• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel demodulation method for transmission using nitrogen–vacancy-based solid-state quantum sensor

    2022-08-01 05:59:32RuixinBai白瑞昕XinyueZhu朱欣岳FanYang楊帆TianranGao高天然ZiranWang汪子然LinyanYu虞林嫣JinfengWang汪晉鋒LiZhou周力andGuanxiangDu杜關(guān)祥
    Chinese Physics B 2022年7期
    關(guān)鍵詞:汪子楊帆

    Ruixin Bai(白瑞昕), Xinyue Zhu(朱欣岳), Fan Yang(楊帆),Tianran Gao(高天然), Ziran Wang(汪子然), Linyan Yu(虞林嫣),Jinfeng Wang(汪晉鋒), Li Zhou(周力), and Guanxiang Du(杜關(guān)祥),?

    1College of Telecommunication&Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210000,China

    2College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210000,China

    3College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210000,China

    Keywords: NV center,demodulate OOK signal,high-frequency range,audio signal transceiving

    1. Introduction

    With the development of communication technology,the common 2.4-GHz and 5-GHz electromagnetic wave signals have become the mainstream wireless fidelity(WiFi)and bluetooth communication frequency bands. Since the transmission of high-frequency electromagnetic waves can greatly increase the rate of information transmission, communications in higher frequency bands will be widely used in 5G and even 6G communications.[1–3]Nowadays,the difficulty of demodulating higher frequency signals(greater than 30 GHz)seems to be one of the key factors restricting the further development of communication technology.[4,5]A component of the demodulated signal is the band-pass filter whose performance[6–9]directly determines the quality of the communication and the signal-to-noise ratio. Nowadays, high-frequency band-pass filters mainly include surface acoustic wave(SAW)[10,11]and bulk acoustic wave (BAW)[12–14]filters, and the filters that can be used for high-frequency mobile communications are mainly BAW filters. At present,BAW filters on the market are mainly monopolized by Qorvo and Broadcom, and the bandwidth of existing band-pass filters is generally greater than 20 MHz, especially high-frequency band-pass filters, so the communication quality will be much lower than that of lowfrequency transmission with narrower pass band width. The NV center of diamond has a stable high-frequency resonance frequency,[15,16]and the resonance frequency can be linearly adjusted by an external magnetic field,[17–19]and attenuates fast at the non-resonant frequency. It has the excellent characteristics of low passband width and is able to be a good tool for demodulating the high-frequency signal. In our experiment, we use a laser to excite the diamond and continuously collect the fluorescent signal returned by the diamond. We placed the diamond above the microwave antenna and judged whether the pulsed which modulate the microwave was low or high by comparing intensity of the fluorescence. The bandwidth of the equivalent band-pass filter obtained by using this method was lower than 8 MHz, which is much smaller than the high frequency band pass filter on the market,and the system has the characteristics of small size and large center frequency adjustment range,which is very convenient for carrier frequency switching and frequency division multiplexing. We finally used the system to successfully transmit audio signals under the condition of 2.87 GHz,thus verifying the feasibility and reliability of this new demodulation scheme.

    2. System structure and theory

    As shown in Fig. 1(a), the communication system consists of a data acquisition(DAQ)card installed in a computer,a pulse signal generator,laser,fiber diamond probe,avalanche photo diode (APD), microwave source and an antenna. We use a pulse signal generator to generate pulse signals in order to modulate the microwave source. We use APD to collect the fluorescent signal emitted by the diamond micro-crystal through the optical fiber. The output of APD is acquired by a data acquisition card and the computer judge the original signal through the measurement of the change of fluorescence intensity. We use a standard antenna powered by the microwave source to simulate a receiver and the fiber diamond probe is closely placed on top of the antenna. We used a permanent magnet to split all eight resonance peaks of the optically detected magnetic resonance(ODMR)curve which will be shown in Fig. 1(b) and change the frequency of the peaks by changing the strength of the magnetic field so that the communication system will be able to work at any frequencies.

    2.1. The physical principle of the demodulator

    The NV center is a point defect structure in diamond consisting of a substituted nitrogen atom and a nearby lattice vacancy.In quantum regulation studies,a negatively charged NV center(NV-)is generally considered,whose vacancy provides four unpaired bonded electrons,plus one electron contributed by the nitrogen atom and one additional captured electron,and this system can be considered as an electron spin with a total spin of 1.

    The NV central spin ground state is a spin triplet state with a zero-field splitting betweenms=±1 andms= 0 at 2.87 GHz,which is in the microwave band.Thems=±1 state of the electron spin is 30%weaker than thems=0 state,so the 532-nm laser is used to polarize the NV center to thems=0 state, then the quantum state is manipulated by pulsed microwaves,and finally the current quantum state of the NV center is determined by counting the fluorescent photons.[15,16,20]

    Noteworthy, when the microwave pulse is far from the resonant frequency,the laser polarizes the electrons to a state wherems=0. The fluorescence is strong and stable; when the microwave pulse is close to the operating frequency,there is a certain probability that the electrons will be flipped to a state wherems=±1, resulting in a decrease in fluorescence intensity.

    Fig.1. (a)The schematic diagram of the setup. (b)The ODMR spectrum of the NV center and the curve fitted by Lorenz function.

    As shown in Fig.1(b),which depicts the relationship between the degree of influence on the fluorescence intensity and the microwave frequency. Since the NV axis of diamond has four directions,there will be 8 peaks at different resonant frequencies. The 8 peaks in Fig. 1(b) represent 8 resonant frequencies. The peak positions are fitted by the Lorenz function,and we get the full width at half maximum of each peak is 3.7 MHz, which means that when the frequency of the microwave is 1.85 MHz higher than the resonance frequency,the change of the obtained fluorescence intensity affected by the microwave will be sharply reduced. Thus, when the modulation pulse is at a high level,the fluorescence intensity received by us will become smaller due to the effect of microwaves at the resonance frequency. When the modulated pulse is at a low level,since there is no external microwave effect,the fluorescence intensity will not be affected. And when the electromagnetic wave we receive is not at the resonance frequency,the fluorescence intensity will not be affected. Therefore,the bandwidth of the demodulator based on the diamond NV center we designed is within the half-width (3.7 MHz), which is much smaller than the BAW filter on the market. So the communication quality it brings will theoretically be higher.

    2.2. The frequency range and frequency division multiplexing

    Because the demodulation bandwidth is very small, it is much more suitable for frequency division multiplexing systems. Due to the Zeeman splitting effect,[21]when a magnetic field is applied to the diamond,energy level splitting will occur, which will shift the resonance frequency. The 8 peaks shown in the ODMR spectrum will be split to both sides.When the direction of the magnetic field is perpendicular to the NV axis, the number of peaks in the ODMR spectrum will reduce to four.[18,19]As the magnetic field strength increases, the peak position, that is, the resonance frequency,will linearly increase, as shown in Fig. 2(a). Therefore, we can easily adjust the demodulation frequency of the system through simply increasing the strength of the external magnetic field,which means that the same system can demodulate the waveform of each frequency so that the flexibility of our system is much better than the BAW in the market whose center frequency cannot change easily. And since the resonate frequency can now be pushed up to 14 GHz by increasing the magnetic field strength, our demodulation frequency adjustment range is much larger than the filter realized by using resistive devices.

    Fig. 2. (a) The relationship between magnetic field intensity and resonant frequency and(b)the shift of a single peak with slight increasement on magnetic field intensity. The unit 1 Gs=10-4 T.

    As shown in Fig.2(b),the red line in the figure shows that the resonance frequency of a diamond influenced by a magnetic field is 3.035 GHz, which means that the signal with a carrier frequency of 3.035 GHz can be demodulated. The blue line in the figure indicates that the diamond is influenced by a stronger magnetic field,which makes the resonance frequency increase to 3.049 GHz. It is obvious that there is almost no overlap between the two peaks. Therefore, in theory, if two diamond samples are used simultaneously and different magnetic fields are applied to them,they will not affect each other.In this way,we are able to make full use of the spectrum.

    3. Experiments and evaluation

    In order to verify the feasibility of the demodulation scheme based on the NV center, we encode a segment of audio signal, converting it into a pulse sequence and modulate it with microwave source to transmit it through an antenna.For the receiver,we use 12-micron diameter diamond crystals fixed to the tip of a fiber in our experiments and bring the diamond close to the end of the receiving antenna. We set the pulse width of the microwave (MW) to 1000 ns and the output RF power to 20 dBm at microwave high levels. Microstrip antennas resonating at around 2.87 GHz are connected to microwave sources to generate microwave fields. The 532-nm constant wave (CW) laser is applied to the fiber optic probe containing NV center diamond with the microwave simultaneously, and the output power is 100 mW. We send a trigger signal to the data acquisition card at the first pulse of the microwave signal to start data collection. Figure 3 shows the scatter plot of the original signal, the timing of the smoothed signal with a window size of 20-Gs and 50-Gs smoothing and the discriminated output pulse signal.

    Fig.3. (a)Comparation of the original signal,smooth signal,and the output pulse signal with voltage discrimination algorithm. (b) Fluorescent signal with Gaussian noise and output pulse signal.

    In this experiment, the sampling rate of the DAQ card is 100 MHz,which means that one hundred points are collected for each 1000-ns pulse. The sampling depth is 16 bits,we set the range to±5 V,and the sampling accuracy is about 15 mV,so the vertical distribution of the data points in Fig. 3. has a more obvious step-like character. In order to reduce the bit error ratio(BER),we uniquely take into account the effect of the delay in the rising edge of the fluorescence signal intensity on the discrimination by incorporating a judgement of the fluorescence signal trend into the algorithm and using iterations to find the optimal threshold. Then we found that the BER could also be reduced by encoding the audio into repeated binary sequences, enabling the data collector to repeatedly and continuously capture and poll the switching information for the same timing pulses. In the end, we added Gaussian noise to the raw data to check the robustness of the transmission system and algorithm. Comparison of signals with and without noise is shown in the figure and table.

    In Table 1, we compare the effect of different sampling rates and number of repetitions on the BER and transmission rate (TR). We show that repeated transmissions of the same pulse sequence are discriminated independently and the results are voted on, with the higher the number of repetitions, the higher the BER and the corresponding decrease in transmission rate. As shown in the first column of Table 1, our BER can be as low as 0.66%and our transmission rate can be up to 2266.96 bit/s,at two different repetitions.

    Table 1. Results of transmission evaluation. In the table,T is the number of repetitions;Time is the total transmission time of the 5010 binary bits(s);BER is the bit error rate,which is the number of error bits/total number of bits transmitted;TR is the transmission rate.

    4. Conclusion and perspectives

    We developed a special communication system to demodulate the OOK signal by a diamond quantum receiver and attempt to transmit the audio signal. Then we used a unique algorithm of voltage discrimination due to the delay of the demodulation, which greatly reduce the BER compared to direct averaging of the sampled voltage of the pulse. The sampling rate in this work is 100 MHz and the rise time is around 1000 ns, which is limited by the relatively weak microwave field and can be significantly shorter with higher power transmission. The fall time is limited to the decay rate of intersystem crossing(ISC),which is on the order of~250 ns.

    In an unpublished work, we have explored the way in which general audio signals other than music audio signals are transmitted in this system. Because of the problem of accumulated heat inside the diamond when using continuous wave laser,the transmission rate and the bit error rate might be improved by optimizing the power of laser. What is more, adjusting the decision threshold in real time might be another method to reduce the bit error rate. We also intend to further explore the possibility of applying our system in the domain of transmitting other kinds of signals and using frequency division multiplexing in practice.

    Acknowledgement

    Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600).

    猜你喜歡
    汪子楊帆
    Band structures of strained kagome lattices
    收秋
    Effect of short-term plasticity on working memory
    《魚與蓮》
    Two regularization methods for identifying the source term problem on the time-fractional diffusion equation with a hyper-Bessel operator
    我們家的“貓老肥”
    工廠化、小棚、大汪子…… 400精英齊聚山東,探討北方養(yǎng)蝦新思路
    劫后華夏再楊帆(弋陽腔)
    影劇新作(2020年2期)2020-09-23 03:22:12
    學(xué)生小低組特等獎(jiǎng)作品
    中國篆刻(2019年10期)2019-10-28 07:06:54
    弒父(短篇小說)
    看非洲黑人一级黄片| 美女cb高潮喷水在线观看| 久久女婷五月综合色啪小说| 亚洲不卡免费看| videossex国产| a级毛片免费高清观看在线播放| 午夜日本视频在线| 久久久久久久久久人人人人人人| 黄色欧美视频在线观看| 国产v大片淫在线免费观看| 亚洲欧美日韩卡通动漫| 欧美精品国产亚洲| 又大又黄又爽视频免费| 免费人成在线观看视频色| 日韩欧美精品免费久久| 欧美区成人在线视频| 久久久久国产网址| 日韩国内少妇激情av| 99热这里只有是精品50| 精品亚洲成国产av| 欧美日韩国产mv在线观看视频 | 街头女战士在线观看网站| 亚洲成色77777| 亚洲人成网站在线观看播放| 亚洲精品中文字幕在线视频 | 国产一区二区三区综合在线观看 | 国产熟女欧美一区二区| 精品少妇黑人巨大在线播放| 男女无遮挡免费网站观看| 纯流量卡能插随身wifi吗| 久久久久国产精品人妻一区二区| 亚洲熟女精品中文字幕| 亚洲av中文字字幕乱码综合| 久久久久久久大尺度免费视频| 在线观看国产h片| 亚洲精品视频女| 国产av精品麻豆| 黄色欧美视频在线观看| 高清毛片免费看| 熟女人妻精品中文字幕| 美女福利国产在线 | 国产精品熟女久久久久浪| 亚洲国产最新在线播放| 深爱激情五月婷婷| 我的女老师完整版在线观看| 国产大屁股一区二区在线视频| 国产精品99久久99久久久不卡 | 国产午夜精品久久久久久一区二区三区| 你懂的网址亚洲精品在线观看| 亚洲久久久国产精品| 国产淫语在线视频| 国产日韩欧美亚洲二区| 最近2019中文字幕mv第一页| 欧美xxxx黑人xx丫x性爽| 视频中文字幕在线观看| 国产精品av视频在线免费观看| 精品熟女少妇av免费看| 亚洲经典国产精华液单| 内射极品少妇av片p| 亚洲精品一二三| 人妻 亚洲 视频| 精品一区二区三卡| 又黄又爽又刺激的免费视频.| 看十八女毛片水多多多| 嫩草影院新地址| 欧美性感艳星| 一级二级三级毛片免费看| 色吧在线观看| 日本wwww免费看| 国产精品av视频在线免费观看| 中文欧美无线码| 亚洲激情五月婷婷啪啪| 日韩av在线免费看完整版不卡| 人体艺术视频欧美日本| 99精国产麻豆久久婷婷| 三级经典国产精品| 国产成人精品福利久久| 国产精品.久久久| 插逼视频在线观看| 观看免费一级毛片| 欧美 日韩 精品 国产| 性色avwww在线观看| 亚洲国产av新网站| 天堂中文最新版在线下载| 精品酒店卫生间| 高清在线视频一区二区三区| a级毛色黄片| 三级国产精品片| 久久久久网色| 久久精品夜色国产| 色视频www国产| 国产爽快片一区二区三区| 内地一区二区视频在线| 久久久久久人妻| 国产爽快片一区二区三区| 中文字幕制服av| 久久久久久久国产电影| 精品人妻一区二区三区麻豆| 欧美成人午夜免费资源| 老司机影院成人| 午夜福利视频精品| 久久久精品94久久精品| 七月丁香在线播放| 久久99热这里只有精品18| 黄片wwwwww| 欧美精品一区二区免费开放| 国产精品偷伦视频观看了| 香蕉精品网在线| 亚洲精品第二区| 亚洲国产色片| 夜夜骑夜夜射夜夜干| 亚洲精品国产av成人精品| 亚洲国产最新在线播放| 日本欧美国产在线视频| 嫩草影院入口| 日本一二三区视频观看| 午夜老司机福利剧场| 男人爽女人下面视频在线观看| 少妇人妻精品综合一区二区| 人妻系列 视频| 国产欧美日韩一区二区三区在线 | 日韩欧美一区视频在线观看 | 99热这里只有是精品在线观看| 亚洲国产成人一精品久久久| av线在线观看网站| 99热这里只有是精品在线观看| 国产精品一二三区在线看| 亚洲国产精品国产精品| 亚洲人成网站高清观看| 亚洲无线观看免费| 免费大片黄手机在线观看| 国产熟女欧美一区二区| 国产精品国产三级专区第一集| 国产精品偷伦视频观看了| 草草在线视频免费看| 国产成人免费观看mmmm| 日本黄大片高清| 色网站视频免费| 久久久欧美国产精品| 伊人久久国产一区二区| 久久久久久人妻| 最后的刺客免费高清国语| 国国产精品蜜臀av免费| 中文精品一卡2卡3卡4更新| 国产亚洲午夜精品一区二区久久| 搡老乐熟女国产| 久久青草综合色| 大片免费播放器 马上看| 亚洲va在线va天堂va国产| 一本一本综合久久| 麻豆精品久久久久久蜜桃| 在线亚洲精品国产二区图片欧美 | 日日撸夜夜添| 菩萨蛮人人尽说江南好唐韦庄| 又粗又硬又长又爽又黄的视频| 免费播放大片免费观看视频在线观看| 自拍偷自拍亚洲精品老妇| 日韩av不卡免费在线播放| 九九在线视频观看精品| 人人妻人人澡人人爽人人夜夜| 黄色日韩在线| 你懂的网址亚洲精品在线观看| 大话2 男鬼变身卡| 男女啪啪激烈高潮av片| 在线观看免费日韩欧美大片 | 国产v大片淫在线免费观看| 最近最新中文字幕大全电影3| 人人妻人人爽人人添夜夜欢视频 | 少妇人妻精品综合一区二区| 韩国高清视频一区二区三区| 亚洲美女搞黄在线观看| 久久久久久人妻| 中文字幕久久专区| 亚洲性久久影院| 九九在线视频观看精品| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 久久青草综合色| 国产片特级美女逼逼视频| 国产精品久久久久久精品古装| 男女无遮挡免费网站观看| 国产欧美亚洲国产| 国产熟女欧美一区二区| 制服丝袜香蕉在线| 久久久午夜欧美精品| 免费播放大片免费观看视频在线观看| 国产国拍精品亚洲av在线观看| 麻豆国产97在线/欧美| 欧美另类一区| 人人妻人人添人人爽欧美一区卜 | 干丝袜人妻中文字幕| 伊人久久国产一区二区| 亚洲精华国产精华液的使用体验| 岛国毛片在线播放| 亚洲精品乱码久久久久久按摩| 久久久久精品久久久久真实原创| 日本黄大片高清| 黄片无遮挡物在线观看| 久久久久久九九精品二区国产| 久久国产精品大桥未久av | 欧美高清成人免费视频www| 国产精品一区二区性色av| av天堂中文字幕网| 日日啪夜夜撸| 国产高潮美女av| 寂寞人妻少妇视频99o| 午夜福利在线在线| 久久久久视频综合| 国产av国产精品国产| 国产精品熟女久久久久浪| 国产精品蜜桃在线观看| 成人一区二区视频在线观看| 国产成人精品福利久久| 午夜日本视频在线| 久久久久视频综合| 国产免费视频播放在线视频| 少妇人妻精品综合一区二区| av在线老鸭窝| 久久女婷五月综合色啪小说| 婷婷色综合大香蕉| 亚洲av福利一区| 最近中文字幕高清免费大全6| 丰满少妇做爰视频| 秋霞在线观看毛片| 亚洲精品乱码久久久v下载方式| 亚洲人成网站高清观看| 尾随美女入室| 国产av精品麻豆| 亚洲精品久久久久久婷婷小说| 一本—道久久a久久精品蜜桃钙片| 舔av片在线| 能在线免费看毛片的网站| 少妇 在线观看| 一级爰片在线观看| 老司机影院毛片| 免费播放大片免费观看视频在线观看| 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线| 精品亚洲成a人片在线观看 | 各种免费的搞黄视频| 大香蕉久久网| 亚洲色图av天堂| 婷婷色麻豆天堂久久| 亚洲精品乱久久久久久| 欧美xxxx黑人xx丫x性爽| 51国产日韩欧美| 老熟女久久久| 亚洲欧美日韩东京热| 午夜福利在线在线| 国产男女内射视频| 国产精品一区二区在线不卡| 丰满迷人的少妇在线观看| 人妻少妇偷人精品九色| 国产日韩欧美在线精品| 国产av码专区亚洲av| 在线观看一区二区三区| 各种免费的搞黄视频| 国国产精品蜜臀av免费| 日韩欧美精品免费久久| 欧美 日韩 精品 国产| 高清在线视频一区二区三区| 小蜜桃在线观看免费完整版高清| 国产av码专区亚洲av| 精品人妻视频免费看| 舔av片在线| 免费在线观看成人毛片| av视频免费观看在线观看| 国产女主播在线喷水免费视频网站| 亚洲综合色惰| 一级毛片久久久久久久久女| 国内精品宾馆在线| 免费看av在线观看网站| 男人添女人高潮全过程视频| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| av国产精品久久久久影院| 久久精品久久久久久久性| 国产成人精品一,二区| 欧美最新免费一区二区三区| 草草在线视频免费看| 久久6这里有精品| a级毛色黄片| 一级毛片aaaaaa免费看小| 中文天堂在线官网| 在线观看三级黄色| 一区二区三区免费毛片| 99久久人妻综合| 欧美激情国产日韩精品一区| 亚洲精品,欧美精品| 久久久久人妻精品一区果冻| 99热全是精品| 中文字幕亚洲精品专区| 欧美高清性xxxxhd video| 亚洲av成人精品一区久久| 97超碰精品成人国产| 欧美激情极品国产一区二区三区 | 蜜桃久久精品国产亚洲av| 97超碰精品成人国产| 免费观看在线日韩| 九九久久精品国产亚洲av麻豆| 少妇猛男粗大的猛烈进出视频| 亚洲成人一二三区av| 十八禁网站网址无遮挡 | 日本av免费视频播放| 狂野欧美激情性xxxx在线观看| 少妇人妻精品综合一区二区| 久久毛片免费看一区二区三区| 欧美区成人在线视频| 色婷婷av一区二区三区视频| 亚洲,一卡二卡三卡| 性色av一级| 国产精品不卡视频一区二区| 你懂的网址亚洲精品在线观看| 欧美日韩精品成人综合77777| 天堂8中文在线网| 成人二区视频| 亚洲中文av在线| 国产 一区精品| 在线观看美女被高潮喷水网站| 51国产日韩欧美| 观看免费一级毛片| 国产男女超爽视频在线观看| 欧美日韩视频精品一区| 久久影院123| 午夜激情福利司机影院| 日韩一区二区视频免费看| 国产av码专区亚洲av| 国产成人91sexporn| 天天躁日日操中文字幕| 九九久久精品国产亚洲av麻豆| 日韩中文字幕视频在线看片 | 中文字幕人妻熟人妻熟丝袜美| 老司机影院毛片| 最黄视频免费看| 高清不卡的av网站| 观看免费一级毛片| 日本-黄色视频高清免费观看| 亚洲精品色激情综合| 精品一区二区三区视频在线| 91精品一卡2卡3卡4卡| 亚洲美女黄色视频免费看| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| 大话2 男鬼变身卡| 色哟哟·www| 日韩亚洲欧美综合| 夜夜爽夜夜爽视频| 国产有黄有色有爽视频| 各种免费的搞黄视频| 国产在视频线精品| 在线观看一区二区三区激情| av福利片在线观看| 26uuu在线亚洲综合色| 嫩草影院新地址| 日韩一区二区三区影片| 欧美激情国产日韩精品一区| 国产 一区精品| 亚洲婷婷狠狠爱综合网| 在线观看一区二区三区激情| 汤姆久久久久久久影院中文字幕| 久久99精品国语久久久| 亚洲精品久久午夜乱码| 亚洲av综合色区一区| 伊人久久精品亚洲午夜| 26uuu在线亚洲综合色| 亚洲高清免费不卡视频| 老女人水多毛片| 精品一品国产午夜福利视频| 岛国毛片在线播放| 午夜福利在线在线| 国产精品人妻久久久影院| 国产高清有码在线观看视频| 亚洲人与动物交配视频| av在线老鸭窝| 女性生殖器流出的白浆| 国产真实伦视频高清在线观看| 亚洲内射少妇av| 国产在视频线精品| 80岁老熟妇乱子伦牲交| 久久久午夜欧美精品| av国产精品久久久久影院| 国产深夜福利视频在线观看| 永久网站在线| 国产精品免费大片| 欧美3d第一页| 人体艺术视频欧美日本| 久久久国产一区二区| 99热这里只有是精品在线观看| 国产精品一区二区三区四区免费观看| 亚洲av男天堂| 久久久久网色| 老女人水多毛片| 亚洲av欧美aⅴ国产| 99九九线精品视频在线观看视频| 国产精品久久久久久久久免| 国产精品99久久久久久久久| 久久99精品国语久久久| 久久久久久久精品精品| 成人二区视频| 国产黄片美女视频| 日韩制服骚丝袜av| 在线观看免费高清a一片| 国产91av在线免费观看| 国产av精品麻豆| 高清av免费在线| 少妇 在线观看| 九草在线视频观看| 成年女人在线观看亚洲视频| 欧美区成人在线视频| 一级毛片 在线播放| 国内精品宾馆在线| a级一级毛片免费在线观看| 日产精品乱码卡一卡2卡三| 国产高清有码在线观看视频| 精品亚洲成国产av| 欧美亚洲 丝袜 人妻 在线| 好男人视频免费观看在线| 欧美97在线视频| 国产真实伦视频高清在线观看| 亚洲国产最新在线播放| 久久国产精品男人的天堂亚洲 | 国产日韩欧美在线精品| 91午夜精品亚洲一区二区三区| 国产高清有码在线观看视频| av在线老鸭窝| 久久久午夜欧美精品| 亚洲国产精品一区三区| 日本黄色片子视频| 黄色日韩在线| 免费不卡的大黄色大毛片视频在线观看| 51国产日韩欧美| 国产白丝娇喘喷水9色精品| av免费在线看不卡| 日韩一区二区三区影片| 波野结衣二区三区在线| 一边亲一边摸免费视频| 蜜桃亚洲精品一区二区三区| 精品国产露脸久久av麻豆| 色哟哟·www| 国产精品蜜桃在线观看| 夜夜看夜夜爽夜夜摸| 黄片无遮挡物在线观看| 亚洲欧美精品专区久久| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 国产毛片在线视频| 欧美日韩在线观看h| 六月丁香七月| 涩涩av久久男人的天堂| 亚洲真实伦在线观看| 丰满迷人的少妇在线观看| 成人二区视频| 国产精品.久久久| 噜噜噜噜噜久久久久久91| 97在线人人人人妻| 亚洲精品亚洲一区二区| 毛片一级片免费看久久久久| 久久久欧美国产精品| 七月丁香在线播放| 超碰97精品在线观看| 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 在线亚洲精品国产二区图片欧美 | 一二三四中文在线观看免费高清| 一级爰片在线观看| 五月伊人婷婷丁香| 日本一二三区视频观看| 亚洲性久久影院| 亚洲内射少妇av| 熟妇人妻不卡中文字幕| 国产av精品麻豆| 伦理电影免费视频| 日本黄大片高清| 亚洲精品国产av成人精品| 一级毛片我不卡| 欧美老熟妇乱子伦牲交| 我的女老师完整版在线观看| 久久精品国产亚洲网站| 国产白丝娇喘喷水9色精品| 国产亚洲最大av| 99热这里只有是精品50| 欧美日韩在线观看h| 久久久久网色| 久久国产精品大桥未久av | 免费播放大片免费观看视频在线观看| 狂野欧美激情性bbbbbb| 最近中文字幕2019免费版| 观看美女的网站| 小蜜桃在线观看免费完整版高清| 亚洲国产av新网站| 秋霞在线观看毛片| 三级经典国产精品| 男女国产视频网站| 美女视频免费永久观看网站| 国产免费一级a男人的天堂| 日韩成人av中文字幕在线观看| 夜夜爽夜夜爽视频| 精华霜和精华液先用哪个| 最近手机中文字幕大全| 秋霞伦理黄片| 亚洲av.av天堂| 国产精品伦人一区二区| 国产爱豆传媒在线观看| 能在线免费看毛片的网站| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 99久久人妻综合| freevideosex欧美| 大香蕉97超碰在线| www.av在线官网国产| 色哟哟·www| 中文在线观看免费www的网站| 成人黄色视频免费在线看| 亚洲欧美一区二区三区国产| 精品国产露脸久久av麻豆| 亚洲欧美日韩卡通动漫| 免费少妇av软件| 国产极品天堂在线| 亚洲高清免费不卡视频| 一级毛片aaaaaa免费看小| 91aial.com中文字幕在线观看| 久久午夜福利片| 久久这里有精品视频免费| 观看av在线不卡| 在线 av 中文字幕| 内射极品少妇av片p| 欧美国产精品一级二级三级 | 欧美xxxx黑人xx丫x性爽| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 欧美极品一区二区三区四区| 午夜福利在线在线| a 毛片基地| 99精国产麻豆久久婷婷| 久久精品久久精品一区二区三区| 久久这里有精品视频免费| 黑人高潮一二区| av黄色大香蕉| 少妇丰满av| 国产69精品久久久久777片| 2022亚洲国产成人精品| 亚洲国产色片| 肉色欧美久久久久久久蜜桃| av卡一久久| 国产探花极品一区二区| 黑人猛操日本美女一级片| 久久久久久人妻| 亚洲成人中文字幕在线播放| 男人爽女人下面视频在线观看| 成人高潮视频无遮挡免费网站| 亚洲av.av天堂| 乱系列少妇在线播放| 五月开心婷婷网| 18禁在线播放成人免费| 亚洲人成网站高清观看| 国内揄拍国产精品人妻在线| 少妇人妻精品综合一区二区| 国产成人精品久久久久久| 女人十人毛片免费观看3o分钟| 蜜桃在线观看..| 国产国拍精品亚洲av在线观看| 亚洲精品一区蜜桃| 成人国产麻豆网| 国产精品久久久久久精品古装| 1000部很黄的大片| 一二三四中文在线观看免费高清| 国产日韩欧美亚洲二区| 婷婷色综合大香蕉| 一级av片app| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 最近中文字幕2019免费版| 免费观看性生交大片5| 另类亚洲欧美激情| 各种免费的搞黄视频| 极品教师在线视频| 日韩一本色道免费dvd| 国产 精品1| 欧美精品一区二区大全| 91精品国产国语对白视频| 黄色一级大片看看| 国产黄片视频在线免费观看| 尾随美女入室| 99九九线精品视频在线观看视频| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 日韩欧美一区视频在线观看 | 日本午夜av视频| 欧美精品亚洲一区二区| 亚洲电影在线观看av| 国模一区二区三区四区视频| 色综合色国产| 国产综合精华液| 欧美人与善性xxx| 少妇裸体淫交视频免费看高清| 伊人久久精品亚洲午夜| 伦理电影大哥的女人| 精品一区在线观看国产| 日韩一区二区视频免费看| 国产精品三级大全| 少妇的逼水好多| 激情五月婷婷亚洲| 久久毛片免费看一区二区三区| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 一级二级三级毛片免费看| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图 | 男人添女人高潮全过程视频| 美女国产视频在线观看| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| 亚洲欧美清纯卡通| 色网站视频免费| 日韩免费高清中文字幕av|