• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagation and modulational instability of Rossby waves in stratified fluids

    2022-08-01 05:58:26XiaoQianYang楊曉倩EnGuiFan范恩貴andNingZhang張寧
    Chinese Physics B 2022年7期
    關(guān)鍵詞:張寧

    Xiao-Qian Yang(楊曉倩), En-Gui Fan(范恩貴), and Ning Zhang(張寧),2,?

    1College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    2Department of Fundamental Course,Shandong University of Science and Technology,Tai’an 271019,China

    3School of Mathematical Sciences,F(xiàn)udan University,Shanghai 200433,China

    Keywords: Rossby waves,Hirota bilinear method,modulational instability,stratified fluids

    1. Introduction

    On the earth where people rely on,the area of ocean has exceeded the area of land. The exploration to the vast ocean has never been stopped. There are many phenomena in the ocean that are worth exploring and studying,such as nonlinear waves. Partial differential equations can be used to describe many nonlinear phenomena in atmosphere and ocean motion.These equations not only reveal the essence of the phenomena but also provide important theoretical basis and research value for nonlinear atmospheric and marine dynamics. Solitary waves are one kind of nonlinear waves, which were first discovered by Russell,a British scientist,and researchers draw a conclusion that the solitary waves can move forward continuously regardless of friction and dissipation. Rossby waves are one type of solitary waves, and they have stable isolated wave characteristics with large amplitudes. They are waves produced by horizontal disturbances of the atmosphere and ocean under the action of Rossby parameterβ. It is the existence of Rossby waves that causes energy to propagate in the ocean and atmosphere. The origin of Rossby waves is atmospheric long waves. In 1939, Rossby first studied and analyzed the properties of atmospheric long waves in theory,and established the theory of atmospheric long waves. In order to commemorate him,researchers also call the atmospheric long waves the Rossby waves.

    Rossby waves widely exist in space and earth fluid systems.[1]Their existence is related to many natural phenomena, from the great red spot in Jupiter’s atmosphere to the swirling currents in the Gulf of Mexico. In addition to earth fluid systems, Rossby waves are also of great importance in marine atmospheric science. Researchers suggested that Rossby waves play an important role in the transfer of the energy, mass and momentum in the atmosphere and oceans,and to some extent determine the response of the oceans to atmospheric and other climate changes. Rossby waves spread the energy from east to west, it affects ocean surface water color and biological interactions, thus regulates the interannual characteristic behavior of the ocean,such as EI Ni?no.[2]In the research of Battisti,[3]non-equatorial Rossby waves were considered to be products of the ENSO(EI Ni?no/Southern Oscillation) rather than trigger mechanisms. In the study of the steady oscillation characteristics of sea surface temperatures(SST)variation,[4]the results show that the west boundary reflection of the Rossby waves excited by the wind stress caused by the interannual SST anomaly generates the eastward Kelvin waves,which eventually leads to the coupled instability of the eastern Pacific Ocean. Recently,Yanget al.studied the influence of the average airflow and topography in the barotropic atmosphere on the propagation of Rossby waves in the case of considering the vertical and zonal.[5]The discovery of Rossby waves in blood vessels has aroused extensive interest of researchers. Many researchers have put forward valuable theoretical basis for the problems in blood vessels by studying Rossby waves in blood vessels.[6]

    As mentioned earlier, nonlinear waves can be described by many partial differential equations, so there are also many partial differential equations to describe Rossby waves,such as the KdV equation,[7]mKdV equation,[8]Boussinesq equation,[9]BO equation, ZK equation,[10]and the nonlinear Schr¨odinger (NLS) equation.[11]In recent decades, the NLS equation has been widely used in many fields of applied sciences, especially in deep water wave mechanics[12]and optical communication.[13]The form of the NLS equation has also been extended gradually, such as higher-order term and coupled equations, the NLS equation with higher-order term is also called the HNLS equation,coupled NLS equations are called the CNLS equation. Luoet al.used the HNLS equation to describe nonlinear modulated Rossby waves in geophysical fluids and discussed the effects of latitude and uniform basic background flow on the unstable growth rate and unstable area of uniform Rossby waves train.[14]They also used the CNLS equations to describe the propagation and interactions of two nonlinear Rossby waves in barotropic modes,then used these equations to study the collision interactions of two enveloping Rossby solitons.[15]Choyet al.regarded blood in blood vessels as incompressible fluids and obtained its governing equation using the perturbation method,the governing equation was variable-coefficient NLS equations.[16]Songet al.derived the NLS equation of weakly nonlinear deep-sea internal waves based on the basic equation of twolayered fluids, and numerically simulated the wave propagation in the deep-sea area of the South China Sea.[17]With further research, the equations can be used as a powerful tool to study in different fields. As for the methods of solving the equation, the Hirota bilinear method is used in this paper to solve the CNLS equations. In fact,there are many other methods to solve all kinds of equations,such as F-expansion,[18,19]method,[20,21]Backlund transformation,[22,23]and Darboux transformation.[24,25]There are many different forms of the solutions,such as exact solution,[26,27]breather solution,[28,29]mixed-soliton solution,[30]and rogue wave solution.[31,32]Liuet al.derived the general periodic solution by the bilinear method and obtained rogue waves after further research.[33]Because the propagation of waves is not stable and fixed,there will be unstable areas in the process of propagation and the existence of these areas will cause uncertain impact on waves propagation, so the study of the modulational instability of waves is an important part.[34–37]

    In real atmospheric and oceanic motion,the stratification of fluid density (the stratification effect) makes the problem more complicated. Due to stratified fluids being closer to real fluids, it is of great practical significance to study the evolution and development of nonlinear Rossby waves in it,which can better explain the fluctuation mechanism of some largescale nonlinear waves in atmospheric and oceanic motions.In this paper,the stratified fluids are regarded as background,then the propagation and interactions between the two Rossby waves are investigated. This paper is organized as follows:In Section 2, based on the quasi-geostrophic vorticity equation of stratified fluids we derive the equations by taking theβeffect into account and using scale analysis and perturbation expansion. In Section 3,the Hirota bilinear method is used to solve the equations and the properties of the solutions in the interaction process are analyzed. In Section 4,we analyze the modulational instability of CNLS equations. Finally,we draw conclusions in Section 5.

    2. Derivation of the model

    Start from the quasi-geostrophic vorticity equation of stratified fluids

    In this form,εis a small perturbation, ˉUis the background flow. Substituting Eqs.(3)and(4)into Eq.(2), the equations satisfyingφ(1),φ(2)andφ(3)can be obtained as follows:

    Next assume

    wherec.c.represents the conjugate of all the preceding terms.Anis the amplitude as a function of the slow space-time variable,knandlnare wave numbers inxandy,respectively,and theωnrepresents frequency. The differential operator is defined in the following form:

    then putting Eq.(8)into Eq.(9),the condition satisfyingφn(y)can be obtained as follows:

    The 0 andπare boundary conditions of fluids. Because the discussion is about two-wave situation, assume the form ofφ(1)as

    substituting Eq.(11)into Eq.(6),we can writeL(φ(2))as

    where

    The second,third,and fourth inhomogeneous terms in Eq.(12)can yield particular solutions in the following forms:The first inhomogeneous term in Eq.(12)yields the following special solution:

    Multiplying the left-hand side of Eq. (17) byφn, integrating overyfrom 0 toπand using the boundary conditions show that the integration is equal to zero. Thus,the same operations are made to the right-hand side of Eq.(17)and we can obtain the consistent results. These lead to the solvable condition

    where

    It is not difficult to find from Eq. (18) that the amplitudeAnspreads at the speed ofCgn,which means

    further we can suppose

    Substituting Eq.(21)into Eq.(17)and considering the condition Eq.(18),we can obtain the following equation:

    Up to now,the solution to Eq.(12)can be written as

    whereξ(y,T1,X1,Y)is the homogeneous solution to Eq.(12),which represents the regional flow correction caused by the existence of finite-amplitude wave and can be expressed later.Substitutingφ(1)andφ(2)into the right-hand side of Eq.(7),we can obtain all the inhomogeneous terms. There are terms that are independent ofx,zandt. Thus,considering the form of the linear operation on the left-hand side,it is obvious that these terms must disappear equally,resulting in the condition related to the correction to the average flow to the wave amplitude,implying

    After a series of treatments,the solutions ofA1andA2are obtained.Equation(25)includes coupled equations ofA1andA2,which describe the interactions between the two waves. The two equations can be further simplified after introducing the transforms by Jeffry and Kawahara,

    Using Eq.(28),Eq.(24)changes to

    The above equations have a solution in the form

    whereHn(y)satisfies

    The above equations are the CNLS equations. The usual standard NLS equation is in the form

    Compared to the normal NLS equation,Eq.(36)is different in that it is coupled and (2+1)-dimensional. Eqution (36)is called the CNLS equations. The standard NLS is able to be used to describe the spread of Rossby waves, and it can only describe the propagation of a single wave in thexdirection of space and in timet. However, with the addition ofyin the space direction,the CNLS equations can describe wave propagation more specifically than the standard NLS equation.Moreover,the CNLS equations are not limited to describe the propagation of a single wave, instead they can also describe more phenomena,such as wave–wave interactions.

    3. Mixed soliton solution of coupled nonlinear Schro¨dinger equation

    In the above section, a dynamical model describing the interaction of two waves was obtained. Now, we discuss the problem what forms and properties appear in the soliton solutions in the process of wave–wave interactions. In this section,the Hirota bilinear method is used to solve the mixed soliton solutions to Eq.(36)and to obtain the figures of solutions.According to Eq. (36), it is obvious that in the two components A and B,one component contains bright soliton and the other contains dark soliton. Above all, Hirota’s bilinear operatorsDzandDtare defined as

    wheregandhare arbitrary complex functions ofx,y, andt,whilefis a real function. The bilinear form for Eq.(38)is

    Expandingg,handfformally as power series expansions in terms of a small arbitrary real parameterχ,

    3.1. Mixed(bright-dark)one-soliton solution

    Restricting the power series expansion Eq.(41)as

    Herea1,k1,k2,c1are arbitrary complex parameters, whilel1andl2are real parameters. In the above equations and in the following sections,subscribers R and I denote the real and imaginary parts,respectively. Figure 1 shows the mixed onesoliton solution.

    Fig.1. The mixed one-soliton solution with k1=a1=c1=1+i,k2=1-i,α1=η1=σ1=τ12=l1=l2=1,λ =-2,y=5. (a)The soliton solution A. (b)The planform of solution A. (c)The soliton solution B. (d)The planform of solution B.

    3.2. Mixed(bright-dark)two-soliton solution

    The mixed two-soliton solution can be obtained by terminating the power series expansion(41)as

    After solving the resulting bilinear equations recursively, the mixed two-soliton solution is obtained as follows:

    where

    and

    The mixed-two soliton solution are given in Fig.2.

    The above figures are the 3D mixed one-soliton solution and the mixed two-soliton solution when the parameterxandyare fixed.It is not difficult to find from these figures that bright soliton exists in the componentAand dark soliton exists in the componentB. Meanwhile,we can clearly see the collision interactions of Rossby solitons from Fig.2. When the two solitons collide, obvious peak oscillation is caused, and then the solitons change the original trajectory. It is worth noting that the trajectories of the two solitons after the collision do not cross. Next, the problem about the influence of dark soliton parameters on the intensity of bright and dark solitons is discussed. Taking the mixed one-soliton solution as an example,when fixing other parameters,the relationship of|A|2and|B|2totcan be obtained. The diagrams are shown in Figs.3 and 4.

    Fig.2. The mixed two-soliton solution with k1=2-i,k2=-1+i,k3=-2-2i,k4=1+2i,c1=a1=1+i,a2=3-i,α1=η1=σ1=τ12=l1=1,l2=2,y=5. (a)The soliton solution A. (b)The planform of solution A. (c)The soliton solution B. (d)The planform of solution B.

    It can be clearly seen from Figs.3 and 4 that the larger the|c1|2is,the smaller the intensity of the bright soliton is. As the intensity of the bright soliton decreases,the intensity of the dark soliton gradually increases. Therefore,the energy is determined in the propagation process of two Rossby waves with different wave numbers.

    Fig. 3. The relation between the intensity of soliton and time t with k1=2+i,a1=k2=1-i,α1=η1=σ1=τ12=l1=l2=1=x=y.(a)Mixed one-soliton solution with c1 =1+i. (b)Mixed one-soliton solution with c1=1.2+i. (c)Mixed one-soliton solution with c1=1+i.(d)Mixed one-soliton solution with c1=1.2+i.

    Fig. 4. The relation between the intensity of soliton and time t with k1=2-i,k2=-1+i,k3=-2-2i,k4=1+2i,a1=1+i,a2=3-i,l1 = 1, l2 = 2, α1 = η1 = σ1 = τ12 = 1 = x = y. (a) Mixed twosoliton solution with c1 =1+i. (b) Mixed two-soliton solution with c1=1.2+i. (c)Mixed two-soliton solution with c1=1+i. (d)Mixed two-soliton solution with c1=1.2+i.

    4. Modulational instability of the CNLS equation

    Modulational instability is the famous phenomenon in the nonlinear propagation. It leads to the instability of Rossby waves. The study of modulational instability began in the 1960s. It was the scientist Benjamin Feir who discovered this phenomenon in the study of deep water waves, so the later researchers also called modulational instability Benjamin Feir instability. The study of modulational instability is of great significance in many aspects. In this section, the question about the modulational instability of uniform Rossby waves will be discussed. For the obtained CNLS Eq.(36),the plane wave solution is considered as follows:

    whereφ1andφ2are small perturbations and they can be expressed as

    In the aboveUj=μjcos(mX+nY+ΩT),Pj=ρjsin(mX+nY+ΩT),j=1,2. Heremandnrepresent wave numbers,Ωrepresents frequency. SubstitutingAandBinto Eq. (36) and linearizing,we can obtain the following equations:

    Using Eq.(51),the above formulas can be further arranged as

    Separating the real and imaginary parts of the above expressions we obtain

    SubstitutingUjandPjinto Eq.(54)yields

    It can be obtained from the existence condition of homogeneous linear equations

    Fig.5.Modulational instability gain of Eq.(36)with a=10,α1=η1=τ12 =σ1 =2. (a)Modulational instability shown in three dimensions.(b)Top view of modulational instability.

    Equation (56) shows that when (α1m2+η1n2)2-2τ12B20(α1m2+η1n2)-2σ1A20(α1m2+η1n2)>0, the frequencyΩis always real and belongs to the stable region.When (α1m2+η1n2)2-2τ12B20(α1m2+η1n2)-2σ1A20(α1m2+η1n2)<0, the frequencyΩis complex when the wave numbersmandnare set to the value of a particular item,that is the modulational instability region. For modulational instability, when(α1m2+η1n2)2-2τ12B20(α1m2+η1n2)-2σ1A20(α1m2+η1n2)<0, it can be known from the definition of gain spectrum that

    We can know from Eq.(57)thatAandBplay the same role in the change of gain spectrum.AssumingA0=B0=a,theg(m)changes to

    Figure 5 shows the modulational instability in three dimensions.

    Fig.6. Comparison chart of modulational instability with different parameters a = 10, α1 = η1 = τ12 = σ1 = 2. (a) The values of these parameters are n=0.5 and a=0.5,1,2. (b)The values of these parameters are a=1 and n=0,0.1,0.5,1.

    In Fig. 5, the area of figures can be split into two parts,one part is a circle with a radius of 19.1 at the origin and this part is the modulational instability region, the Rossby waves are unstable on this part. The other one is the dark blue part,this part and the central point are both in the modulational stability region,so the Rossby waves are stable on this area.Next,the influence of different factors on modulational instability is discussed.

    Fig.7. Modulational instability comparison diagrams of different types of equations with a=1,α1=η1=τ12=σ1=2. (a)The modulational instability of standard NLS and CNLS with n=1.(b)The modulational instability of standard NLS.

    Because these figures are symmetric, we analyze only half of them. There are two points seen in Fig. 6. The first one is that as the value of amplitude increases,the gain and the width of the unstable region of Rossby waves increases.When the parametera=2, the width of the unstable region of the uniform Rossby waves can reach 4 and the gain of the Rossby waves can reach 16. However,whena=0.5,the former only reaches 1 and the latter reaches 1. These data suggest that the amplitude determines the gain and width of the unstable region of the Rossby waves. The width of the unstable region and the gain shrinks with the contraction of the amplitude. They are larger when the amplitude is greater. The second one is that dimension does not affect the gain because the gain atn=0 is the same as the gain at other values ofn. What the dimension really affects is the stability at the central point and the width of the modulational instability region. Whenn= 0, which means that the wave number in theydirection is zero and there is noyterm, the uniform Rossby waves are stable at the central point. However, when the wave numberntakes different values,the central point is no longer stable,and the gain at the central point is larger as the value ofnincreases. The width of the unstable region of Rossby waves decreases with the increase ofn,it can be seen from Fig.6(b)that whenn=1,the width of the unstable region of Rossby waves is minimal. On the contrary,whenn=0.1,it is maximal.However,the gain of the uniform Rossby waves are fixed no matter whatnis,so the dimension has no effect on the gain. In Fig.7,comparing the modulational instability image of the standard NLS equation with that of the CNLS equations, we can find something that when the dimension of space is changed from one to two and the equations are changed from single to couple,the gain and the width of the modulational instability region change simultaneously. At the same time,the gain of two waves interacting with each other is greater than that of a single wave.

    5. Conclusions

    In summary,we have obtained a dynamic model describing the propagation and interaction of Rossby waves in stratified fluids using perturbation analysis and scale expansion.When two Rossby waves with slightly different wavenumbers propagate in stratified fluids,their solitons will collide,which will change the trajectory of solitons. The intensity of bright soliton is also related to the dark soliton coefficient. The intensity of bright soliton decreases with the increase of dark soliton coefficient. In addition, in the propagation process of two waves, there is an unstable area. The size of this area is related to the amplitude and wave number in theydirection.When the amplitude is constant, the smaller the wave number is, the larger the width of the unstable area is. However,when the wave number is constant, the larger the amplitude is,the larger the width of the modulational instability area is,meanwhile its gain is also larger. According to the figures,the modulational instability area of a single wave in propagation is smaller than that of two waves.

    Appendix A:Parameters

    When the basic flow ˉU(y) is constant, the important coefficients can be obtained through analysis. Now some important coefficients are given below. The solution to Eq.(10)is

    according to Eq.(10),

    Making eR1=μ11, eδ0=μ13, eδ*0 =μ31, eR2=μ33and the values of some coefficients about soliton solution are given as follows:

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11805114) and the Shandong University of Science and Technology Research Fund (Grant No.2018TDJH101).

    猜你喜歡
    張寧
    一杯茶
    Fishing釣魚
    Go to School 上學(xué)
    樂普 《欣忭》
    The Rainbow Bridge/by Cynthia L00mis Gurin彩虹橋
    Umbrella Day傘日
    There
    Cross the River 過河
    張寧作品選登
    我愛我的母親——中國
    精品国产亚洲在线| 黄色毛片三级朝国网站| 一个人免费在线观看电影 | 中亚洲国语对白在线视频| 好男人电影高清在线观看| 啦啦啦韩国在线观看视频| 欧美在线一区亚洲| 五月玫瑰六月丁香| 日韩中文字幕欧美一区二区| 女人爽到高潮嗷嗷叫在线视频| 俺也久久电影网| 国产精品亚洲一级av第二区| av有码第一页| 97碰自拍视频| 中文字幕高清在线视频| 中文字幕最新亚洲高清| 精品国产乱码久久久久久男人| 久久伊人香网站| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲片人在线观看| 精品久久久久久成人av| 欧美又色又爽又黄视频| 免费一级毛片在线播放高清视频| 亚洲av电影在线进入| 999精品在线视频| 99热这里只有是精品50| 日韩大码丰满熟妇| 欧美一区二区精品小视频在线| 久久性视频一级片| 伊人久久大香线蕉亚洲五| 99国产综合亚洲精品| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看| www.999成人在线观看| 精品久久久久久久久久久久久| av片东京热男人的天堂| 九九热线精品视视频播放| 18禁美女被吸乳视频| 久久久久九九精品影院| av福利片在线| 我要搜黄色片| 欧美色视频一区免费| 中文字幕熟女人妻在线| 又粗又爽又猛毛片免费看| 久久热在线av| 香蕉国产在线看| 亚洲avbb在线观看| 亚洲一区高清亚洲精品| 美女 人体艺术 gogo| 免费人成视频x8x8入口观看| 亚洲国产欧洲综合997久久,| av在线天堂中文字幕| 精品免费久久久久久久清纯| 一夜夜www| а√天堂www在线а√下载| 极品教师在线免费播放| 免费av毛片视频| 国内久久婷婷六月综合欲色啪| 国产熟女午夜一区二区三区| 国产黄色小视频在线观看| av中文乱码字幕在线| 亚洲国产高清在线一区二区三| 国产精品一区二区三区四区免费观看 | 女人被狂操c到高潮| 国产av在哪里看| 欧美一区二区精品小视频在线| 国产精品98久久久久久宅男小说| 在线播放国产精品三级| 欧美人与性动交α欧美精品济南到| 国产一区二区三区在线臀色熟女| 国产免费av片在线观看野外av| 午夜激情av网站| 欧洲精品卡2卡3卡4卡5卡区| 欧美成人一区二区免费高清观看 | 精品一区二区三区av网在线观看| 成人18禁在线播放| 日本三级黄在线观看| √禁漫天堂资源中文www| 色综合欧美亚洲国产小说| 首页视频小说图片口味搜索| 国产69精品久久久久777片 | 成在线人永久免费视频| 一个人免费在线观看的高清视频| 亚洲av电影在线进入| 久久中文字幕人妻熟女| 亚洲av电影在线进入| 亚洲中文av在线| 久久中文看片网| 少妇被粗大的猛进出69影院| 老司机深夜福利视频在线观看| 一级毛片高清免费大全| 国产在线精品亚洲第一网站| 非洲黑人性xxxx精品又粗又长| 中国美女看黄片| 亚洲一码二码三码区别大吗| 两个人视频免费观看高清| 在线免费观看的www视频| 老熟妇仑乱视频hdxx| www日本在线高清视频| 午夜日韩欧美国产| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久亚洲av鲁大| 欧美在线黄色| 性色av乱码一区二区三区2| 国产欧美日韩一区二区精品| 黑人欧美特级aaaaaa片| av免费在线观看网站| 欧美+亚洲+日韩+国产| 精品乱码久久久久久99久播| 亚洲五月婷婷丁香| 久久人妻av系列| 精品福利观看| 99re在线观看精品视频| 男女做爰动态图高潮gif福利片| 亚洲国产看品久久| 亚洲精品一卡2卡三卡4卡5卡| 看免费av毛片| 99精品在免费线老司机午夜| 91麻豆av在线| 中文字幕最新亚洲高清| or卡值多少钱| 90打野战视频偷拍视频| 国产一区二区三区在线臀色熟女| 国产精品av久久久久免费| 嫩草影院精品99| 草草在线视频免费看| 99在线人妻在线中文字幕| 国产伦人伦偷精品视频| 少妇裸体淫交视频免费看高清 | 午夜a级毛片| 少妇人妻一区二区三区视频| 亚洲国产精品合色在线| 国产成人啪精品午夜网站| 亚洲欧美激情综合另类| 怎么达到女性高潮| 亚洲电影在线观看av| 五月伊人婷婷丁香| 亚洲av熟女| 亚洲人与动物交配视频| 两个人看的免费小视频| 激情在线观看视频在线高清| 日韩 欧美 亚洲 中文字幕| 欧美性猛交黑人性爽| 俺也久久电影网| 久久这里只有精品19| 91老司机精品| 精品国产超薄肉色丝袜足j| 在线永久观看黄色视频| 人成视频在线观看免费观看| 亚洲色图 男人天堂 中文字幕| 欧美极品一区二区三区四区| 在线十欧美十亚洲十日本专区| 老熟妇仑乱视频hdxx| 久久中文看片网| 色播亚洲综合网| 又爽又黄无遮挡网站| 国产激情欧美一区二区| 搡老熟女国产l中国老女人| 免费一级毛片在线播放高清视频| 久久 成人 亚洲| 91大片在线观看| 精品一区二区三区四区五区乱码| 无人区码免费观看不卡| 国产成人精品久久二区二区免费| 色综合婷婷激情| 精品熟女少妇八av免费久了| 欧美成人一区二区免费高清观看 | 国产真实乱freesex| 久久精品成人免费网站| 国产三级黄色录像| 五月玫瑰六月丁香| 啦啦啦免费观看视频1| 欧美av亚洲av综合av国产av| 日本五十路高清| 黄色 视频免费看| 亚洲国产高清在线一区二区三| 99国产极品粉嫩在线观看| 黄色视频不卡| 一级作爱视频免费观看| 成人精品一区二区免费| 久久人人精品亚洲av| 久久久国产精品麻豆| 免费在线观看黄色视频的| 黄色丝袜av网址大全| 中文字幕高清在线视频| av免费在线观看网站| 久久欧美精品欧美久久欧美| 香蕉丝袜av| 别揉我奶头~嗯~啊~动态视频| xxx96com| 中文亚洲av片在线观看爽| 99re在线观看精品视频| 国产蜜桃级精品一区二区三区| 操出白浆在线播放| 男男h啪啪无遮挡| 成人国产一区最新在线观看| 麻豆国产97在线/欧美 | 国产精品野战在线观看| 老熟妇乱子伦视频在线观看| 国产亚洲精品久久久久久毛片| 一二三四在线观看免费中文在| 精品国产超薄肉色丝袜足j| 亚洲熟女毛片儿| 成人av一区二区三区在线看| 亚洲国产高清在线一区二区三| 国产精品98久久久久久宅男小说| 日本黄色视频三级网站网址| 不卡一级毛片| 人人妻人人澡欧美一区二区| 男女下面进入的视频免费午夜| 在线免费观看的www视频| 亚洲国产看品久久| 长腿黑丝高跟| 国产私拍福利视频在线观看| 国产一区二区在线观看日韩 | 国产一区二区三区视频了| 亚洲精品在线美女| 亚洲一区中文字幕在线| 在线观看一区二区三区| 国产伦一二天堂av在线观看| 久热爱精品视频在线9| 午夜免费观看网址| 久久久久九九精品影院| 午夜福利成人在线免费观看| 特级一级黄色大片| 免费电影在线观看免费观看| 性色av乱码一区二区三区2| 久久精品综合一区二区三区| 国产精品一及| 舔av片在线| 欧美日韩乱码在线| 久久香蕉激情| 精品一区二区三区四区五区乱码| 久久久精品国产亚洲av高清涩受| 亚洲成a人片在线一区二区| 无人区码免费观看不卡| 18禁黄网站禁片午夜丰满| 亚洲精品久久国产高清桃花| 久久香蕉激情| www.精华液| 亚洲第一欧美日韩一区二区三区| 国产成人啪精品午夜网站| 天堂av国产一区二区熟女人妻 | 国产av一区在线观看免费| 久久久精品大字幕| 国产亚洲精品av在线| 亚洲午夜精品一区,二区,三区| www.自偷自拍.com| 午夜福利在线在线| av欧美777| 99热只有精品国产| 免费高清视频大片| 国产三级黄色录像| 99国产精品一区二区蜜桃av| 九色成人免费人妻av| 18禁美女被吸乳视频| 午夜免费激情av| 国产区一区二久久| 国产成人啪精品午夜网站| 一级毛片精品| 久久 成人 亚洲| 欧美日本视频| 曰老女人黄片| 日韩中文字幕欧美一区二区| 18禁黄网站禁片免费观看直播| 国产av一区二区精品久久| 天堂动漫精品| 久久久久久国产a免费观看| 听说在线观看完整版免费高清| 69av精品久久久久久| 国产精品美女特级片免费视频播放器 | 国产一区在线观看成人免费| 国产av不卡久久| 久久精品国产亚洲av高清一级| 午夜精品在线福利| 色综合欧美亚洲国产小说| 麻豆一二三区av精品| 国产精品一区二区精品视频观看| 999精品在线视频| 日韩精品免费视频一区二区三区| 一二三四社区在线视频社区8| 亚洲一码二码三码区别大吗| 亚洲成av人片免费观看| 亚洲欧美激情综合另类| 久久国产精品人妻蜜桃| 亚洲一区二区三区不卡视频| 亚洲中文字幕日韩| 国产精品久久久久久亚洲av鲁大| 岛国视频午夜一区免费看| 国产伦人伦偷精品视频| 两性夫妻黄色片| 成人国语在线视频| 看免费av毛片| 手机成人av网站| 亚洲 国产 在线| 亚洲av美国av| av视频在线观看入口| 在线观看免费午夜福利视频| 精品久久久久久成人av| 高潮久久久久久久久久久不卡| 不卡av一区二区三区| 少妇粗大呻吟视频| 亚洲精品久久成人aⅴ小说| 嫩草影院精品99| 制服诱惑二区| 色综合欧美亚洲国产小说| 可以在线观看毛片的网站| 国产精品99久久99久久久不卡| 国产三级中文精品| 在线免费观看的www视频| 欧美日韩乱码在线| 99在线视频只有这里精品首页| 欧美极品一区二区三区四区| 波多野结衣巨乳人妻| 免费无遮挡裸体视频| 日韩欧美国产一区二区入口| 婷婷精品国产亚洲av在线| 岛国视频午夜一区免费看| 免费观看人在逋| x7x7x7水蜜桃| 99久久国产精品久久久| 中文字幕久久专区| 99国产精品一区二区三区| 老司机靠b影院| 一a级毛片在线观看| 中文字幕熟女人妻在线| 精品一区二区三区四区五区乱码| 搡老妇女老女人老熟妇| 丰满人妻熟妇乱又伦精品不卡| 成人av一区二区三区在线看| av在线天堂中文字幕| 在线播放国产精品三级| 久久精品人妻少妇| 一个人观看的视频www高清免费观看 | 少妇被粗大的猛进出69影院| 精品熟女少妇八av免费久了| 国产精品乱码一区二三区的特点| 88av欧美| 桃色一区二区三区在线观看| 国产亚洲av高清不卡| 久久精品综合一区二区三区| 1024手机看黄色片| √禁漫天堂资源中文www| 99久久综合精品五月天人人| 国产1区2区3区精品| 精品国产亚洲在线| 一a级毛片在线观看| 51午夜福利影视在线观看| 国产成人一区二区三区免费视频网站| 观看免费一级毛片| 国内精品一区二区在线观看| 成人国产一区最新在线观看| 日韩欧美国产一区二区入口| 亚洲精品美女久久av网站| a在线观看视频网站| www国产在线视频色| 男男h啪啪无遮挡| 日本黄色视频三级网站网址| 国产野战对白在线观看| 国产精品爽爽va在线观看网站| 最近在线观看免费完整版| 色尼玛亚洲综合影院| www日本在线高清视频| 2021天堂中文幕一二区在线观| 久久精品国产清高在天天线| 亚洲五月天丁香| 91麻豆av在线| 亚洲午夜理论影院| 精品国产亚洲在线| 亚洲激情在线av| 亚洲国产精品成人综合色| 操出白浆在线播放| 亚洲人成网站高清观看| 国产精品一区二区三区四区免费观看 | 久久精品aⅴ一区二区三区四区| 成在线人永久免费视频| 亚洲欧美日韩高清专用| 国产精品亚洲av一区麻豆| 国内精品久久久久精免费| 全区人妻精品视频| av中文乱码字幕在线| 色综合站精品国产| 男插女下体视频免费在线播放| 国产亚洲欧美98| 亚洲欧美日韩高清在线视频| 免费一级毛片在线播放高清视频| 白带黄色成豆腐渣| 亚洲国产精品999在线| 久久久久久大精品| 一级作爱视频免费观看| 两个人看的免费小视频| 小说图片视频综合网站| 国产主播在线观看一区二区| 日本免费a在线| aaaaa片日本免费| 波多野结衣巨乳人妻| 国产一区二区三区视频了| 日本五十路高清| 亚洲国产欧洲综合997久久,| 国产成人影院久久av| 久久草成人影院| 黑人操中国人逼视频| 全区人妻精品视频| 国产精品久久久av美女十八| 午夜福利免费观看在线| 真人一进一出gif抽搐免费| 欧美极品一区二区三区四区| 亚洲国产精品合色在线| 亚洲成人中文字幕在线播放| 成在线人永久免费视频| 久久久久久亚洲精品国产蜜桃av| 精品高清国产在线一区| 亚洲人成网站在线播放欧美日韩| 国产又色又爽无遮挡免费看| 色播亚洲综合网| 国产高清videossex| 老司机深夜福利视频在线观看| 成人三级黄色视频| cao死你这个sao货| 三级毛片av免费| 观看免费一级毛片| 国产一级毛片七仙女欲春2| 亚洲美女视频黄频| 69av精品久久久久久| 成人18禁在线播放| 妹子高潮喷水视频| 久久精品综合一区二区三区| 免费在线观看成人毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 最新美女视频免费是黄的| 亚洲人成网站在线播放欧美日韩| 日本精品一区二区三区蜜桃| 一本一本综合久久| 亚洲av成人一区二区三| 午夜影院日韩av| 久久精品成人免费网站| 国产高清videossex| 久久婷婷成人综合色麻豆| 床上黄色一级片| 99热6这里只有精品| 一本综合久久免费| 美女大奶头视频| cao死你这个sao货| 国产av一区在线观看免费| 亚洲一码二码三码区别大吗| 精品午夜福利视频在线观看一区| 欧美激情久久久久久爽电影| 日本 av在线| 最近在线观看免费完整版| 可以在线观看毛片的网站| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 一区二区三区国产精品乱码| 中文亚洲av片在线观看爽| 岛国在线免费视频观看| 在线观看舔阴道视频| 色综合站精品国产| 日日夜夜操网爽| 长腿黑丝高跟| 最近最新中文字幕大全电影3| 婷婷六月久久综合丁香| 91麻豆av在线| 天天躁狠狠躁夜夜躁狠狠躁| 很黄的视频免费| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 中文亚洲av片在线观看爽| 久久精品91无色码中文字幕| 激情在线观看视频在线高清| 亚洲av第一区精品v没综合| 欧美日本视频| 久久久精品欧美日韩精品| 成人精品一区二区免费| 久久久水蜜桃国产精品网| 国产精品一区二区免费欧美| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 美女免费视频网站| 中出人妻视频一区二区| 亚洲乱码一区二区免费版| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产 | 亚洲国产精品合色在线| 我要搜黄色片| 久久精品亚洲精品国产色婷小说| 中文字幕熟女人妻在线| 亚洲国产欧美网| 中文字幕熟女人妻在线| 国产成人精品久久二区二区免费| 久久精品综合一区二区三区| 国产精品野战在线观看| 女生性感内裤真人,穿戴方法视频| 精品国内亚洲2022精品成人| 天堂动漫精品| 高潮久久久久久久久久久不卡| 男女床上黄色一级片免费看| 午夜精品一区二区三区免费看| 亚洲精品美女久久久久99蜜臀| 中文字幕最新亚洲高清| 草草在线视频免费看| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片| 蜜桃久久精品国产亚洲av| 国产高清激情床上av| svipshipincom国产片| 一区福利在线观看| 成熟少妇高潮喷水视频| 午夜福利欧美成人| 色综合欧美亚洲国产小说| 一a级毛片在线观看| 国产精品久久电影中文字幕| 国产主播在线观看一区二区| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产| 制服人妻中文乱码| 午夜免费观看网址| 国产成人av激情在线播放| 亚洲av成人av| 国产av麻豆久久久久久久| 视频区欧美日本亚洲| 中文字幕av在线有码专区| 亚洲人成77777在线视频| 搡老熟女国产l中国老女人| 丝袜美腿诱惑在线| 日本熟妇午夜| 老鸭窝网址在线观看| 亚洲人成网站在线播放欧美日韩| 久久性视频一级片| 老汉色∧v一级毛片| 久9热在线精品视频| 亚洲成人久久性| 亚洲成av人片免费观看| 麻豆成人av在线观看| 69av精品久久久久久| 亚洲av五月六月丁香网| 香蕉丝袜av| 好看av亚洲va欧美ⅴa在| 午夜亚洲福利在线播放| 特级一级黄色大片| 国产精品久久久久久人妻精品电影| 婷婷精品国产亚洲av| 日韩高清综合在线| 夜夜看夜夜爽夜夜摸| 久久九九热精品免费| 两个人的视频大全免费| 三级毛片av免费| 在线视频色国产色| 成熟少妇高潮喷水视频| 日韩欧美一区二区三区在线观看| www.熟女人妻精品国产| 国产一区在线观看成人免费| 国内久久婷婷六月综合欲色啪| 国产精品一及| 两个人看的免费小视频| 国产高清视频在线观看网站| 国产99久久九九免费精品| or卡值多少钱| 久久 成人 亚洲| 叶爱在线成人免费视频播放| 9191精品国产免费久久| 俄罗斯特黄特色一大片| 欧美激情久久久久久爽电影| 一边摸一边抽搐一进一小说| 日韩中文字幕欧美一区二区| 禁无遮挡网站| 成人国产一区最新在线观看| 少妇的丰满在线观看| 草草在线视频免费看| 亚洲人成网站高清观看| 国产精品日韩av在线免费观看| 国产午夜精品论理片| 一个人观看的视频www高清免费观看 | 亚洲色图 男人天堂 中文字幕| 午夜福利高清视频| 亚洲免费av在线视频| 亚洲成人精品中文字幕电影| 日韩欧美在线二视频| 深夜精品福利| 中文字幕av在线有码专区| 精品免费久久久久久久清纯| 日本成人三级电影网站| 亚洲成av人片免费观看| 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 免费av毛片视频| 日日夜夜操网爽| 少妇裸体淫交视频免费看高清 | 91麻豆精品激情在线观看国产| 可以在线观看毛片的网站| 国内毛片毛片毛片毛片毛片| 激情在线观看视频在线高清| 午夜福利视频1000在线观看| 国产精品综合久久久久久久免费| 免费在线观看亚洲国产| 男人舔女人下体高潮全视频| 夜夜躁狠狠躁天天躁| 欧美性猛交╳xxx乱大交人| 成年版毛片免费区| 好男人在线观看高清免费视频| 三级国产精品欧美在线观看 | 高清在线国产一区| 国产午夜精品久久久久久| 欧美乱色亚洲激情| 18美女黄网站色大片免费观看| 日韩免费av在线播放| 可以免费在线观看a视频的电影网站| 精品国产美女av久久久久小说| 国产99久久九九免费精品| 香蕉丝袜av| 国产视频一区二区在线看| 可以在线观看的亚洲视频| av在线播放免费不卡|