亚洲精品av一区二区| 久久国产精品影院| 神马国产精品三级电影在线观看 | 色综合亚洲欧美另类图片| 精品国产乱码久久久久久男人| 丝袜人妻中文字幕| 免费在线观看黄色视频的| 亚洲精品中文字幕一二三四区| 成人国产一区最新在线观看| 91字幕亚洲| 在线永久观看黄色视频| 欧美性猛交黑人性爽| 午夜亚洲福利在线播放| 国产亚洲av嫩草精品影院| 午夜久久久在线观看| 欧美最黄视频在线播放免费| 曰老女人黄片| 不卡一级毛片| 一区福利在线观看| 亚洲精品国产精品久久久不卡| 日韩高清综合在线| 亚洲免费av在线视频| 日日夜夜操网爽| 日韩精品中文字幕看吧| 国产爱豆传媒在线观看 | 国产又色又爽无遮挡免费看| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看成人毛片| 在线观看免费视频日本深夜| 听说在线观看完整版免费高清| 国产精品永久免费网站| 亚洲国产精品sss在线观看| 国产色视频综合| 99国产精品一区二区三区| 免费高清视频大片| 国产av一区在线观看免费| 欧美+亚洲+日韩+国产| 色精品久久人妻99蜜桃| 91在线观看av| 国产一区二区激情短视频| 成人亚洲精品av一区二区| 精品电影一区二区在线| 一本久久中文字幕| 777久久人妻少妇嫩草av网站| 亚洲无线在线观看| 免费观看精品视频网站| 一a级毛片在线观看| 18禁黄网站禁片午夜丰满| 一二三四在线观看免费中文在| 国产精品爽爽va在线观看网站 | 精华霜和精华液先用哪个| 久久香蕉激情| 午夜两性在线视频| a级毛片在线看网站| 精品高清国产在线一区| 亚洲熟妇熟女久久| 人人澡人人妻人| 精品久久久久久,| 青草久久国产| 高潮久久久久久久久久久不卡| 日本免费一区二区三区高清不卡| 免费搜索国产男女视频| 两个人看的免费小视频| 国产av在哪里看| 亚洲成av人片免费观看| 久热爱精品视频在线9| a级毛片a级免费在线| 国内久久婷婷六月综合欲色啪| 午夜影院日韩av| 成人手机av| 欧美激情久久久久久爽电影| 欧美日韩乱码在线| 国产亚洲精品av在线| 精品乱码久久久久久99久播| 黄色丝袜av网址大全| 亚洲精品一区av在线观看| 午夜福利视频1000在线观看| 女性被躁到高潮视频| 19禁男女啪啪无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 国产男靠女视频免费网站| 午夜福利视频1000在线观看| 女同久久另类99精品国产91| 日韩av在线大香蕉| 韩国av一区二区三区四区| 十八禁网站免费在线| 国产精品久久电影中文字幕| 久久国产精品男人的天堂亚洲| 在线观看免费午夜福利视频| 久久婷婷成人综合色麻豆| 久久天躁狠狠躁夜夜2o2o| 欧美乱码精品一区二区三区| 亚洲精品美女久久av网站| 欧美中文综合在线视频| 男女下面进入的视频免费午夜 | 国产爱豆传媒在线观看 | 黄色a级毛片大全视频| 国产又色又爽无遮挡免费看| av片东京热男人的天堂| 男人舔女人的私密视频| 18禁裸乳无遮挡免费网站照片 | 叶爱在线成人免费视频播放| 成人一区二区视频在线观看| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 成人18禁高潮啪啪吃奶动态图| 午夜福利在线在线| 美女 人体艺术 gogo| 999久久久精品免费观看国产| av视频在线观看入口| 一区二区三区国产精品乱码| 日韩三级视频一区二区三区| 国产又黄又爽又无遮挡在线| 久久天堂一区二区三区四区| 中出人妻视频一区二区| av中文乱码字幕在线| 国产真实乱freesex| 黑人巨大精品欧美一区二区mp4| av视频在线观看入口| av电影中文网址| 欧美激情极品国产一区二区三区| 午夜免费鲁丝| 长腿黑丝高跟| 国产99久久九九免费精品| 亚洲,欧美精品.| svipshipincom国产片| 丁香欧美五月| 91麻豆av在线| 精品国产一区二区三区四区第35| 精品欧美一区二区三区在线| 丁香欧美五月| 精品午夜福利视频在线观看一区| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 女人高潮潮喷娇喘18禁视频| 夜夜夜夜夜久久久久| ponron亚洲| 欧美色视频一区免费| 成人特级黄色片久久久久久久| 国产精品 国内视频| 老司机深夜福利视频在线观看| 成在线人永久免费视频| 美国免费a级毛片| 国产三级黄色录像| 可以在线观看毛片的网站| 国产精品,欧美在线| 亚洲第一电影网av| 色综合亚洲欧美另类图片| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 可以免费在线观看a视频的电影网站| 好男人电影高清在线观看| 真人一进一出gif抽搐免费| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播放欧美日韩| 又大又爽又粗| 精品国产亚洲在线| 成人手机av| 日韩中文字幕欧美一区二区| 久久久久九九精品影院| 动漫黄色视频在线观看| 国产欧美日韩一区二区精品| 悠悠久久av| 满18在线观看网站| 久久伊人香网站| 少妇 在线观看| 18禁国产床啪视频网站| 亚洲五月天丁香| 日韩欧美国产在线观看| 日韩精品青青久久久久久| 亚洲av熟女| 一级毛片女人18水好多| 97人妻精品一区二区三区麻豆 | 久久伊人香网站| 亚洲 国产 在线| 啪啪无遮挡十八禁网站| 亚洲av中文字字幕乱码综合 | 国产精品久久电影中文字幕| 亚洲专区中文字幕在线| 国产高清有码在线观看视频 | 狂野欧美激情性xxxx| 熟女电影av网| 嫩草影院精品99| 精品久久久久久久人妻蜜臀av| 国产三级黄色录像| 黑人操中国人逼视频| 亚洲性夜色夜夜综合| 91九色精品人成在线观看| 久久中文字幕人妻熟女| 亚洲专区字幕在线| 亚洲欧美一区二区三区黑人| 777久久人妻少妇嫩草av网站| av超薄肉色丝袜交足视频| 精品福利观看| 日韩高清综合在线| 老汉色∧v一级毛片| 久9热在线精品视频| 国产精品综合久久久久久久免费| x7x7x7水蜜桃| 一级a爱片免费观看的视频| 精品日产1卡2卡| av在线播放免费不卡| 欧洲精品卡2卡3卡4卡5卡区| 久久天堂一区二区三区四区| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 国产1区2区3区精品| 久久久国产精品麻豆| 午夜日韩欧美国产| 国产亚洲精品久久久久5区| 国产免费男女视频| 久久亚洲真实| 欧美三级亚洲精品| 操出白浆在线播放| 国产野战对白在线观看| 校园春色视频在线观看| 国产蜜桃级精品一区二区三区| 中文在线观看免费www的网站 | 最近在线观看免费完整版| 国产精品综合久久久久久久免费| 97超级碰碰碰精品色视频在线观看| 亚洲av成人不卡在线观看播放网| 免费看日本二区| avwww免费| √禁漫天堂资源中文www| 一进一出好大好爽视频| 啦啦啦韩国在线观看视频| 19禁男女啪啪无遮挡网站| 色播在线永久视频| 日本a在线网址| 成年版毛片免费区| 嫁个100分男人电影在线观看| 亚洲一区二区三区色噜噜| 免费在线观看黄色视频的| 国产精品影院久久| 成熟少妇高潮喷水视频| 欧美激情 高清一区二区三区| 夜夜躁狠狠躁天天躁| 亚洲熟妇熟女久久| 亚洲一区二区三区不卡视频| av超薄肉色丝袜交足视频| 一区二区三区激情视频| 黄色片一级片一级黄色片| 91成人精品电影| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一青青草原| 看片在线看免费视频| av在线天堂中文字幕| 久久久久国产精品人妻aⅴ院| 久久精品91无色码中文字幕| 亚洲精品国产区一区二| xxxwww97欧美| 国产主播在线观看一区二区| 欧美久久黑人一区二区| 国产精品九九99| 黑人操中国人逼视频| 欧美成人性av电影在线观看| 亚洲熟女毛片儿| 精品欧美国产一区二区三| 可以免费在线观看a视频的电影网站| 欧美日本亚洲视频在线播放| 欧美成人免费av一区二区三区| 国产免费av片在线观看野外av| 精品一区二区三区av网在线观看| 久久久久久大精品| 亚洲一区中文字幕在线| 男人的好看免费观看在线视频 | 亚洲av电影在线进入| 国产精品亚洲美女久久久| 99久久无色码亚洲精品果冻| 麻豆久久精品国产亚洲av| 免费在线观看成人毛片| 欧美黑人精品巨大| 欧美久久黑人一区二区| 国产一区二区三区在线臀色熟女| 老熟妇乱子伦视频在线观看| 两性夫妻黄色片| 嫩草影视91久久| 色综合欧美亚洲国产小说| 欧美激情 高清一区二区三区| 久久国产亚洲av麻豆专区| 国产蜜桃级精品一区二区三区| 两个人看的免费小视频| 亚洲人成77777在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 琪琪午夜伦伦电影理论片6080| 无限看片的www在线观看| 国产精品久久视频播放| 久久久久久九九精品二区国产 | 久久久久国产精品人妻aⅴ院| 18禁裸乳无遮挡免费网站照片 | 欧美成狂野欧美在线观看| 国产成人欧美| www国产在线视频色| 香蕉av资源在线| 亚洲av中文字字幕乱码综合 | 亚洲中文字幕一区二区三区有码在线看 | 成人免费观看视频高清| 色播在线永久视频| 免费高清在线观看日韩| 欧美国产日韩亚洲一区| 亚洲精品av麻豆狂野| 天堂动漫精品| www.熟女人妻精品国产| 久久精品aⅴ一区二区三区四区| 特大巨黑吊av在线直播 | a级毛片a级免费在线| 午夜日韩欧美国产| 嫩草影院精品99| 热re99久久国产66热| 国产精品久久久av美女十八| 亚洲成a人片在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲五月婷婷丁香| 精品不卡国产一区二区三区| 一夜夜www| 一本综合久久免费| 亚洲精品美女久久av网站| 免费在线观看日本一区| 亚洲av美国av| 国产在线精品亚洲第一网站| 日韩欧美三级三区| 午夜成年电影在线免费观看| 99re在线观看精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美一区二区精品小视频在线| 一级作爱视频免费观看| 欧美一区二区精品小视频在线| 久9热在线精品视频| 亚洲中文字幕一区二区三区有码在线看 | 国产熟女xx| 国产一区二区三区在线臀色熟女| 人人妻人人看人人澡| videosex国产| 91在线观看av| 丝袜美腿诱惑在线| 成人永久免费在线观看视频| 亚洲av熟女| 婷婷精品国产亚洲av| a级毛片在线看网站| 香蕉久久夜色| 亚洲成人免费电影在线观看| 18美女黄网站色大片免费观看| 亚洲一区中文字幕在线| 亚洲av第一区精品v没综合| 一本大道久久a久久精品| 一边摸一边抽搐一进一小说| 波多野结衣高清无吗| 国产av一区在线观看免费| 一个人免费在线观看的高清视频| 黑人巨大精品欧美一区二区mp4| 很黄的视频免费| 免费av毛片视频| 欧美日本视频| 男人的好看免费观看在线视频 | 国产精品免费一区二区三区在线| 韩国av一区二区三区四区| 俺也久久电影网| 久久人人精品亚洲av| 最近最新中文字幕大全电影3 | 热re99久久国产66热| 色精品久久人妻99蜜桃| 女人高潮潮喷娇喘18禁视频| xxx96com| 久久精品国产亚洲av高清一级| 少妇粗大呻吟视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品爽爽va在线观看网站 | cao死你这个sao货| 国产精品综合久久久久久久免费| 午夜成年电影在线免费观看| 亚洲人成77777在线视频| 亚洲人成网站在线播放欧美日韩| 亚洲一区高清亚洲精品| 一二三四社区在线视频社区8| 亚洲国产精品合色在线| 女警被强在线播放| 男女做爰动态图高潮gif福利片| 精品国产国语对白av| 这个男人来自地球电影免费观看| 久久久国产欧美日韩av| 一级毛片女人18水好多| 男女视频在线观看网站免费 | 成人免费观看视频高清| 精品不卡国产一区二区三区| 欧美中文日本在线观看视频| 免费高清视频大片| 欧美精品亚洲一区二区| av片东京热男人的天堂| 天堂动漫精品| 精品福利观看| 两人在一起打扑克的视频| 在线免费观看的www视频| 757午夜福利合集在线观看| 黄色片一级片一级黄色片| 91麻豆精品激情在线观看国产| 无限看片的www在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 男女做爰动态图高潮gif福利片| 91九色精品人成在线观看| 制服诱惑二区| 一a级毛片在线观看| 久久国产亚洲av麻豆专区| 日韩高清综合在线| 搡老岳熟女国产| 精品久久久久久久人妻蜜臀av| 18禁裸乳无遮挡免费网站照片 | 欧美色欧美亚洲另类二区| 国产精品二区激情视频| 免费无遮挡裸体视频| 国产视频内射| 亚洲成av片中文字幕在线观看| 手机成人av网站| 精品无人区乱码1区二区| 国产精品二区激情视频| 国产黄片美女视频| 欧美黄色淫秽网站| 变态另类丝袜制服| 在线观看66精品国产| www国产在线视频色| 成人免费观看视频高清| 亚洲国产高清在线一区二区三 | 人人妻人人澡欧美一区二区| 久久久久久久久免费视频了| 一个人观看的视频www高清免费观看 | 精品午夜福利视频在线观看一区| videosex国产| 亚洲精品国产区一区二| 亚洲第一电影网av| 18禁美女被吸乳视频|