• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discussion on the dimerization reaction of penicillin antibiotics

    2022-07-22 03:52:30QizhangWuXiaZhangJiaxinDuChangqinHu
    Journal of Pharmaceutical Analysis 2022年3期

    Qizhang Wu,Xia Zhang,Jiaxin Du,Changqin Hu,*

    National Institutes for Food and Drug Control,Beijing,102629,China

    ABSTRACT

    Penicillins are one type of the most important antibiotics used in the clinic.Control of drug impurity profiles is an important part of ensuring drug safety.This is particularly important in penicillins where polymerization can lead to polymers as elicitors of passive cutaneous anaphylaxis.The current understanding of penicillin polymerization is based on reactions with amino groups,but no comprehensive mechanistic understanding has been reported.Here,we used theoretical calculations and column switching-LC/MS techniques to study penicillin dimerization.Ampicillin and benzylpenicillin were selected as representative penicillins with or without amino groups in the side chain,respectively.We identified four pathways by which this may occur and the energy barrier graphs of each reaction process were given.For benzylpenicillin without an amino group in the 6-side chain,dimerization mode A is the dominant mode,where the 2-carboxyl group of one molecule reacts with the β-lactam of another molecule.However,ampicillin with an amino group in the 6-side chain favors dimerization mode C,where the amino group of one molecule attacks the β-lactam of another molecule.These findings can lead to a polymer control approach to maintaining penicillin antibiotics in an active formulation.

    Keywords:

    Penicillins

    Dimerization reaction

    Theoretical calculations

    LC/MS

    Peer review under responsibility of Xi'an Jiaotong University.

    1.Introduction

    Penicillin and its analogues are the earliest and still most widely-used antibiotics in humans,but penicillins can polymerize in aqueous solution,and their polymers have long been recognized to elicit passive cutaneous anaphylaxis[1-3].Current understanding of the structure and polymerization characteristics of the polymers is based on penicillins with amino groups in the side chain such as ampicillin and amoxicillin[4-7].The polymerization mechanism is hypothesized to be where the amino group of one molecule attacks the carbonyl of the β-lactam ring of the other[4,5];thus,the amino is considered to be the key group in the formation of polymers.

    The structures of dimer and trimer of ampicillin and amoxicillin have been reported in European Pharmacopoeia(EP 8.0)[8]and United States Pharmacopoeia(USP 37/NF32)[9],which also provide the reference standards of these polymers.EP 8.0 and USP 37/NF32 also contain some heterodimers whereby an amide bond,i.e.,the dimer between the amino group of 6-aminopenicillanic acid(6-APA)and the carboxyl group of oxacillin in the monograph of oxacillin sodium,and the dimer between the amino group of ampicillin and the carboxyl group of piperacillin in the monograph of piperacillin sodium(Fig.1).The linking sites of these polymers reported in pharmacopeias are related to either amino or carboxyl groups of the chemical molecules.

    However,the polymerization mechanisms and polymer structures of penicillins without amino groups like benzylpenicillin have not yet been reported.Raj et al.[10]discussed the degradation reaction of dicloxacillin and stated that formic acid attacks the βlactam ring to obtain N-acetyl dicloxacilloic acid.According to this opinion,dimerization can possibly occur if the carboxyl group in one penicillin molecule attacks the β-lactam ring of another molecule in the similar way.Thus,we expand on this concept in this paper and explore the possible dimerization of penicillins both with and without amino groups in the C-6 side chain.

    Ampicillin and benzylpenicillin were selected as representative penicillins with or without amino groups in the side chain,respectively,in this paper.Four possible dimerization pathways of penicillin antibiotics were proposed according to the summarization of previous reported research and evaluated in the work below:1)the reaction of a carboxyl group with the β-lactam ring,2)the reaction of a carboxyl group from an open ring product of the β-lactam ring with the β-lactam ring,3)the reaction of an amino group with the β-lactam ring,and 4)the reaction of an amino group with a carboxyl group(Fig.2).The last two pathways can only exist in penicillin antibiotics with amino groups in the C-6 side chain.

    Fig.1.The structures of penicillin polymers reported in pharmacopoeia.(A and B)Ampicillin and amoxicillin polymers.(C and D)Oxacillin polymers.(E)Piperacillin polymers.

    The possible mechanisms for the above different reactions were discussed through theoretical calculation in this paper.The theoretical study on reaction mechanism started in the 1980s,which simulates the chemical reaction using theoretical calculation[11].With the rapid development of computer science,quantum chemical calculation has become an important means to complement experimental technology.In this paper,the various reaction paths of dimerization were simulated via computational chemistry,and the reaction mechanism was verified to identify the dominant dimerization reaction.Density Functional Theory(DFT)on the level of B3LYP/6-311 G(d,p)calculations was used to study all the polymerization reaction mechanisms by Gaussian 09,and the reactants,the transition state and the product were optimized.In addition,the theoretical results were verified by liquid chromatograph-mass spectrometry(LC-MS)analysis via the detection of accelerated polymerization samples and actual samples.This research shows that the dimer impurities in real samples of penicillin antibiotics can be accurately and effectively controlled.

    2.Experimental

    2.1.Materials

    Benzylpenicillin and ampicillin reference standards(RS)were provided by the National Institute for Food and Drug Control(NIFDC)of the People's Republic of China.

    Benzylpenicillin sodium for injection(Pen)was from Lukang Pharmaceutical Co.,Ltd.,China(batch number 1011903008-1)and Reyoung Pharmaceutical Co.,Ltd.,China(batch number 19010501).Ampicillin sodium for injection(Amp)was provided by North China Pharmaceutical Group Co.,Ltd.,China(batch number 0701701),and Reyoung Pharmaceutical Co.,Ltd.,China(batch number 17082001).

    Acetonitrile and methanol were of HPLC grade,and all other reagents were of analytical grade and came from different commercial suppliers.

    2.2.Sample preparations

    2.2.1.Preparation of polymerized samples

    Stock solutions of polymerized samples were prepared by leaving 10 mL of 100 mg/mL water solution of Pen for 15 days and Amp for 10 days at room temperature,respectively.An aliquot of 1.0 mL of each was then taken and diluted to 50 mL prior to the HPLC analysis.

    2.2.2.Preparation of real samples

    Stock solutions of 20 mg/mL Pen and 10 mg/mL Amp were prepared by dissolving the respective substance in water.

    2.3.Assay of dimers by HPLC-UV

    The equipment used consisted of a Shimadzu LC-20AT high performance liquid chromatography system(HPLC)with a DAD detector,Labsolutions workstation,and Shiseido Capcell C18MGII column(4.6 mm×250 mm,5μm).The chromatographic system is the same as that used for the related substance method of benzylpenicillin in Chinese Pharmacopoeia(2015 Edition)[12].Mobile phase A included phosphate buffer(10.6 g potassium dihydrogen phosphate in 1 L of water,pH was adjusted to 3.4 with phosphoric acid)and methanol(72:14).Mobile phase B was acetonitrile.Detection used a spectrophotometer at 225 nm,and the column temperature was 34°C.The injection volume was 20 μL.A stepwise gradient was applied at flow rate of 1.0 mL/min starting at 86.5%A:13.5%B,keeping this over 17 min,changing to 64%A:36%B over 24 min and keeping at this over 12 min and finally changing back to 86.5%A:13.5%B in 1 min and keeping for additional 11 min.

    2.4.Column switching-LC/MS analysis of dimers

    Column switching analysis was performed according to the literature[13].Two systems were used.One LC-MS system consisted of a Shiseido Nanospace S1-2 HPLC(Shimadzu,Kyoto,Japan),ThermoFisher PDA detector(ThermoFisher Scientific,Waltham,MA,USA),and AB SCIEX 3200Q LC/MS/MS mass spectrometer(Applied Biosystems,Foster City,CA,USA).The chromatography software used was EZChrom Elite software(Shimadzu,Kyoto,Japan),and the mass spectrometry software was Analyst 1.4.2 software(Applied Biosystems,Foster City,CA,USA).The other system was a Dionex Ultimate 3000 HPLC with a Thermo Scientific Q Exactive Focus mass spectrometry(ThermoFisher Scientific,Waltham,MA,USA).The chromatography software employed was Chromelon Xpress(ThermoFisher Scientific,Waltham,MA,USA),and the mass spectrometry software was Thermo Xcalibur(ThermoFisher Scientific,Waltham,MA,USA).

    The one-dimensional chromatographic system is described in Section 2.3.The column of the two-dimensional chromatography system was a Shiseido Capcell C18column (MGII;4.6 mm×150 mm,5μm).Mobile phase A was 0.5%(V/V)aqueous formic acid,while mobile phase B was a 0.5%(V/V)acetonitrile solution of formic acid.The column was at room temperature.A stepwise gradient for the two-dimensional chromatographic system was applied at the flow rate of 0.5 mL/min starting at 100%A:0%B,keeping this over tR(retention time of individual impurity)+5.5 min,changing to 0%A:100%B over 15 min and keeping at this to 65 min.

    Fig.2.Different dimerization pathways of penicillin antibiotics with and without amino groups in the C-6 side chain.(A)Benzylpenicillin dimerization pathway A.(B)Benzylpenicillin dimerization pathway B.(C)Ampicillin dimerization pathway C.(D)Ampicillin dimerization pathway D.

    The mass spectrometry parameters for benzylpenicillin included a ionization voltage of 4000 V,gasification temperature of 400°C,declustering potential(DP)of 28 V,collision energy(CE)of 33 V,and collision energy spread(CES)of 0 V.For ampicillin,the parameters were the ionization voltage of 5000 V,gasification temperature of 500°C,DP of 22 V,CE of 33 V,and CES of 0 V.

    2.5.Theoretical simulation of dimerization reactions

    The molecular structures from PubMed(https://www.ncbi.nlm.nih.gov/guide/chemicals-bioassays/)were the starting point of optimization,and the transition states of each reaction were searched using TS and QST2 methods in Gaussian software(Gaussian 09,Gaussian Inc.).At the B3LYP/6-311 G(d,p)level,the molecular geometric parameters and vibration frequencies of the reactants,transition states,intermediates,and products were all optimized[14-16].Meanwhile,the intrinsic reaction coordination(IRC)[17]algorithm identified the connection between the stable point and the transition state.The calculated energies in this study included zero-point energy corrections and the temperature when the calculations performed was 298.15 K.We then drew the energy barrier graph and calculated the activation energy of the reaction.Due to the large number of atoms in the calculated object,the solvent effect was not evaluated in order to simplify the calculation.

    3.Results and discussion

    3.1.Possible structure of the penicillin dimer

    Penicillins can be divided into compounds without free amino groups in C-6 side chains(benzylpenicillin and sulbenicillin)and compounds with a free amino group in the C-6 side chain such as ampicillin and amoxicillin.According to the possible dimerization mechanism of penicillins(Fig.2),the former can only dimerize via the reaction of a carboxyl group with the β-lactam ring.The possible dimer of benzylpenicillin may have dimer A(Pen-A,the product formed by the reaction between the 2-carboxyl group of one molecule and the β-lactam ring of another molecule).It may also have dimer B(Pen-B,the product formed by the reaction between the carboxyl group from the opened β-lactam ring of one penicilloic acid molecule and the β-lactam ring of another penicillin molecule)(Fig.3).

    Compounds with a free amino group in the 6-side chain may also be dimerized by reactions between side-chain amino groups and the β-lactam ring or carboxyl group.In the case of ampicillin,its dimer structure(Fig.3)may include dimer C(Amp-C,the product formed by the reaction between the side-chain amino group of one molecule and the β-lactam ring of another molecule)and dimer D(Amp-D,the product formed by the reaction between the side-chain amino group of one molecule and 2-carboxyl group of another molecule),in addition to dimer A(Amp-A)and dimer B(Amp-B).

    3.2.Theoretical simulations of the dimerization reaction

    The transition state is the first-order saddle point on the potential energy surface[18].The eigenvalue of the second-order derivative matrix of the transition state structure energy has only one negative value.Thus,the transition state only has one imaginary frequency.IRC calculations verified that the transition state connects the reactants and products through the minimum energy path at mass weight coordinates.

    3.2.1.Benzylpenicillin dimerization

    The reaction mechanism of the formation of dimer Pen-A(Fig.3A)is assumed as follows.The nucleophilic oxygen atom on the 2-carboxyl group of benzylpenicillin first attacks the carbonyl carbon of the β-lactam ring of another molecule accompanied by hydrogen transfer to form an intermediate.The carbon-oxygen bond is then broken,and the N on the tetrahydrothiazole ring is bonded to the exposed carbonyl carbon forming a dimerized product(Fig.2A).The entire reaction can be divided into two elementary reactions,and the corresponding transition state can be found by theoretical calculations.The dimerization reaction is endothermic.The energy barrier graph of the reaction process is shown in Fig.4A,suggesting that the second elementary reaction is the rate-limiting step.The energy barrier is 38.42 kcal/mol(setting the reactant energy as 0.00 kcal/mol).

    The reaction mechanism of the formation of dimer Pen-B(Fig.3B)is assumed as follows.First,the β-lactam ring in the benzylpenicillin molecule is ring-opened to form penicilloic acid.The newly formed carboxyl group then reacts with the β-lactam ring of another molecule to form dimer Pen-B(Fig.2B).The energy barrier graph of the reaction process is shown in Fig.4A.The energy barrier of the second elemental reaction is 46.43 kcal/mol,suggesting that dimer Pen-B is more difficult to form than dimer Pen-A.

    3.2.2.Ampicillin dimerization

    The formation mechanisms of dimer Amp-A(Fig.2C)and dimer Amp-B(Fig.2D)are the same as those of dimer Pen-A and dimer Pen-B;the energy change in the reaction process is shown in Fig.4B.The energy barriers of the rate-limiting steps are 37.58 kcal/mol and 66.77 kcal/mol,respectively.

    Fig.3.Possible structures of penicillin dimers:(A)Pen-A,(B)Pen-B,(C)Amp-A,(D)Amp-B,(E)Amp-C,and(F)Amp-D.

    Fig.4.Energy barrier graph of polymerization process.(A)Benzylpenicillin dimerization.(B)Ampicillin dimerization.

    The reaction mechanism of the formation of dimer Amp-C(Fig.3E)is assumed as follows.First,the amino group on the 6-side chain of ampicillin attacks the carbonyl carbon of the β-lactam ring of another molecule.The hydrogen on the amino group is transferred to the carbonyl oxygen to form an intermediate.The ring is then opened,and hydrogen is transferred to the nitrogen of the five-membered ring while the carbon-oxygen bond returns to a double bond(Fig.2C).The entire reaction can be divided into two elementary reactions,and the corresponding transition state can be found via theoretical calculations.The dimerization process is an exothermic reaction,which is thermodynamically beneficial to the reaction.Fig.4B indicates that the first step is the rate-limiting step with an energy barrier of 51.54 kcal/mol.

    The reaction mechanism of the formation of dimer Amp-D is assumed as follows.First,the amino group on the 6-side chain of ampicillin attacks the 2-carboxyl carbon of another molecule accompanied by hydrogen transfer to form an intermediate;water removal leads to an amide bond(Fig.2D).The entire reaction can be divided into two elementary reactions,and the corresponding transition state can be found by theoretical calculation.The dimerization reaction is endothermic,and the second step is the ratelimiting step with an energy barrier of 53.92 kcal/mol(Fig.4B).Upon comparing the mechanism and energy barrier of the four dimerization,the formation of dimers Amp-A and Amp-C is more favorable.

    3.3.Verification of theoretical calculation results by LC-MS analysis

    3.3.1.Analysis of dimers in benzylpenicillin

    The relative molecular masses of dimer Pen-A and dimer Pen-B are 668 and 686(Fig.3),respectively.The β-lactam ring is unstable,and the relative molecular mass of the ring-opened dimer Pen-A is 686.Those kinds of dimers were identified by LC-MS in the polymerized sample respectively.

    HPLC analysis of the benzylpenicillin polymerized sample(Fig.5A)showed that the retention time of benzylpenicillin was about 29 min.In reversed-phase chromatography systems,the retention time of benzylpenicillin dimers should be longer than that of benzylpenicillin.Column switching analysis was performed individually for impurities with retention time longer than that of benzylpenicillin.The MS analysis revealed that the relative molecular mass of peak 10 was 668(Fig.6A),and the main mass spectrometry fragments(m/z)at 476,623,505,551,and 651 conformed to the fragmental pattern of dimer Pen-A(Fig.6B).Therefore,peak 10 represents dimer Pen-A.

    The relative molecular mass of peak 4 is 686(Fig.7A),and the main mass spectrometry fragments(m/z)at 392,510,335,309,217,668,and 410 confirm the fragment pattern of dimer Pen-B(Fig.7B).In particular,fragment 410 is only produced by removing the fivemembered ring and breaking the amide bond of the side chain of dimer Pen-B.Therefore,this sample may represent dimer Pen-B.

    The relative molecular masses of peaks 1-3 and 5-9 are also 686(Fig.8A),and their mass fragmental patterns are nearly identical(Fig.S1).The main mass fragments(m/z)at 309,353,335,217,and 160 also agree with the fragmental pattern of the ring-opened dimer Pen-A(Fig.8B).Therefore,these eight impurities are all probably ring-opened products of dimer Pen-A because the 5 and 6 chiral sites of the penicillin β-lactam ring are likely to epimerize after ring opening.

    Attention to other impurity peaks in benzylpenicillin polymerized sample.Peak?is the maximum impurity peak after benzylpenicillin peak with a relative molecular mass of 527.The relative molecular masses of peaks?and?are both 663.The relative molecular mass of peak④is 644.These are not judged to be dimer impurities.From what has been discussed above,the chromatographic peaks 10 and 4 represent dimer Pen-A and Pen-B,respectively.Peaks 1-3 and 5-9 in Fig.5 belong to the ring-opened dimer Pen-A.Analysis of dimerized benzylpenicillin reveals that a variety of ring-opened products of dimer Pen-A isomers exist in the sample.These products suggest that benzylpenicillin dimerization pathway A is more likely to occur than dimerization pathway B,which is consistent with theoretical calculations.This might be because the β-lactam ring first hydrolyzes to form penicilloic acid in dimerization mode B,and the hydrolyzed product is only a small part in the entire molecules.Meanwhile,as a nucleophilic attack site,the carboxyl group of penicilloic acid reacts more difficultly than the 2-side chain of benzylpenicillin.

    Fig.5.HPLC chromatograms of(A)benzylpenicillin polymerized sample and(B)benzylpenicillin real sample.

    Fig.6.MS analysis results of benzylpenicillin dimers.(A)Mass spectrum of Peak 10.(B)Mass fragment pattern of dimer Pen-A.

    Fig.7.MS analysis results of benzylpenicillin dimers.(A)Mass spectrum of Peak 4.(B)Mass fragmental pattern of dimer Pen-B.

    Fig.8.MS analysis results of benzylpenicillin dimers.(A)Mass spectrum of Peak 8.(B)Mass fragmental pattern of ring-opened dimer Pen-A.

    These results also revealed that dimer Pen-A is likely to hydrolyze and the peak 8 with the retention time of about 41 min may be the dominant ring-opened structure.HPLC analysis of the real sample of benzylpenicillin for injection is shown in Fig.5B.Although no significant dimer peaks were found in two batches of the real sample,a small impurity peak with the retention time of about 42 min could be found.The relative molecular mass of this peak is 686(Fig.S2A),which is assumed to be the ring-opened dimer Pen-A.The other impurity peak with the retention time of about 37 min is not the dimer as the relative molecular mass of this peak is 387.0768(Fig.S2B).The results verified that dimerization A is more likely to occur and the dimer is easily hydrolyzed in real situations.

    3.3.2.Analysis of dimers in ampicillin

    Fig.3 shows that the relative molecular masses of ampicillin dimers A-D are 698,716,698,and 680,respectively.The β-lactam ring is easily hydrolyzed to form penicilloic acid.The relative molecular mass of the ring-opened product of dimer Amp-A is 716.The relative molecular mass of the product formed by opening one βlactam ring of dimer Amp-D is 698,and the product formed by opening two β-lactam rings of dimer Amp-D is 716.Those kinds of dimers were identified by LC-MS in the polymerized sample respectively.

    HPLC analysis of the ampicillin polymerized sample is shown in Fig.9A;the retention time of ampicillin is about 3.8 min.Column switching analysis was carried out individually for impurities with retention time longer than that of ampicillin.MS analysis showed that the secondary MS fragment types for peaks 1,3,and 4 are almost the same(Fig.S3),and the relative molecular mass of peak 4 is 698(Fig.10A).Its main fragments(m/z)are 540,381,353 and 333,which is in accordance with the fragmental pattern of dimer Amp-C(Fig.10B).Four isomers will be generated theoretically after opening the ring of the dimer.Therefore,we speculate that all the three peaks are isomers of dimer Amp-C(Fig.3E),and that peak 4 with the retention time of about 43 min is the predominant isomer.

    Fig.9.HPLC chromatograms of(A)ampicillin polymerized sample and(B)ampicillin real sample.

    Fig.10.MS analysis results of ampicillin dimers.(A)Mass spectrum of Peak 4.(B)Mass fragmental pattern of dimer Amp-C.

    The relative molecular mass of peak 5 is 698 as well(Fig.S4A);the main fragments(m/z)are 364,334,540,353,and 201,which are different from dimer Amp-C.Only cleavage on the dimerization site of ampicillin dimer Amp-D is most likely to produce 334 and 353 fragments(Fig.S4B).In tandem with the other results,peak 5 is inferred to represent the hydrolysate of dimer Amp-D(Fig.3F)that is formed by opening one β-lactam ring.

    The relative molecular mass of peak 2 is 716(Fig.S5A),which is the same as those of dimer Amp-B and the ring-opened dimers Amp-A and Amp-C.Its main fragments(m/z)include 673,514,324,334 and 306.The dimer is likely to lose one five-membered ring and one carboxyl group at the same time and thus it is not the ringopened dimer Amp-A and dimer Amp-B.As dimers Amp-A and Amp-C are kinetically and thermodynamically dominant products according to the theoretical calculations,dimer Amp-C is the major dimerization product of ampicillin,and it is most probably a ringopened dimer Amp-C(Fig.3E).

    Attention is paid to other impurity peaks in ampicillin polymerized sample.The relative molecular mass of peak①is 1066.The relative molecular masses of peaks②and③are both 1048.The relative molecular mass of peak④is 1079.These are not judged to be dimer impurities.

    From what has been discussed above,the chromatographic peaks 1,3,and 4 in Fig.9A represent dimer Amp-C,while peak 5 is the ring-opened dimer Amp-D,and peak 2 is probably the ringopened dimer Amp-C.These analyses of the ampicillin polymerization samples revealed that dimerization C is more likely to occur in real situations and has a dominant isomer.The real samples of ampicillin were analyzed(Fig.9B),and the dimers of the two batches of the real samples are mainly dimer C dominant isomers(Peak 6,whose relative molecular mass is 698)(Fig.S5B).

    4.Conclusion

    Here,the possible dimerization mechanisms of penicillin dimers were analyzed theoretically and experimentally.We found that the carboxyl group participates in a dimerization reaction as a nucleophilic group.For penicillins without an amino group in the 6-side chain,dimerization mode A is the dominant mode,i.e.,the 2-carboxyl group of one molecule reacts with the β-lactam of another molecule.However,penicillins with an amino group in the 6-side chain favor dimerization mode C,where the amino group of one molecule attacks the β-lactam of another molecule.This understanding of the mechanism of penicillin dimerization facilitates analyses of polymer impurities in samples and may lead to the discovery of the dominant polymers.This is vital for targeted polymer quality control.

    CRediT author statement

    Qizhang Wu:Methodology,Investigation,Software,Writing-Original draft preparation;Xia Zhang:Methodology,Software,Validation,Writing-Reviewing and Editing;Jiaxin Du:Investigation;Changqin Hu:Conceptualization,Supervision,Funding acquisition.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was supported by the National Major Scientific and Technological Special Project for“Significant New Drugs Development”(Grant No.:2017ZX09101001-007).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2021.06.005.

    一进一出抽搐gif免费好疼| cao死你这个sao货| 亚洲成国产人片在线观看| 久久人人爽av亚洲精品天堂| 亚洲人成网站在线播放欧美日韩| 日韩精品免费视频一区二区三区| 日日干狠狠操夜夜爽| 亚洲人成伊人成综合网2020| 最近最新中文字幕大全电影3 | 级片在线观看| 一级黄色大片毛片| 欧美激情 高清一区二区三区| 国产成人精品久久二区二区91| av片东京热男人的天堂| 成人永久免费在线观看视频| 97人妻精品一区二区三区麻豆 | 日本a在线网址| 两人在一起打扑克的视频| 精品久久久久久久久久免费视频| 色哟哟哟哟哟哟| 亚洲第一青青草原| tocl精华| 九色国产91popny在线| 777久久人妻少妇嫩草av网站| 美女大奶头视频| 丝袜美腿诱惑在线| 中文字幕色久视频| 久久精品国产综合久久久| 女人被躁到高潮嗷嗷叫费观| www.999成人在线观看| 在线观看午夜福利视频| 久久热在线av| 亚洲一区二区三区色噜噜| 一进一出好大好爽视频| 在线观看免费日韩欧美大片| 啦啦啦观看免费观看视频高清 | 在线观看免费午夜福利视频| 国内精品久久久久精免费| 一级a爱视频在线免费观看| 巨乳人妻的诱惑在线观看| 叶爱在线成人免费视频播放| 欧美丝袜亚洲另类 | 亚洲av电影在线进入| 日韩大码丰满熟妇| 一进一出抽搐动态| 精品日产1卡2卡| 久久国产亚洲av麻豆专区| 午夜两性在线视频| 天堂√8在线中文| 给我免费播放毛片高清在线观看| 国产精品一区二区在线不卡| 亚洲欧洲精品一区二区精品久久久| 男女床上黄色一级片免费看| 长腿黑丝高跟| 午夜亚洲福利在线播放| 丰满的人妻完整版| 手机成人av网站| 亚洲成人免费电影在线观看| 精品一区二区三区视频在线观看免费| 黄色 视频免费看| 亚洲欧美日韩无卡精品| 亚洲国产看品久久| 欧美午夜高清在线| 欧美激情极品国产一区二区三区| 精品久久久久久久毛片微露脸| 搡老妇女老女人老熟妇| 满18在线观看网站| 日韩大码丰满熟妇| 三级毛片av免费| 人妻久久中文字幕网| 久久久久精品国产欧美久久久| 老熟妇乱子伦视频在线观看| 国产xxxxx性猛交| 亚洲精品中文字幕一二三四区| 91麻豆av在线| 成人特级黄色片久久久久久久| 亚洲成av片中文字幕在线观看| 一区二区三区精品91| 欧美久久黑人一区二区| 丝袜在线中文字幕| 91成年电影在线观看| 三级毛片av免费| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| 亚洲av电影在线进入| 十分钟在线观看高清视频www| 女人爽到高潮嗷嗷叫在线视频| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 久久久久精品国产欧美久久久| 亚洲熟女毛片儿| 99热只有精品国产| 欧美成狂野欧美在线观看| 高潮久久久久久久久久久不卡| 丝袜在线中文字幕| 午夜亚洲福利在线播放| 美女扒开内裤让男人捅视频| 久久精品91蜜桃| 欧美黑人欧美精品刺激| 国产精品美女特级片免费视频播放器 | 成人特级黄色片久久久久久久| 日本精品一区二区三区蜜桃| 亚洲成a人片在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 97人妻精品一区二区三区麻豆 | 一级作爱视频免费观看| 精品久久久精品久久久| 欧美在线黄色| 国产亚洲av嫩草精品影院| 一级毛片女人18水好多| 人人妻人人澡欧美一区二区 | 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 狂野欧美激情性xxxx| 亚洲一区中文字幕在线| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 91在线观看av| 啦啦啦 在线观看视频| 涩涩av久久男人的天堂| 韩国av一区二区三区四区| 黑人巨大精品欧美一区二区蜜桃| 色在线成人网| 欧美老熟妇乱子伦牲交| 国产成人精品久久二区二区91| 亚洲欧美激情综合另类| 一级毛片高清免费大全| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一青青草原| 后天国语完整版免费观看| 高潮久久久久久久久久久不卡| 999精品在线视频| 99在线人妻在线中文字幕| 久9热在线精品视频| 成人18禁在线播放| 91九色精品人成在线观看| 国产亚洲av高清不卡| 男人舔女人下体高潮全视频| 亚洲狠狠婷婷综合久久图片| 久久久久国内视频| 色综合欧美亚洲国产小说| 久久国产亚洲av麻豆专区| 12—13女人毛片做爰片一| 亚洲成av片中文字幕在线观看| 国产精品久久视频播放| 夜夜夜夜夜久久久久| 亚洲精品av麻豆狂野| 亚洲精品中文字幕在线视频| 精品国产美女av久久久久小说| 亚洲欧美一区二区三区黑人| 国产亚洲欧美98| 丰满人妻熟妇乱又伦精品不卡| 亚洲va日本ⅴa欧美va伊人久久| 女人高潮潮喷娇喘18禁视频| 成人亚洲精品一区在线观看| 69精品国产乱码久久久| 久久热在线av| 妹子高潮喷水视频| 亚洲片人在线观看| 亚洲av第一区精品v没综合| 男人操女人黄网站| 咕卡用的链子| 18禁国产床啪视频网站| 亚洲人成伊人成综合网2020| 亚洲欧美激情在线| 国内毛片毛片毛片毛片毛片| 亚洲avbb在线观看| 999久久久精品免费观看国产| 亚洲无线在线观看| 久久久久精品国产欧美久久久| 老熟妇仑乱视频hdxx| 搡老妇女老女人老熟妇| 成人欧美大片| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 91在线观看av| 天堂动漫精品| 色综合欧美亚洲国产小说| 在线观看www视频免费| 久久精品人人爽人人爽视色| 国产av一区在线观看免费| 一区二区三区高清视频在线| 亚洲黑人精品在线| 欧美日本视频| 人人妻人人爽人人添夜夜欢视频| 婷婷丁香在线五月| 亚洲熟女毛片儿| 嫩草影院精品99| 午夜久久久在线观看| 亚洲一区二区三区色噜噜| 精品国产乱码久久久久久男人| 欧美国产日韩亚洲一区| 波多野结衣av一区二区av| www.www免费av| 日日摸夜夜添夜夜添小说| 午夜福利欧美成人| 久久久精品国产亚洲av高清涩受| 欧美成人午夜精品| 一夜夜www| 国产在线精品亚洲第一网站| 亚洲国产看品久久| 精品熟女少妇八av免费久了| 国产精品1区2区在线观看.| 亚洲精品美女久久av网站| 亚洲成国产人片在线观看| 在线观看www视频免费| 91av网站免费观看| 91精品国产国语对白视频| 一a级毛片在线观看| 麻豆国产av国片精品| 免费在线观看视频国产中文字幕亚洲| 黄色视频不卡| 一卡2卡三卡四卡精品乱码亚洲| 999久久久精品免费观看国产| 一夜夜www| 一级毛片女人18水好多| 1024香蕉在线观看| 成人国语在线视频| 韩国精品一区二区三区| 午夜福利视频1000在线观看 | 欧美激情极品国产一区二区三区| 国产人伦9x9x在线观看| av中文乱码字幕在线| 久久精品成人免费网站| 国产免费男女视频| 久久久久久大精品| 夜夜躁狠狠躁天天躁| 亚洲国产毛片av蜜桃av| 久99久视频精品免费| 久久久久国产精品人妻aⅴ院| 99在线人妻在线中文字幕| 熟女少妇亚洲综合色aaa.| 每晚都被弄得嗷嗷叫到高潮| 午夜免费激情av| 无限看片的www在线观看| 日本精品一区二区三区蜜桃| 亚洲精品国产色婷婷电影| 涩涩av久久男人的天堂| 99久久国产精品久久久| 999精品在线视频| 色播亚洲综合网| 精品国产国语对白av| 亚洲视频免费观看视频| 成熟少妇高潮喷水视频| 日本五十路高清| 两性夫妻黄色片| 在线十欧美十亚洲十日本专区| 亚洲精品国产精品久久久不卡| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩无卡精品| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av高清一级| 亚洲色图综合在线观看| 国产精品,欧美在线| 首页视频小说图片口味搜索| 嫩草影视91久久| 日韩高清综合在线| 不卡av一区二区三区| 黄色视频不卡| 啦啦啦观看免费观看视频高清 | 一级毛片精品| 深夜精品福利| 国产高清videossex| 色在线成人网| 免费不卡黄色视频| 老司机靠b影院| a级毛片在线看网站| 国产精品久久久久久人妻精品电影| 淫妇啪啪啪对白视频| 精品国产一区二区三区四区第35| 首页视频小说图片口味搜索| 女人高潮潮喷娇喘18禁视频| 亚洲人成伊人成综合网2020| 好男人电影高清在线观看| 日韩大码丰满熟妇| 亚洲午夜精品一区,二区,三区| 日本精品一区二区三区蜜桃| 两个人看的免费小视频| 色综合亚洲欧美另类图片| 久久久久久亚洲精品国产蜜桃av| 日本五十路高清| 波多野结衣一区麻豆| 欧美精品亚洲一区二区| 欧美成人性av电影在线观看| 一本大道久久a久久精品| 黄色视频不卡| 国产在线精品亚洲第一网站| 黄片小视频在线播放| 国产成人欧美在线观看| 涩涩av久久男人的天堂| 日本撒尿小便嘘嘘汇集6| 12—13女人毛片做爰片一| 免费看十八禁软件| 777久久人妻少妇嫩草av网站| 少妇裸体淫交视频免费看高清 | 99久久国产精品久久久| 国产精品综合久久久久久久免费 | 欧美精品啪啪一区二区三区| av在线天堂中文字幕| 国产精品久久电影中文字幕| 香蕉丝袜av| 亚洲精品一区av在线观看| 国产亚洲精品久久久久5区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人不卡在线观看播放网| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 精品国产超薄肉色丝袜足j| АⅤ资源中文在线天堂| 制服诱惑二区| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| 国产伦一二天堂av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 老鸭窝网址在线观看| 黄色丝袜av网址大全| 一二三四在线观看免费中文在| 99热只有精品国产| 久久精品亚洲熟妇少妇任你| 少妇 在线观看| 日日摸夜夜添夜夜添小说| 老熟妇乱子伦视频在线观看| 黄片小视频在线播放| 别揉我奶头~嗯~啊~动态视频| 男男h啪啪无遮挡| 亚洲国产看品久久| 青草久久国产| 热re99久久国产66热| 国产一区在线观看成人免费| 欧美色视频一区免费| 国产亚洲精品一区二区www| 久久精品aⅴ一区二区三区四区| 青草久久国产| 成人永久免费在线观看视频| 男人舔女人下体高潮全视频| 女警被强在线播放| 老司机在亚洲福利影院| 亚洲成人国产一区在线观看| 极品人妻少妇av视频| 亚洲专区字幕在线| 亚洲成人国产一区在线观看| 精品国产一区二区久久| 中文字幕精品免费在线观看视频| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 好看av亚洲va欧美ⅴa在| 在线永久观看黄色视频| 一区二区三区精品91| 亚洲国产日韩欧美精品在线观看 | 美女扒开内裤让男人捅视频| 一边摸一边做爽爽视频免费| 欧美激情极品国产一区二区三区| 桃色一区二区三区在线观看| 欧美精品啪啪一区二区三区| 欧美黄色片欧美黄色片| 精品无人区乱码1区二区| 一本大道久久a久久精品| 亚洲视频免费观看视频| 欧美日韩福利视频一区二区| 久久精品国产综合久久久| 男女做爰动态图高潮gif福利片 | 欧美久久黑人一区二区| 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| 高清在线国产一区| 大型黄色视频在线免费观看| 免费高清在线观看日韩| 国产97色在线日韩免费| 好看av亚洲va欧美ⅴa在| 一区福利在线观看| 男女下面插进去视频免费观看| 成人三级做爰电影| 亚洲精品在线美女| 在线观看免费视频网站a站| 日本 欧美在线| 级片在线观看| 欧美亚洲日本最大视频资源| 成人免费观看视频高清| 国产区一区二久久| 久久久久久久久中文| 人人妻,人人澡人人爽秒播| 久久中文字幕一级| 十分钟在线观看高清视频www| 精品国产国语对白av| 波多野结衣av一区二区av| 男女下面插进去视频免费观看| 日本在线视频免费播放| 在线十欧美十亚洲十日本专区| 在线观看免费视频网站a站| 在线观看午夜福利视频| 日日夜夜操网爽| 精品国产一区二区三区四区第35| 可以在线观看的亚洲视频| 欧美日韩瑟瑟在线播放| 1024香蕉在线观看| 亚洲人成电影免费在线| 国语自产精品视频在线第100页| 免费高清视频大片| 国产区一区二久久| 国产亚洲精品久久久久久毛片| 国产成人精品在线电影| 91大片在线观看| 色在线成人网| 成年人黄色毛片网站| 韩国av一区二区三区四区| 欧美老熟妇乱子伦牲交| 日韩精品中文字幕看吧| 亚洲精品在线观看二区| 国产成人影院久久av| 免费在线观看日本一区| 亚洲国产精品999在线| 香蕉国产在线看| av电影中文网址| 男女下面进入的视频免费午夜 | 国产精品一区二区三区四区久久 | 国产精品久久视频播放| 看片在线看免费视频| 在线观看一区二区三区| 欧美日韩一级在线毛片| 免费无遮挡裸体视频| 91成年电影在线观看| 欧美中文日本在线观看视频| 亚洲一区二区三区色噜噜| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 日韩成人在线观看一区二区三区| 久久午夜亚洲精品久久| 免费无遮挡裸体视频| or卡值多少钱| 久久久久久亚洲精品国产蜜桃av| 这个男人来自地球电影免费观看| 亚洲情色 制服丝袜| 免费少妇av软件| 操出白浆在线播放| 老司机在亚洲福利影院| 国产一区二区三区综合在线观看| 十分钟在线观看高清视频www| 成人av一区二区三区在线看| 长腿黑丝高跟| 无人区码免费观看不卡| 亚洲国产高清在线一区二区三 | 欧美激情久久久久久爽电影 | 国产99久久九九免费精品| 国产又爽黄色视频| 热99re8久久精品国产| 侵犯人妻中文字幕一二三四区| 亚洲九九香蕉| 黄色a级毛片大全视频| 巨乳人妻的诱惑在线观看| 一级作爱视频免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文av在线| 欧美中文综合在线视频| 男女午夜视频在线观看| 精品欧美国产一区二区三| av免费在线观看网站| 国产精品自产拍在线观看55亚洲| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久亚洲av鲁大| 一区二区三区精品91| 老司机在亚洲福利影院| 极品教师在线免费播放| 人妻丰满熟妇av一区二区三区| av在线播放免费不卡| 97超级碰碰碰精品色视频在线观看| 中文亚洲av片在线观看爽| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 日韩 欧美 亚洲 中文字幕| 国产极品粉嫩免费观看在线| 国产精品99久久99久久久不卡| 亚洲人成77777在线视频| 久久久久久久久免费视频了| 日本欧美视频一区| 男人操女人黄网站| 久久国产精品影院| 18禁美女被吸乳视频| 精品高清国产在线一区| 国产成年人精品一区二区| 亚洲av电影不卡..在线观看| 91字幕亚洲| 18禁裸乳无遮挡免费网站照片 | 精品久久蜜臀av无| 午夜视频精品福利| 日本 欧美在线| 又黄又粗又硬又大视频| 亚洲成av片中文字幕在线观看| 国产精品 欧美亚洲| 在线视频色国产色| 精品熟女少妇八av免费久了| 精品不卡国产一区二区三区| 午夜亚洲福利在线播放| 看黄色毛片网站| 88av欧美| 中文字幕最新亚洲高清| 两个人免费观看高清视频| 免费在线观看亚洲国产| 不卡一级毛片| a级毛片在线看网站| 搞女人的毛片| 成人亚洲精品一区在线观看| 我的亚洲天堂| 黄片小视频在线播放| 亚洲第一欧美日韩一区二区三区| 国产精品影院久久| 久9热在线精品视频| 日本黄色视频三级网站网址| 色精品久久人妻99蜜桃| 岛国在线观看网站| 国产成人精品在线电影| 怎么达到女性高潮| 深夜精品福利| www.熟女人妻精品国产| 啦啦啦免费观看视频1| 性少妇av在线| 大型黄色视频在线免费观看| 欧美乱妇无乱码| 黑人巨大精品欧美一区二区mp4| 最近最新中文字幕大全免费视频| 国产熟女xx| 成人免费观看视频高清| 我的亚洲天堂| 欧美黄色片欧美黄色片| 日韩欧美国产在线观看| 日韩 欧美 亚洲 中文字幕| 极品人妻少妇av视频| 日韩欧美国产一区二区入口| 69精品国产乱码久久久| 久久精品91蜜桃| av超薄肉色丝袜交足视频| 国产免费男女视频| 亚洲狠狠婷婷综合久久图片| 99国产精品99久久久久| 国产一卡二卡三卡精品| 在线av久久热| 一进一出抽搐gif免费好疼| 这个男人来自地球电影免费观看| 熟妇人妻久久中文字幕3abv| 99精品欧美一区二区三区四区| 欧美丝袜亚洲另类 | 免费少妇av软件| 亚洲成av人片免费观看| 身体一侧抽搐| 精品熟女少妇八av免费久了| www.自偷自拍.com| 国产成人一区二区三区免费视频网站| 精品一区二区三区视频在线观看免费| 亚洲精华国产精华精| 777久久人妻少妇嫩草av网站| 满18在线观看网站| 中文字幕精品免费在线观看视频| 欧美激情极品国产一区二区三区| 在线播放国产精品三级| av视频免费观看在线观看| 成熟少妇高潮喷水视频| 亚洲第一av免费看| 91麻豆av在线| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9| 色在线成人网| 性欧美人与动物交配| 亚洲美女黄片视频| 美女 人体艺术 gogo| 国产欧美日韩一区二区三区在线| 午夜精品久久久久久毛片777| 黄色 视频免费看| 精品欧美国产一区二区三| 国产一级毛片七仙女欲春2 | 午夜福利视频1000在线观看 | 最近最新免费中文字幕在线| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 亚洲av五月六月丁香网| 男女下面插进去视频免费观看| 欧美激情久久久久久爽电影 | 国产精品亚洲美女久久久| 久久中文字幕一级| 曰老女人黄片| АⅤ资源中文在线天堂| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 九色国产91popny在线| 深夜精品福利| 免费在线观看日本一区| 国产一区二区三区综合在线观看| 免费观看精品视频网站| 黄色视频不卡| 色综合婷婷激情| 极品教师在线免费播放| 成人永久免费在线观看视频| 性色av乱码一区二区三区2| 国产亚洲精品一区二区www| 国产精品av久久久久免费| 免费在线观看视频国产中文字幕亚洲| 一夜夜www| 老司机在亚洲福利影院| 一级,二级,三级黄色视频| 国产精品免费视频内射| 这个男人来自地球电影免费观看| 亚洲中文字幕日韩| 69精品国产乱码久久久| 欧美+亚洲+日韩+国产| 国产区一区二久久| 中文字幕人成人乱码亚洲影| 日本三级黄在线观看| 国产主播在线观看一区二区| 精品一区二区三区四区五区乱码| 国产99白浆流出| 久99久视频精品免费| 国产一区二区三区视频了| 免费搜索国产男女视频| 激情在线观看视频在线高清|