• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverse synthetic aperture radar range profile compensation of plasma-sheathenveloped reentry object

    2022-08-01 11:34:50YaocongXIE謝曜聰XiaopingLI李小平FangfangSHEN沈方芳BowenBAI白博文LeiSHI石磊andXuyangCHEN陳旭陽
    Plasma Science and Technology 2022年7期
    關鍵詞:李小平石磊博文

    Yaocong XIE(謝曜聰),Xiaoping LI(李小平),Fangfang SHEN(沈方芳),Bowen BAI(白博文),Lei SHI(石磊)and Xuyang CHEN(陳旭陽)

    School of Aerospace Science and Technology,Xidian University,Xi’an 710071,People’s Republic of China

    Abstract The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.

    Keywords:plasma sheath,inverse synthetic aperture radar imaging,defocus,coupled velocity,reentry object

    1.Introduction

    Inverse synthetic aperture radar(ISAR)imaging is an effective technique by which images of moving targets in the range-Doppler domain can be obtained[1,2].Two-dimensional high-resolution images of the reentry object can be obtained by ISAR imaging for subsequent operations of target recognition,which is of great significance to the safe recovery of spacecraft.When a reentry spacecraft enters into the Earth’s near-space atmosphere,the effect of the generated aerodynamic heat can form a plasma sheath covering the surface of the reentry object[3–5],absorbing,attenuating and reflecting electromagnetic(EM)waves[6–8].

    For the ISAR imaging of high-speed targets,research on the compensation method of the moving-in-pulse duration(MPD)has attracted much attention.Fenget alproposed an effective algorithm based on Radon transform for the range profile of a hypersonic target,through which the range profile aberration and ISAR image blurring can be compensated[9].Tianet alstudied the integrated cubic phase function and estimated the second-order phase coefficient to compensate for the high-speed movement on ISAR images[10].However,these studies mainly focused on the influence of the target’s high velocity on ISAR defocusing and ignored the problem of the generated plasma sheath enveloping the target during the flight.

    In addition to the above problem,most of the related studies focused on the influence of the plasma sheath imposed on radar detection.Yuanet alanalyzed the relationship between the plasma parameters and the reflection that is a combination of the power reflected from the plasma interface.They derived that the reflections of the incident wave power depended on the thickness of plasma for different incident wave frequencies and various plasma parameters[11].Dinget aldiscovered that the velocity of the plasma sheath had an effect on the one-dimensional range profile,which caused a false target and even detection failures[12].In their approach,the reentry object was treated as a single scattering point rather than multiple scattering points,which is a prerequisite for high-resolution ISAR imaging.Zhanget alproposed a wideband radar scattering center model of a plasma-sheathcovered reentry target,in which the reflection characteristics and velocity of the plasma sheath are considered[13].Despite the fact that their research proposed a basic model,they did not conduct a profound analysis of the problems caused by the plasma sheath.Xuet alpresented the MPD model for hypersonic targets and evaluated the performances of pulse compression under the stop-and-go and MPD models by theoretical analysis and simulations[14].However,the effect of plasma was not considered in their study.

    Unfortunately,few studies concerning the ISAR defocusing of the reentry object can be found so far.This work analyzes the reflection characteristics of the plasma sheath to obtain the radar echo model of the plasma-sheath-enveloped reentry object.It is found that in the areas with high electron density,the EM wave cannot penetrate through the plasma sheath,and the radar scattering points are distributed at a certain depth in the plasma sheath.These scattering points are affected by the flow field of the plasma sheath,exhibiting coupled velocities.The coupled velocities will further introduce linear frequency modulation(LFM)in the pulse compression results,causing displacement and energy diffusion in the one-dimension range profile.Because the coupled velocities of scattering points differ in the plasma sheath,certain regions of the ISAR image will be distorted and defocused to some extent in the range dimension.By estimating the coupled velocity,we propose a compensation method to correct the range dimension aberration.The simulation results and two measurement metrics have verified the effectiveness of our proposed method.

    The remainder of this paper is organized as follows.Section 2 introduces the reflection coefficient of the plasma sheath and the reflection depths with different electron densities.Section 3 deduces the echo model of the plasma sheath and discusses the formation mechanism of displacement and energy diffusion in the range dimension.Section 4 proposes the compensation method.Section 5 simulates the results of ISAR imaging using the compensation method,and evaluates the improvement effect.Section 6 summarizes the conclusions of this paper.

    2.Reflection coefficient and reflection depth of plasma sheath

    The plasma is an ionized medium that can absorb,attenuate and reflect EM waves.Functioning as the most important parameter of plasma,the reflection characteristics of plasma primarily correlate with the electron density[15].Currently,the most commonly used method to analyze the parameters of the plasma sheath is numerical simulation of computational fluid dynamics(CFD)[16,17].In this work,we adopt the simulation data from the CFD of RAM-C II to establish the blunt cone model[18,19].In the study of the RAM-C II project,the altitude of the reentry object ranges from 20 to 80 km.At high altitude,the air density and temperature are lower,so the plasma has lower electron density,and can be penetrated by the EM wave.At low altitude,the air density and temperature are higher,so the plasma has a higher electron density that is difficult for the EM wave to penetrate through.In this study,we choose the reentry object with different velocities at the altitude of 50 km,which is an intermediate transition state.The reentry object at 50 km altitude has the plasma characteristics of both low electron density and high electron density when the velocity is changed.For the application scenario of analyzing the displacement and energy diffusion caused by the coupled velocity of the plasma sheath,50 km is a typical value.

    Figure 1(a)shows the electron density distributions of the plasma sheath enveloping the surface of a blunt cone reentry object with 15 Mach velocity and 50 km altitude.It can be seen that the electron density varies by several orders of magnitude at different positions and depths of the plasma sheath,ranging from 1 × 1017to 1 × 1020m-3.Furthermore,along the surface of the reentry object,the closer to the stagnation point,the higher the electron density.Along the vertical direction of the surface,a higher electron density appears closer to the surface.According to the research of the RAM-C II project,a non-uniform plasma sheath can be generally stratified into a model of evenly distributed plasma with multiple layers,and the multiple-layered model of plasma has been adopted in several related studies[12,13,20].Figure 1(b)is a schematic diagram showing the uniform plasma sheath withNlayers at the local part of the spacecraft surface.

    Figure 1.Electron density distribution(a)and stratification model(b)of the plasma sheath.

    Figure 2.Schematic diagram of transmission line method.

    Figure 3.Amplitude of reflection coefficient with different depths where the peak electron density varies from 1 × 1017to 1 × 10 20 m-3.

    Figure 4.Relative velocity distribution and schematic diagram of the coupled velocities of scattering points.

    Figure 5.Flowchart of the compensation method.

    The propagation characteristics of EM waves in the plasma sheath are similar to those of EM waves in a lossy microwave transmission line,and can be written as a cascade of impedance of different characteristic waves.The reflection coefficient of the stratified plasma sheath can be calculated by the transmission line method(TLM)[21,22].A schematic diagram of the TLM is presented in figure 2.With respect to thenth layer plasma,we have

    whereknandZnare the propagation constant and the effective impedance of the plasma,fis the frequency of the incident wave,μ0is the vacuum permeability,andneis the complex permittivity of thenth layer.necan be expressed as

    whereeis the unit charge,meis the electron mass,0eis the vacuum permittivity,Veis the collision frequency correlating with the temperature and pressure of the plasma,andNe,nis the electron density of thenth layer.

    Supposing thatnθis the incident angle of thenth layer,the transmission matrix of thenth layer plasma sheath can be expressed as

    When EM waves penetrate through the plasma sheath,the reflection comes from both the plasma sheath and the reentry object surface.For ease of calculation,we presuppose that the surface is made of metal.Then the reflection coefficient of the plasma-sheath-enveloped surface can be obtained using the following equation:

    When the frequency of the incident EM waves is lower than the plasma frequency,the EM waves will be attenuated and cannot penetrate through the plasma[13].Considering that the electron density distribution of the plasma has a double-Gaussian layered structure on the surface of the highspeed target[20],the outer layer electron densities of the plasma are low,so the EM wave can penetrate through them.As the incident depth increases,the inner layer electron densities become higher.When the plasma frequency of thenth layer is greater than the incident wave frequency,the incident depth of the EM wave cannot increase at the position of thenth layer,and the position of thenth layer is the incident depth of the EM wave.When the thickness of thenth layer is low,the actual incident depth can be deeper.

    Through analyzing the electron density distribution of the plasma sheath on the surface of a blunt cone reentry object and calculating the reflection coefficient,we conclude that the radar wave cannot penetrate through the high-electron-density area of the plasma sheath and can be totally reflected at a certain depth.For areas with low electron density,the radar wave can penetrate through the plasma sheath and be reflected by the surface of the reentry object.

    3.Echo model of plasma sheath and mechanism of ISAR defocus

    Under the influence of the viscous resistance of the air and reentry object surface,the flow field of plasma has relative flow with the surface.The flow field at different depths has different flow velocities,and the velocity exhibits the characteristics of spatial three-dimensional gradient distribution,where the different colors shown in figure 4(a)denote the relative velocity between the plasma sheath and the blunt cone reentry object with 15 Mach velocity and 50 km altitude.The closer to the surface of the reentry object,the lower the relative velocity.

    Supposing the relative velocity of thekth scattering point at a certain depth in the plasma sheath isu k,and the moving velocity of the reentry object isv,then the moving velocity of thekth scattering point can be written as

    After performing inverse Fourier transform,the onedimensional range profile of the plasma sheath echoes can be expressed as

    4.Compensation method in range dimension

    The coupled velocity of the scattering points is the main cause of pulse compression mismatching.Because of the coupled velocity,the linear term is changed and the quadratic term in the pulse compression result cannot be eliminated in equation(17)when processing the matched filtering,which further causes displacement and energy diffusion in the range dimension of the ISAR image.Therefore,it is necessary to reconstruct a modified matched filter to correct the linear term and to eliminate the quadratic term.The modified matched filter can be expressed as

    Then,by conducting pulse compression to equation(15)using the modified matched filter,we obtain

    After performing inverse Fourier transform,the onedimensional range profile of the plasma sheath echoes processed can be expressed as

    Step 4.Perform FRFT with respect to the pulse compression data to obtain the result in the frequency domain,from which the rotation angle and the frequency-domain data corresponding to the maximum peak are extracted.Obtain the coupling velocity of the strongest scattering point by its linear frequency modulation.The one-dimensional range profile of the strongest scattering point in the time domain can be filtered by inverse FRFT transform.In this way,every scattering point can be filtered,and the compensated onedimensional range profile can be obtained respectively.Then translational motion compensation(TMC)is used to realize envelope alignment and phase focus[24],and we can obtain the focused ISAR image by using the range-Doppler(RD)imaging algorithm[25,26].

    The flowchart of the compensation method is shown in figure 5.

    5.Simulation

    In order to evaluate the improvement effect of our proposed method,we simulate the displacement and energy diffusion in the one-dimensional range profile using both the traditionally matched filtering and the modified matched filtering methods.Using the CFD’s flow-field simulation data of the RAM-C II,we simulate the defocus phenomenon and the results of the compensation method in the one-dimensional range profile and in the two-dimensional ISAR image,respectively.The effectiveness of the proposed method is verified by the peak signal-to-noise ratio(PSNR)and structural simulation index method(SSIM).

    5.1.Simulation results of displacement and energy diffusion at different velocities

    In general,the velocity of the reentry object ranges from 10 to 30 Mach.Considering the relative velocity between the plasma sheath and the reentry object,the coupled velocity of the plasma sheath is less than or equal to that of the reentry object.Supposing that the altitude of the object is 50 km,the carrier frequency is 10 GHz,and the velocity of reentry object is 25 Mach,the displacement and energy diffusion with different bandwidths and pulse widths can be calculated by equations(19)and(21).The results are shown in figure 6.The increase in bandwidth will weaken the displacement in range dimension,and the increase in pulse width will exacerbate the displacement and energy diffusion.

    In order to simulate the effect of our proposed method,the pulse width is set at 100 μs and the bandwidth is set at 1 GHz,which are the typical parameters for an ISAR system.We calculate the displacement and energy diffusion at different coupled velocities using both the traditional and the modified pulse compression processing methods.The simulation results are shown in figure 7.We select three coupled velocity estimation errors(CVEEs),which are 1%,5% and 10%,respectively,to calculate the improvement under different conditions.The error of estimated echo delay has been considered.Figure 7(a)shows the displacement caused by the coupled velocity.The higher the coupled velocity,the greater the displacement.The proposed method significantly reduces the displacement in the one-dimensional range profile,outperforming the effect of the traditional method.The increase in CVEE slightly enlarges the displacement.In figure 7(b),the proposed method almost eliminates the effect of energy diffusion,whereas the result of the traditional method exhibits apparent energy diffusion.The deterioration caused by CVEE does not exceed the resolution cell.

    Figure 6.Displacement and energy diffusion with different bandwidths and pulse widths.

    Figure 7.Displacement and energy diffusion at different coupled velocities using the traditional and the proposed method.

    The displacement and energy diffusion of the scattering point in the range dimension caused by the plasma sheath can be calculated using equations(19)and(21).We can obtain the range resolution by the bandwidth.Combining with the analysis results in figure 7,the correction error caused by CVEE can be obtained,which are converted to the number of range cells.For a 15 Mach target,the displacement number is one range cell.For a 20 Mach target,the displacement is two range cells,and for a 25 Mach target,it is six range cells.The energy diffusion is less than one range cell for these three different velocities.

    5.2.Simulation results of the compensation method for onedimensional range profile

    We select three scattering points with typical coupled velocities to conduct the simulation and to verify the effectiveness of our proposed compensation method.The distance between the scattering points in range dimension is 2.5 m.The modulation type of the radar signal is LFM.The pulse width is 100 μs,the bandwidth is 1 GHz,and the signal-to-noise ratio(SNR)of the echo is ?15 dB.Figure 8 shows the onedimensional range profiles of three scattering points,which are obtained using the traditional method and the compensation method,respectively.The black line in figure 8 represents the reference one-dimensional range profile of the three scattering points without considering the plasma.The blue line represents the one-dimensional range profile of the three scattering points in plasma.The coupled velocities of the three scattering points are set as 5,15 and 25 Mach,respectively,which are within the velocity range of the reentry object[5].Figure 8(a)demonstrates the result obtained using the traditional method,which is calculated using equation(17).The three scattering points have the problem of displacement and energy diffusion in the one-dimensional range profile,to which higher coupled velocity implies greater displacement and diffusion.Figures 8(b)–(d)represent the results using the compensation method with the three estimated velocities.It can be observed that each estimated velocity can compensate for the scattering points of the corresponding velocity to the reference position after eliminating its energy diffusion.Figure 8(e)shows the filtered and merged results of the focused scattering points,in which the displacement and energy diffusion of these scattering points are corrected.Figures 8(e)and(f)show the focused results when the SNR is ?20 dB and ?25 dB.It can be found that our compensation method performs well in low-SNR scenarios.

    5.3.Simulation results of the compensation method for ISAR imaging

    In this subsection,we analyze the simulation results of ISAR imaging,which are obtained using the compensation method.The pulse repetition frequency is 1 kHz and the SNR of the echo is ?20 dB.We select nine regions on the surface of the blunt cone model from the CFD’s flow-field simulation data from RAM-C II,which is shown in figure 9.These nine regions include the stagnation point,the middle part and the tail of the reentry object.

    We simulate the flight state of the reentry object in three typical scenarios,in which the velocities of the object are set as 15,20 and 25 Mach,respectively.The flight altitude is set as 50 km and the observing angle of the radar is 15°.The amplitudeAkand the phase shiftkφcaused by the plasma can be calculated by equations(6)and(7).The peak electron densityNe,the coupled velocityand other parameters originate from the CFD flow-field simulation data of RAM-C II[18,19].According to the amplitudes of the reflection coefficient at different depths,the depth of the scattering point can be obtained by finding the position of maximum amplitude along the thickness direction.The plasma flow-field data covering the nine regions of the surface are listed in tables 1–3,respectively.The fluctuation range of electron density is usually several orders of magnitude,and the variation range is much greater than the collision frequency.Although both the electron density and collision frequency are closely correlated with the plasma characteristics,the characteristic difference caused by the wider variation range of electron density is much greater than that caused by the collision frequency.The use of fixed collision frequency does not affect the final analysis results.For ease of calculation,we adopt a fixed collision frequency of 1 GHz as the parameter of plasma.

    As can be seen from the data in the tables,when the velocities of the reentry object are 15 and 20 Mach,the electron density at the tail of the object is lower,and the radar wave can penetrate through the plasma sheath.The scattering points of these regions are distributed on the surface of the object,and their coupled velocities are identical to the velocity of the reentry object,as shown by the 4th to 7th regions in table 1 and by the 5th to 6th regions in table 2.

    Figure 10(a)shows the normal ISAR image of the reentry object as the reference image.Figures 10(b)–(d)are the ISAR images of the plasma-sheath-enveloped reentry object with the velocities of 15,20 and 25 Mach,respectively,which are obtained using the traditional processing methods.The radar wave penetrates through the plasma sheath at the tail of the object with velocities of 15 and 20 Mach.Therefore,the most serious displacement occurs at the tail of the object due to the maximum coupled velocity,as shown in figures 10(b)and(c).Meanwhile,for the regions where EM waves cannot penetrate,the displacement of scattering points is weak,because their coupled velocities are lower than the velocity of the reentry object.This suggests that the higher the coupled velocity,the more serious the displacement.

    Figure 8.One-dimensional range profiles of three scattering points corrected using the compensation method.

    Figure 9.Schematic diagram of the reentry object.

    Table 1.Parameters of plasma sheath covering the nine regions with velocity of 15 Mach.

    Table 2.Parameters of plasma sheath covering the nine regions with velocity of 20 Mach.

    Table 3.Parameters of plasma sheath covering the nine regions with velocity of 25 Mach.

    We use FRFT to obtain the evaluated chirp rateμ?kto calculate the estimated velocity ?vk.The results are shown in table 4.

    Figures 11(a)–(c)show the results of ISAR images processed by the compensation method with the velocities of 15,20 and 25 Mach,respectively.The problems of displacement and energy diffusion of the scattering points are effectively corrected.The compensation of displacement corrects the image distortion,and the energy focusing improves the SNR.The ISAR images of the reentry object at the three velocities are well focused.

    Figure 10.The obtained ISAR images of the reentry object by traditional method.

    Figure 11.ISAR images of reentry object processed by the compensation method.

    In order to evaluate the improvement on ISAR imaging,the PSNR and the SSIM[27]are used to represent the improvement effect of the proposed method.The values of PSNR and the SSIM results are listed in table 5,suggesting that the quality of ISAR imaging is significantly improved.

    Table 4.Results of parameter estimation by FRFT.

    6.Conclusions

    Table 5.Evaluation results of ISAR image using traditional method and proposed method.

    With respect to plasma-sheath-enveloped reentry objects,this paper analyzes the scattering characteristics and the coupled velocities of the scattering points in the plasma sheath,from which the radar echo model of the plasma sheath is obtained.The coupled velocity will introduce LFM into pulse compression results,causing the displacement and energy diffusion,which further results in ISAR image defocus in the range dimension.By estimating the LFM parameters using FRFT,we can calculate the coupled velocity of the scattering points inversely.Based on the estimated coupled velocities,we propose a compensation method by reconstructing a modified matched filter to correct the displacement and energy diffusion in the onedimensional range profile.The simulation results have validated the effectiveness of our proposed method,laying the theoretical foundation for the ISAR imaging of plasmasheath-covered reentry objects.

    Although this work analyzes the influence of the plasma sheath in the range dimension of ISAR images,the influence of the azimuth dimension is not considered.This will be the focus of our future research.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(No.61971330).

    ORCID iDs

    猜你喜歡
    李小平石磊博文
    Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
    Wideband radar cross-section reduction using plasma-based checkerboard metasurface
    Adaptive protograph-based BICM-ID relying on the RJ-MCMC algorithm: a reliable and efficient transmission solution for plasma sheath channels
    第一次掙錢
    PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT*
    Research on the method of dual-frequency microwave diagnosis of plasma for solving phase integer ambiguity
    Effects of pulsed magnetic field on density reduction of high flow velocity plasma sheath
    柳公權戒驕成名
    誰和誰好
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    av网站免费在线观看视频| 精品国产乱码久久久久久男人| 欧美午夜高清在线| 国产免费av片在线观看野外av| 国产蜜桃级精品一区二区三区 | 美女 人体艺术 gogo| 满18在线观看网站| 欧美日韩乱码在线| videosex国产| 人人妻人人爽人人添夜夜欢视频| 亚洲久久久国产精品| 人妻 亚洲 视频| 少妇被粗大的猛进出69影院| 啦啦啦免费观看视频1| 亚洲第一av免费看| 精品亚洲成a人片在线观看| 99国产极品粉嫩在线观看| videos熟女内射| 午夜福利欧美成人| 两个人免费观看高清视频| a级片在线免费高清观看视频| 91精品三级在线观看| 视频区欧美日本亚洲| 精品国产一区二区三区久久久樱花| 十八禁网站免费在线| 日本欧美视频一区| 午夜视频精品福利| 在线观看免费视频日本深夜| 丝袜在线中文字幕| 亚洲精品中文字幕在线视频| 亚洲全国av大片| videos熟女内射| 99re在线观看精品视频| 午夜免费成人在线视频| 午夜福利视频在线观看免费| 成年动漫av网址| 国产91精品成人一区二区三区| 中文字幕人妻丝袜一区二区| 视频区欧美日本亚洲| 久久精品国产亚洲av高清一级| 免费人成视频x8x8入口观看| 亚洲久久久国产精品| 精品一区二区三区av网在线观看| 十分钟在线观看高清视频www| 高清毛片免费观看视频网站 | 久久久久国内视频| 国产成人精品无人区| а√天堂www在线а√下载 | 久久精品亚洲精品国产色婷小说| 欧美国产精品va在线观看不卡| 欧美国产精品va在线观看不卡| 欧美日韩精品网址| 亚洲中文字幕日韩| 精品国产亚洲在线| 国产精品久久久久久精品古装| 欧美日韩亚洲高清精品| 国产男靠女视频免费网站| 久久精品熟女亚洲av麻豆精品| 久久精品熟女亚洲av麻豆精品| 国产免费av片在线观看野外av| 精品乱码久久久久久99久播| 五月开心婷婷网| 少妇裸体淫交视频免费看高清 | 搡老乐熟女国产| 久久影院123| 黄色毛片三级朝国网站| 高清欧美精品videossex| 国产精品一区二区精品视频观看| 激情视频va一区二区三区| 12—13女人毛片做爰片一| 日韩制服丝袜自拍偷拍| 亚洲国产看品久久| 日本黄色日本黄色录像| 一个人免费在线观看的高清视频| 天天添夜夜摸| 一夜夜www| 日韩大码丰满熟妇| 久久这里只有精品19| xxxhd国产人妻xxx| netflix在线观看网站| 97人妻天天添夜夜摸| 国产高清视频在线播放一区| 亚洲国产毛片av蜜桃av| 热99久久久久精品小说推荐| 女人久久www免费人成看片| 久久香蕉国产精品| 国产精品av久久久久免费| 亚洲精品自拍成人| 欧美色视频一区免费| 99热网站在线观看| 制服人妻中文乱码| 怎么达到女性高潮| 9191精品国产免费久久| 在线十欧美十亚洲十日本专区| 美女国产高潮福利片在线看| 亚洲精品中文字幕在线视频| 婷婷精品国产亚洲av在线 | 日本vs欧美在线观看视频| 色综合欧美亚洲国产小说| 免费观看精品视频网站| 黑人操中国人逼视频| 欧美日韩av久久| 激情视频va一区二区三区| 亚洲伊人色综图| 午夜福利欧美成人| 男女床上黄色一级片免费看| 午夜福利在线免费观看网站| 在线看a的网站| 久9热在线精品视频| 两人在一起打扑克的视频| 国产高清videossex| 亚洲成人手机| 国产精品亚洲一级av第二区| 免费看a级黄色片| 久久天堂一区二区三区四区| 国产男女超爽视频在线观看| 丝袜人妻中文字幕| 久久久久久亚洲精品国产蜜桃av| 最新美女视频免费是黄的| 亚洲一区二区三区不卡视频| 亚洲三区欧美一区| 天天躁狠狠躁夜夜躁狠狠躁| 一二三四社区在线视频社区8| 久久久水蜜桃国产精品网| 免费在线观看完整版高清| 深夜精品福利| 日本精品一区二区三区蜜桃| 丝袜美腿诱惑在线| 嫁个100分男人电影在线观看| av片东京热男人的天堂| 黄色丝袜av网址大全| 亚洲国产欧美网| 一边摸一边做爽爽视频免费| 国产精品久久久av美女十八| 一本一本久久a久久精品综合妖精| 中文字幕人妻丝袜制服| 十八禁人妻一区二区| 久久精品国产99精品国产亚洲性色 | 超色免费av| 91麻豆av在线| 亚洲精品久久午夜乱码| 亚洲午夜精品一区,二区,三区| 欧美 日韩 精品 国产| 午夜福利欧美成人| 91精品三级在线观看| 色精品久久人妻99蜜桃| 99热网站在线观看| 淫妇啪啪啪对白视频| 日韩免费高清中文字幕av| 久久久久久免费高清国产稀缺| 亚洲欧美色中文字幕在线| 在线天堂中文资源库| 欧美精品人与动牲交sv欧美| 老司机午夜十八禁免费视频| 法律面前人人平等表现在哪些方面| 啦啦啦视频在线资源免费观看| 久久国产精品影院| 精品亚洲成国产av| www.999成人在线观看| 夜夜爽天天搞| 亚洲一区高清亚洲精品| xxxhd国产人妻xxx| 777久久人妻少妇嫩草av网站| 日韩制服丝袜自拍偷拍| 人人妻人人爽人人添夜夜欢视频| 大型av网站在线播放| 日韩有码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 成人永久免费在线观看视频| 不卡一级毛片| 国产高清激情床上av| 丝袜美腿诱惑在线| 波多野结衣一区麻豆| 亚洲欧洲精品一区二区精品久久久| 91九色精品人成在线观看| 婷婷成人精品国产| 一区二区日韩欧美中文字幕| 丝袜美腿诱惑在线| 一区在线观看完整版| 欧美成人免费av一区二区三区 | 999精品在线视频| 亚洲精品久久成人aⅴ小说| 99精国产麻豆久久婷婷| 丝袜人妻中文字幕| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区av网在线观看| 老熟妇乱子伦视频在线观看| 伊人久久大香线蕉亚洲五| 美女高潮喷水抽搐中文字幕| 超碰97精品在线观看| 天天影视国产精品| 女人久久www免费人成看片| 男人的好看免费观看在线视频 | 黄色视频,在线免费观看| 夜夜爽天天搞| 很黄的视频免费| av国产精品久久久久影院| 一级a爱视频在线免费观看| 亚洲美女黄片视频| 黄色视频不卡| 中文欧美无线码| 欧美国产精品一级二级三级| 亚洲一区二区三区不卡视频| 久久久久久人人人人人| 91麻豆精品激情在线观看国产 | 99国产综合亚洲精品| 香蕉国产在线看| 久久热在线av| 水蜜桃什么品种好| 在线观看一区二区三区激情| 日韩三级视频一区二区三区| 国产精华一区二区三区| √禁漫天堂资源中文www| 欧美 亚洲 国产 日韩一| 黄色 视频免费看| 丰满的人妻完整版| 亚洲av日韩在线播放| 首页视频小说图片口味搜索| 黄色怎么调成土黄色| 国产视频一区二区在线看| 精品国产一区二区三区四区第35| 国产精品自产拍在线观看55亚洲 | 国产亚洲av高清不卡| 久久亚洲精品不卡| 91av网站免费观看| 黄色片一级片一级黄色片| 91老司机精品| 国产亚洲一区二区精品| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区91| 99热网站在线观看| 色播在线永久视频| 欧美日韩亚洲高清精品| 欧美激情 高清一区二区三区| 国产成人精品在线电影| 视频区图区小说| 亚洲国产中文字幕在线视频| 50天的宝宝边吃奶边哭怎么回事| 9191精品国产免费久久| 日韩免费高清中文字幕av| 男女午夜视频在线观看| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| 久久香蕉国产精品| 99精品久久久久人妻精品| 日日夜夜操网爽| 日韩免费av在线播放| 日韩三级视频一区二区三区| 国产欧美日韩一区二区精品| 国产片内射在线| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区四区第35| 久久久久久久精品吃奶| 成熟少妇高潮喷水视频| 久久精品亚洲熟妇少妇任你| 亚洲欧美色中文字幕在线| 丝袜美腿诱惑在线| 欧美日韩亚洲国产一区二区在线观看 | 99久久综合精品五月天人人| 亚洲国产欧美网| 午夜免费成人在线视频| 国产av精品麻豆| av片东京热男人的天堂| 亚洲av片天天在线观看| 十八禁高潮呻吟视频| 久久久久久久午夜电影 | 久久热在线av| 看黄色毛片网站| 亚洲精品在线观看二区| 日韩欧美免费精品| av网站在线播放免费| 在线十欧美十亚洲十日本专区| 国产一区有黄有色的免费视频| 亚洲性夜色夜夜综合| 日本撒尿小便嘘嘘汇集6| 日日夜夜操网爽| ponron亚洲| 亚洲精品粉嫩美女一区| 日本一区二区免费在线视频| 日日爽夜夜爽网站| 久久久久久久国产电影| 免费高清在线观看日韩| 免费不卡黄色视频| 亚洲欧美一区二区三区久久| 久久人人97超碰香蕉20202| 国产精品自产拍在线观看55亚洲 | www.自偷自拍.com| 国产精品一区二区在线观看99| 99热网站在线观看| 欧美国产精品va在线观看不卡| 久久精品熟女亚洲av麻豆精品| 夜夜爽天天搞| 91大片在线观看| 日本黄色视频三级网站网址 | 国产精品一区二区在线不卡| 国产精品亚洲一级av第二区| 午夜福利,免费看| 国产欧美日韩一区二区精品| 久久 成人 亚洲| 最近最新中文字幕大全电影3 | 色播在线永久视频| 日韩免费av在线播放| 国产av精品麻豆| tocl精华| 亚洲情色 制服丝袜| 亚洲成人免费电影在线观看| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 亚洲色图综合在线观看| 午夜影院日韩av| 18禁美女被吸乳视频| 校园春色视频在线观看| 又黄又爽又免费观看的视频| 国产不卡一卡二| 午夜福利在线观看吧| 最近最新中文字幕大全电影3 | 精品高清国产在线一区| 99国产极品粉嫩在线观看| 午夜亚洲福利在线播放| 国产精品 欧美亚洲| 亚洲三区欧美一区| 国产精品九九99| 99久久精品国产亚洲精品| 亚洲国产精品合色在线| 少妇被粗大的猛进出69影院| 欧美乱妇无乱码| 男男h啪啪无遮挡| 国产一区有黄有色的免费视频| 电影成人av| 50天的宝宝边吃奶边哭怎么回事| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花| 99久久综合精品五月天人人| 又紧又爽又黄一区二区| 天堂动漫精品| 日本一区二区免费在线视频| 91在线观看av| 国产淫语在线视频| 交换朋友夫妻互换小说| 久久国产精品人妻蜜桃| 午夜两性在线视频| 国产免费现黄频在线看| 成人国语在线视频| 欧美精品啪啪一区二区三区| av欧美777| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩高清在线视频| 欧美+亚洲+日韩+国产| 国产av精品麻豆| 高清av免费在线| 国产99白浆流出| 99国产综合亚洲精品| 日韩欧美在线二视频 | 欧美亚洲 丝袜 人妻 在线| 看片在线看免费视频| 久久狼人影院| 国产精品成人在线| 一级毛片精品| 国产精品久久久av美女十八| 欧美精品人与动牲交sv欧美| 亚洲在线自拍视频| 亚洲 国产 在线| 亚洲av日韩在线播放| 制服人妻中文乱码| 91字幕亚洲| 亚洲av熟女| 亚洲精品国产色婷婷电影| 成人av一区二区三区在线看| 久久中文字幕人妻熟女| www.熟女人妻精品国产| 亚洲精品中文字幕在线视频| 欧美日韩乱码在线| 伦理电影免费视频| 亚洲 国产 在线| 亚洲国产欧美一区二区综合| 免费在线观看日本一区| 亚洲成人免费av在线播放| 最新的欧美精品一区二区| 亚洲午夜理论影院| 国产精品久久久人人做人人爽| 国产熟女午夜一区二区三区| 老司机深夜福利视频在线观看| 国产精品免费一区二区三区在线 | 91精品国产国语对白视频| 免费少妇av软件| 久久香蕉激情| 女性被躁到高潮视频| 亚洲精品美女久久av网站| 欧美成人免费av一区二区三区 | a级片在线免费高清观看视频| 国产精品美女特级片免费视频播放器 | 欧美日韩国产mv在线观看视频| 欧美黑人精品巨大| tocl精华| 热99国产精品久久久久久7| 亚洲成av片中文字幕在线观看| aaaaa片日本免费| 午夜两性在线视频| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 丝瓜视频免费看黄片| 久久天躁狠狠躁夜夜2o2o| 国产99久久九九免费精品| 国产淫语在线视频| 在线观看免费午夜福利视频| 美女国产高潮福利片在线看| 日韩三级视频一区二区三区| 熟女少妇亚洲综合色aaa.| 久久人人97超碰香蕉20202| 十八禁人妻一区二区| 91在线观看av| 午夜福利,免费看| 成年女人毛片免费观看观看9 | 亚洲第一青青草原| 少妇的丰满在线观看| 国产一区二区三区视频了| 国产成人精品无人区| 亚洲 欧美一区二区三区| 久久狼人影院| 精品一区二区三区四区五区乱码| 国产精品98久久久久久宅男小说| 久久国产精品大桥未久av| 久久午夜综合久久蜜桃| 免费看a级黄色片| 午夜精品在线福利| 岛国在线观看网站| 岛国毛片在线播放| svipshipincom国产片| 99国产极品粉嫩在线观看| 一级,二级,三级黄色视频| 久久精品国产综合久久久| 中文字幕人妻丝袜一区二区| 一级片'在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 丝袜人妻中文字幕| 亚洲欧美日韩高清在线视频| 欧美在线黄色| 午夜老司机福利片| 国产亚洲一区二区精品| 欧美激情高清一区二区三区| 国产欧美日韩综合在线一区二区| 国产高清videossex| av天堂在线播放| 久久九九热精品免费| 美女国产高潮福利片在线看| videosex国产| 人人澡人人妻人| 巨乳人妻的诱惑在线观看| 国产麻豆69| 国产99白浆流出| 中亚洲国语对白在线视频| 又黄又粗又硬又大视频| 久久香蕉国产精品| 久久国产精品人妻蜜桃| 啦啦啦免费观看视频1| 极品人妻少妇av视频| 黄网站色视频无遮挡免费观看| 久久人妻熟女aⅴ| 一级毛片精品| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 成人国产一区最新在线观看| 亚洲人成电影观看| 亚洲一区中文字幕在线| 亚洲人成77777在线视频| 我的亚洲天堂| 日韩欧美一区二区三区在线观看 | 一区二区三区国产精品乱码| 亚洲,欧美精品.| 成人18禁在线播放| 丁香欧美五月| 日本vs欧美在线观看视频| 国产成人欧美| 久久精品成人免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品乱久久久久久| www.自偷自拍.com| 欧美精品一区二区免费开放| 国产精品98久久久久久宅男小说| 中文字幕人妻丝袜制服| 国产1区2区3区精品| 中文字幕人妻丝袜一区二区| 欧洲精品卡2卡3卡4卡5卡区| 日本欧美视频一区| 国产成人欧美在线观看 | 制服诱惑二区| 曰老女人黄片| 51午夜福利影视在线观看| 丝袜美足系列| 成年人免费黄色播放视频| 最新美女视频免费是黄的| av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频| 国产精品影院久久| 一级作爱视频免费观看| 久久久精品区二区三区| 国产成人影院久久av| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久久5区| 黑人操中国人逼视频| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美一区二区三区在线观看 | www日本在线高清视频| 国产成人精品在线电影| 成人精品一区二区免费| 啦啦啦 在线观看视频| 久久人人爽av亚洲精品天堂| 精品国产美女av久久久久小说| 亚洲国产中文字幕在线视频| 午夜福利欧美成人| 欧美丝袜亚洲另类 | 一二三四在线观看免费中文在| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 成在线人永久免费视频| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| 啦啦啦在线免费观看视频4| 91精品三级在线观看| 人人妻人人添人人爽欧美一区卜| 91麻豆精品激情在线观看国产 | 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 国产真人三级小视频在线观看| 狂野欧美激情性xxxx| 免费看a级黄色片| 在线av久久热| 波多野结衣av一区二区av| 在线av久久热| 天天影视国产精品| 777米奇影视久久| 在线观看一区二区三区激情| 久久久久视频综合| 国产日韩欧美亚洲二区| 99热网站在线观看| videos熟女内射| 狂野欧美激情性xxxx| 国产野战对白在线观看| 首页视频小说图片口味搜索| 午夜福利视频在线观看免费| 99久久综合精品五月天人人| 精品久久久久久,| 中出人妻视频一区二区| 国产xxxxx性猛交| av网站在线播放免费| 巨乳人妻的诱惑在线观看| 精品午夜福利视频在线观看一区| 巨乳人妻的诱惑在线观看| 色综合欧美亚洲国产小说| 啦啦啦免费观看视频1| 中出人妻视频一区二区| 久久狼人影院| www.熟女人妻精品国产| 他把我摸到了高潮在线观看| 欧美精品av麻豆av| 亚洲成人国产一区在线观看| 黑人欧美特级aaaaaa片| 在线免费观看的www视频| 脱女人内裤的视频| 国产亚洲欧美在线一区二区| 男男h啪啪无遮挡| 午夜福利在线免费观看网站| 日韩免费高清中文字幕av| а√天堂www在线а√下载 | 18禁美女被吸乳视频| 亚洲国产精品合色在线| 免费人成视频x8x8入口观看| 亚洲欧美精品综合一区二区三区| 这个男人来自地球电影免费观看| 午夜两性在线视频| 久久午夜亚洲精品久久| 三上悠亚av全集在线观看| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 欧美成人免费av一区二区三区 | a级毛片在线看网站| 亚洲三区欧美一区| 波多野结衣一区麻豆| 999久久久国产精品视频| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 成人18禁在线播放| 日本精品一区二区三区蜜桃| 亚洲色图综合在线观看| 国产一区二区三区在线臀色熟女 | 欧美在线黄色| 欧美另类亚洲清纯唯美| 热99久久久久精品小说推荐| 国产片内射在线| 国产精品国产av在线观看| 老司机午夜十八禁免费视频| 成年版毛片免费区| 捣出白浆h1v1| 国产高清国产精品国产三级| 国产不卡一卡二| 首页视频小说图片口味搜索| 午夜精品国产一区二区电影| 操出白浆在线播放| 悠悠久久av| 中文欧美无线码| 色老头精品视频在线观看| 日韩欧美三级三区| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 久久久久久久久久久久大奶| 欧美成人午夜精品| 欧美成狂野欧美在线观看| 韩国精品一区二区三区| 99久久综合精品五月天人人| 日韩欧美三级三区| 中文字幕高清在线视频|