• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nitrogen-doped carbon@TiO2double-shelled hollow spheres as an electrochemical sensor for simultaneous determination of dopamine and paracetamol in human serum and saliva

    2022-07-22 03:53:18HuiYngGongxunCoYongjunHungYeLinFengyingZhengLuxiuLinFengjioLiuShunxingLi
    Journal of Pharmaceutical Analysis 2022年3期

    Hui Yng,Gongxun Co,Yongjun Hung,Ye Lin,Fengying Zheng,Luxiu Lin,b,c,Fengjio Liu,b,c,Shunxing Li,b,c,*

    aCollege of Chemistry,Chemical Engineering and Environment,Minnan Normal University,Zhangzhou,Fujian,363000,China

    bFujian Provincial Key Laboratory of Pollution Monitoring and Control,Minnan Normal University,Zhangzhou,Fujian,363000,China

    cFujian Key Laboratory of Separation and Analysis Science and Technology,Zhangzhou,Fujian,363000,China

    ABSTRACT

    As the most commonly used antipyretic and analgesic drug,paracetamol(PA)coexists with neurotransmitter dopamine(DA)in real biological samples.Their simultaneous determination is extremely important for human health,but they also interfere with each other.In order to improve the conductivity,adsorption affinity,sensitivity,and selectivity of TiO2-based electrochemical sensor,N-doped carbon@-TiO2double-shelled hollow sphere(H-C/N@TiO2)is designed and synthesized by simple alcoholic and hydrothermal method,using polystyrene sphere(PS)as a template.Meanwhile,TiO2hollow spheres(H-TiO2)or N-doped carbon hollow spheres(H-C/N)are also prepared by the same method.H-C/N@TiO2 has good conductivity,charge separation,and the highly enhanced and stable current responses for the detection of PA and DA.The detection limit and linear range are 50.0 nmol/L and 0.3-50μmol/L for PA,40.0 nmol/L and 0.3-50μmol/L for DA,respectively,which are better than those of carbon-based sensors.Moreover,this electrochemical sensor,with high selectivity,strong anti-interference,high reliability,and long time durability,can be used for the simultaneous detection of PA and DA in human blood serum and saliva.The high electrochemical performance of H-C/N@TiO2is attributed to the multifunctional combination of different layers,because of good conductivity,absorption and electrons transfer ability from in-situ N-doped carbon and electrocatalytic activity from TiO2.

    Keywords:

    Electrochemical sensor

    Simultaneous determination

    Paracetamol

    Dopamine

    Peer review under responsibility of Xi'an Jiaotong University.

    1.Introduction

    Paracetamol(PA,C8H9NO2),one of the most commonly used antipyretic and analgesic drugs,is known as acetaminophen[1].It can usually be used to treat pain,headache,fever,migraines,arthritis,postoperative pain,etc.[2-4],but its human resistance is 50 mg/L.The overdose of PA causes severe liver damage and high accumulation of toxic metabolites,which can be fatally hepatotoxic [5,6] and nephrotoxic [4,7].Dopamine (DA,C8H12O2N)plays an important role in human body,when the lack of DA leads to a variety of diseases including Parkinson's disease and schizophrenia[8-11].Moreover,the detection of them can be affected by their coexistence[12].It is extremely important for us to protect human health from some dangerous diseases by the simultaneous determination of PA and DA.Many analytical methods that have been developed to detect DA and PA include titrimetry,UV-vis spectrophotometry,capillary electrophoresis,high performance liquid chromatography, and chemiluminescence[13-19],but there are some disadvantages in these methods,including time-consuming,tedious sample pretreatment processes,and high cost.Due to the advantages of electrochemical techniques(e.g.,selectivity,sensitivity,low cost,simple instrumentation,facile miniaturization,and rapid response),it is essential for us to establish an electrochemical sensor for simultaneous,rapid,simple,accurate,and sensitive determination of PA and DA.

    As an increasingly popular photocatalyst,sensor,UV absorber,and energy storage,the properties of TiO2are low cost,non-toxicity,semi-conductivity,thermal and chemical stability,excellent biocompatibility and high uniformity[20-23].Its application as an electrochemical sensor is limited by its low conductivity,high recombination rate of photo-generated electrons and holes[24,25],and poor affinity with organic compounds(e.g.,PA and DA).To overcome these shortcomings,TiO2is combined with carbon nanotube or graphene carbon,but this combination still cannot meet our requirements.Heteroatom(e.g.,N,B,S)doping can improve the electrochemical performance of carbon.Synergistic effect of heteroatom can effectively compensate for the disadvantages of carbon materials because the lone electron pairs from heteroatoms can supply additional negative charges to carbon networks[26-29].In addition,the structures of TiO2-based nanomaterials have significant effects on their catalytic activities,and double-shelled hollow spheres bring more heterojunctions interfaces and multi-active sites[30,31].Hence,N-doped carbon@TiO2double-shelled hollow sphere(H-C/N@TiO2)is adopted as an electrochemical sensor for detection of PA and DA with the advantages as follows.First,the synthesis process is simple,less dangerous,less time consuming,and environmentally friendly.Second,it is essential for specific electrochemical reactions.Third,the synergistic effect of N-doped carbon and TiO2can be utilized,including electrocatalysis and edge-plane defect sites.The joint of N-doped carbon and TiO2,including TiO2nanoparticles@N-doped carbon[32],coreshell mesoporous N-doped carbon@TiO2[33],N-doped carbon sheets@TiO2nanoparticles[34],and N-doped carbon tuning yolk-like TiO2[35],have been developed for the degradation of organic pollutants[32],lithium-ion and sodium-ion batteries[33,35],glucose determination[34],and oxygen reduction and evolution[32-36].To date,H-C/N@TiO2as an electrochemical sensor for the detection of PA and DA has not been reported.

    Herein,a green and novel method for in situ H-C/N@TiO2is proposed by us.As a hard template,the surface functionalization of polystyrene microspheres(PSs)is adopted because sizecontrolled monodisperse(TiO2@PS)can be prepared.And then a layer of nitrogen-rich carbons,with abundant functional groups(including C-O,-OH,and N-H)and reduction ability,is wrapped onto TiO2@PS.After calcination,H-C/N@TiO2is obtained.Ultimately,H-C/N@TiO2is modified onto a glassy carbon electrode(GCE)as an electrochemical sensor,which can simultaneously,sensitively,and selectively detect PA and DA in human serum and saliva.

    2.Experimental

    All reagents and apparatus are shown in Supplementary data.

    2.1.Synthesis of TiO2hollow spheres

    According to the literature[37,38],PSs with an average diameter of about 250 nm were synthesized as support information(SI1).Ultra-pure water(0.15 mL),ethanol(72 mL),polyethylene pyrrolidone(K30,0.01 g),and PS(1 mL)were added into a round bottom flask(150 mL)for sonication of 10 min.N-tetrabutyl titanate(0.18 mL)was also added into the above solution,heated to 80°C,and refluxed for 4 h.The resultant microspheres(TiO2@PS)were rinsed three times with ethanol and dried at 60°C under vacuum for 6 h.Ultimately,they were heated to 550°C with a rate of 5°C/min and calcined for 3 h in a muffle furnace.PSs were removed and the products,TiO2hollow spheres(H-TiO2,550°C),were synthesized.

    2.2.Synthesis of H-C/N@TiO2double-shelled hollow spheres and H-TiO2,H-C/N hollow spheres

    After dispersing of hollow spheres(H-TiO2,550°C,60 mg)in Tris-HCl(100 mL,10 mmol/L,pH 8.5)solution,DA(50 mg)was added and stirred for 24 h at room temperature.The products(Polydopamine(PDA)@TiO2)were rinsed three times with ultrapure water and dried at 60°C under vacuum for 24 h.The PDA@TiO2hollow spheres were heated to 800°C with a rate of 5°C/min and calcined at 800°C for 2 h in a tubular atmosphere furnace(under N2protection).The products(H-C/N@TiO2)were synthesized.Moreover,H-C/N was prepared by the same method.

    2.3.Preparation of modified glass carbon electrodes(GCE)

    Scheme 1.Schematic diagrams of 3-dimensional nitrogen-doped carbon@TiO2double-shelled hollow sphere synthesis and electrochemical sensing.

    Fig.1.(A)Scanning electron microscopy(SEM)images of H-C/N@TiO2.(B-D)Transmission electron microscopy(TEM)images of H-C/N@TiO2.(E-J)High angle annular dark fieldscanning transmission electron microscopy(HAADF-STEM)mapping images of H-C/N@TiO2.

    The bare GCE was pretreated as follows,including polishing until to a mirror-finish successively with 1 μm,0.3 μm,and 0.05μm of alumina slurry,washed with anhydrous ethanol and water in an ultrasonic bath successively,and then dried by N2blowing.H-C/N@TiO2(orH-TiO2,orH-C/N,2mg)was dispersed in 200 μL of mixture solution(including 20 μL of chitosan solution and 180μL of water).Then,the above-prepared solution(1 mg/mL,5μL)was cast onto the surface of pretreated bare GCE and dried at room temperature.These electrodes were noted asH-C/N@TiO2/GCE,H-C/N/GCE,and H-TiO2/GCE,respectively.

    Fig.2.(A)X-ray diffraction(XRD)patterns of the as-synthesized H-C/N,H-TiO2,and H-C/N@TiO2.(B)Raman spectra of H-C/N@TiO2.(C)X-ray photoelectron spectroscopy(XPS)survey spectra of H-C/N@TiO2in the range of 200-800 eV.(D-F)X-ray photoelectron spectroscopy(XPS)of C 1s,N 1s,and Ti 2p from H-C/N@TiO2.

    2.4.Electrochemical measurements

    Electrochemical measurements with differential pulse voltammetry(DPV)were performed by an Electrochemical Workstation(CHI 660E,Chenhua Instrument Co.,Shanghai,China)with a threeelectrode system and conducted from 0.0 to 0.6 V at room temperature with a pulse amplitude of 100 mV/s in 0.1 mol/L of phosphate buffer solution(PBS).The modified GCE(H-C/N@TiO2/GCE,H-C/N/GCE,or H-TiO2/GCE),platinum wire,and Ag/AgCl/saturated KCl were used as the working,counter,and reference electrodes,respectively.

    3.Results and discussion

    3.1.Synthesis and characterization of H-C/N@TiO2

    In this study,the synthetic methods,including self-adsorption/reduction,simple template method,and carbonization,were used to construct 3D freestanding H-C/N@TiO2as shown in Scheme 1.During the self-polymerization for the preparation of TiO2@PS,the solution color was white and never changed.Then TiO2@PS was calcined.During the preparation of PDA@TiO2,the color of solution was changed from white to black.H-TiO2served as not only a hollow ball template but also an adsorption agent for PDA during the preparation of PDA@TiO2.

    Scanning electron microscopy(SEM)was used to characterize the morphologies of H-C/N@TiO2as shown in Fig.1A.It can be clearly seen that the products were hollow and exhibited high monodispersity and uniform size,revealing that PDA shell could be wrapped uniformly onto H-TiO2.The SEM images of H-TiO2and H-C/N are shown in Fig.S1.The transmission electron microscopy(TEM)images of these nanocomposites confirmed that the produces were hollow(Fig.1B),which were consistent with the results of SEM.H-C/N@TiO2with uniform thick and clearly layered shell is shown in Fig.1C.Besides,the high resolution transmission electron microscopy(HRTEM)image of H-C/N@TiO2showed that the lattice spacing of 0.351 nm corresponded to the(101)plane of TiO2(Fig.1D).To further indicate the distribution of elements,high angle annular dark fieldscanning transmission electron microscopy(HAADF-STEM)was used for the characterization of H-C/N@TiO2.The HAADF-STEM mapping images are shown in Figs.1E-J,indicating that C,N,Ti,and O were uniformly enriched on the surface of the hollow sphere.The red,orange-red,green,blue-green,and yellow colored areas in HAADF-STEM mapping images(Figs.1F-J)revealed that H-C/N@TiO2was the combination of C,N,Ti,and O,respectively.Moreover,it could also be seen that the distribution of Ti and C was a hierarchical structure from the elemental images of H-C/N@TiO2.X-ray diffraction(XRD)was used for the characterization of H-C/N@TiO2,H-C/N,and H-TiO2.As shown in Fig.2A,the diffraction peaks at 25.3°,37.7°,47.9°,53.8°,and 62.6°could correspond to(101),(004),(200),(105),and(204)reflection of anatase TiO2,respectively.While the peaks at 27.8°,35.9°,41.30°,44.10°,56.69°,and 64.09°could be specified as(110),(101),(111),(210),(220),and(310)from the reflection of rutile TiO2,respectively.The diffraction peaks at 26.1°and 43°corresponded to(102)and(100)reflection of graphite carbon.In addition,two characteristic peaks of graphitized carbon(about 1347 and 1583 cm-1)and the characteristic peaks of TiO2(about 144,200,397,516,and 639 cm-1)were also observed in the Raman spectrum of H-C/N@TiO2as shown in Fig.2B.These characterizations revealed that in situ H-C/N@TiO2could be constructed successfully.In addition,the chemical bonding and elemental composition of the H-C/N@TiO2composite were also further measured by X-ray photoelectron spectroscopy(XPS)in the range of 200-800 eV.The XPS spectra of H-C/N@TiO2(Fig.2C)indicated the coexistence of Ti,C,N,and O in nanomaterials.Four different constituent peaks(C=C,C-N,C-O-C,and C=O)were observed in the spectrum of C 1s(Fig.2D)at 283.6,284.3,286.4,and 288.1 eV,respectively.Highresolution XPS N 1s spectra(Fig.2E)of the as-prepared composites were determined as the types of nitrogen dopants.In the high-resolution XPS N 1s spectrum,three types of nitrogen(pyridinic,pyrrolic and graphitic N)were observed and the constituent peaks corresponded to 397.5,400.1 and 401.9 eV,respectively.The content of pyrrolic N was the highest among three types of nitrogen dopants in composites,indicating that there would be abundant adsorption sites for organic contaminants[39].As shown in Fig.2F,the constituent peaks of Ti 2p3/2 and Ti 2p1/2 corresponded to 458.2 and 464.2 eV in the high resolution XPS Ti 2p spectrum.As an electrode material,it would provide more absorption sites for analytical targets with N,offer a good conductivity by C,and high electrocatalysis performance by TiO2.The above-mentioned advantages as an electrochemical sensor were tested by the identification and detection of PA and DA in human serum and saliva.

    3.2.Electrochemical behavior of H-C/N@TiO2composites

    In the electrochemical experimental section,the electrochemical properties of different electrodes,including GCE,H-C/N/GCE,H-TiO2/GCE,and H-C/N@TiO2/GCE,were tested by cyclic voltammetry(CV),using 0.1 mol/L of PBS(pH 6.0,containing 50μmol/L of PA and DA).As shown in Fig.3,the redox peaks of PA and DA for H-C/N@TiO2/GCE were the clearest in them and could be used for qualitative and quantitative analyses of DA and PA.Moreover,the DPV of the samples is also provided as Fig.S2.H-C/N@TiO2was obviously superior to the others because it not only had the good conductivity of C but also had the superior redox of TiO2.The order of Ret values as GCE>H-TiO2/GCE>H-C/N/GCE>H-C/N@TiO2/GCE can be gained from Fig.3.In addition,two pairs of significant redox peaks belonged to PA and DA,which further revealed the importance of the construct of double-shell in electroanalysis.

    3.3.Effect of scan rate and pH

    To demonstrate the transport characteristics of H-C/N@TiO2/GCE,the relationship of the redox peak currents of PA and DA with the scan rate was studied in the range of 20-400 mV/s,which is shown in Figs.4A and B.The linear regression equations for PA were Ipc(μA)=12.237+0.2170v(R2=0.9976),Ipa(μA)=-31.503-0.3399 v(R2=0.9954),and the DA linear regression equations were Ipc(μA)=11.336+0.3834 v(R2=0.9972),Ipa(μA)=-29.161-0.5874 v(R2=0.9968).According to these results,the electro-redox reaction of DA and PA was a typical adsorption-controlled process.The linear of the plots of log Ip versus log v in the scan rate with slopes of 0.783 for DA and 0.656 for PA,respectively,are shown in Fig.S3,and then the adsorption-controlled process of DA and PA could be confirmed further.

    Fig.3.Cyclic voltammetry of the different electrodes in 0.1 mol/L of PBS(pH 6.0,containing 50μmol/L of PA and DA),at scan rate of 100 mV/s.

    Fig.4.(A)Cyclic voltammetry of GCE modified by H-C/N@TiO2at different scan rates in 0.1 mol/L of PBS(pH 6.0,containing 50μmol/L of PA and DA).(B)Curve of redox peak current vs.scan rate for PA and DA.

    The redox peak currents of PA and DA in the range of 0.8-0.0 V were influenced by the pH of the electrolyte(50μmol/L of PA and DA,in 0.1 mol/L of PBS),as shown in Fig.S4.It was beneficial to estimating the ratio of proton to electron in this reaction.As shown in Fig.5A,the redox peak current value was the maximum response when the pH value of PBS was 6.0.Therefore,pH of the solution was determined at 6.0 in the following experiments.The linear relationship between the peak potentials and pH of the solution with EPA=0.8770-0.0634 pH(R2=0.9815),EDA=0.6613-0.0629 pH(R2=0.9880)is shown in Fig.5B.According to the formula(dEp/dpH=2.303 mRT/nF,where m and n are the numbers of proton and electron,respectively),the slopes of the two regression equations,0.0634 and 0.0629 for PA and DA,approached the theoretical value[40,41],indicating that the electrochemical redox of PA and DA on the electrode of H-C/N@TiO2/GCE should be a two-electron and two-proton process.

    3.4.Qualitative and quantitative determination of PA and DA

    The DPV measurements for qualitative and quantitative analyses were better than those of CV technique in respect of sensitivity and resolution because a small voltage pulse superimposed on the linear voltage sweep was applied and the differential current at a short time after the pulse was sampled by DPV.Hence,DPV was used to assess the quantitative and qualitative analyses of PA and DA.As shown in Fig.6A and B,the redox peaks currents of PA or DA at H-C/N@TiO2/GCE increased gradually with the concentration increase and a good linear relationship was established.As the concentration of PA increased,two linearities were observed with two linear regression equations,i.e.,Ipa=-4.8417-3.2596c(R2=0.9910)for0.3-20μmol/L,Ipa=-48.1253-0.9894c(R2=0.9964)for 20-50μmol/L in Fig.6D.The linearity for DA was increased from 0.3 to 50μmol/L with linear regression equation of Ipa=-5.9062-2.0480c(R2=0.9934)in Fig.6E.According to the signal-to-noise ratio(S/N=3),the detection limit was estimated to be 50 and 40 nmol/L for PA and DA,respectively.Analytical performance(including linear range and limit of detection)of the other materials was compared and is shown in Table 1[12,42-49],which revealed that the detection limit of our work was the best.Hence,the superior performance of H-C/N@TiO2/GCE showed a promising platform for the simultaneous electrochemical determination of DA and PA.

    Table 1Analytical performance of electrodes for determination of PA and DA by differential pulse voltammetry(DPV).

    Fig.5.Electrochemical behavior of H-C/N@TiO2in 0.1 mol/L of PBS(containing 50μmol/L of PA and DA)with different pH values.Relationship between(A)peak current,(B)peak potential and pH.

    Fig.6.Differential pulse voltammetry(DPV)for(A)PA,(B)DA and(C)both mixture in 0.1 mol/L of PBS(pH 6.0)with H-C/N@TiO2/GCE,at scan rate of 100 mV/s.Calibration plots of oxidation current vs.(D)PA,(E)DA,and(F)both mixture concentrations.DPV curves increment:0.004 V,amplitude:0.05 V,pulse width:0.05 s,sampling width:0.0167 s,pulse period:0.5 s,quiet time:2 s.

    In addition,the simultaneous analysis of DA and PA was further carried out by DPV.As shown in Figs.6C and F,when the concentrations of DA and PA increased from 0.3 to 20μmol/L at H-C/N@TiO2/GCE,the redox peak currents also increased proportionally with two linear regression equations of Ipa=-4.7308-2.3984cPA(R2=0.9805),Ipa=-3.0063-2.285cDA(R2=0.9835),and the linear correlation coefficients were 0.9805 and 0.9835 for PA and DA,respectively.These results indicated that H-C/N@TiO2/GCE could be applied to identify and determinate DA and PA simultaneously as an electrochemical sensor.

    In order to assess the selectivity of H-C/N@TiO2/GCE,the electrolyte coexisted with ions and organic substances(including sodium chloride,potassium chloride,sodium acetate,and glucose,10 μmol/L)in PBS(0.1 mol/L,pH 6.0,with 1 μmol/L of PA and DA)and was then simultaneously determined by DPV.The results showed current variation was less than 5% after adding interfering substances,indicating that this nanomaterial as an electrochemical sensor had a strong anti-interference ability for analysis of PA and DA.In addition,PA and DA were determined every 3 days and its redox activity could be kept for nearly 15 days.The stability of the H-C/N@TiO2/GCE was evaluated by repeating five measurements in the same solution containing 1μmol/L of DA and PA.A relative standard deviation(RSD)of 1.78% was obtained for five successive measurements,which indicated that the sensor was not subjected to surface fouling by the oxidation products.So,experimental results revealed that the selectivity and repeatability of H-C/N@TiO2/GCE were good for the simultaneous analysis of PA and DA.

    To evaluate the feasibility of the sensor(H-C/N@TiO2/GCE),the selective analysis of DA and PA was highly necessary in human serum and saliva.Human blood was collected from the City Hospital in Zhangzhou,Fujian,China,centrifuged,and stored at 4°C in a refrigerator.Saliva samples were prepared according to thereferences[50,51].They were diluted to 50 fold by 0.1 mol/L of PBS.Then the concentrations of DA and PA were determined by H-C/N@TiO2/GCE.The results are shown in Table 2.The recoveries of DA and PA were 98.6%-102.4% and 101.4%-103.7%,respectively.These results proved that the influence of sample matrix on the determination of PA and DA could be overlooked.Hence,the sensor H-C/N@TiO2/GCE could be used to identify and detect DA and PA simultaneously in human serum or saliva.

    Table 2Detection of PA and DA in real sample(human serum or saliva)using H-C/N@TiO2/GCE.

    4.Conclusions

    In this work,a high-performance electrochemical sensor for the identification and detection of PA and DA,in-situ H-C/N@TiO2was constructed,with a high conductivity,superior electrocatalytic performance,and reliable qualitative and quantitative capabilities.More importantly,the performance of electrocatalytic activity was excellent and the preparation of electrode materials was environmental friendly,with in-situ doping reaction and hard template method.Both excellent sensing linear range and sensitive detection limit for PA(0.3-50 μmol/L and 50 nmol/L)and DA(0.3-50 μmol/L and 40 nmol/L)could be offered by our sensor.A high-efficacy and economical analytical platform was proposed by us,used for ultrasensitive and highly selective detection of PA and DA from human serum or saliva.These satisfactory results were due to the synergistic effect of different components of TiO2and N-doped carbon with abundant functional groups(including C-O,-OH,and N-H)and reduction ability,the advantages of double-shelled hollow spheres.

    CRediT author statement

    Hui Yang:Conceptualization,Methodology,Investigation,Writing-Original draft preparation,Formal analysis,Data curation;Gongxun Cao:Investigation,Data curation;Yongjun Huang:Data curation;Ye Lin:Investigation;Fengying Zheng:Funding acquisition,Supervision;Luxiu Lin:Data curation;Fengjiao Liu:Data curation;Shunxing Li:Methodology,Funding acquisition,Writing-Reviewing and Editing,Supervision.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Grant Nos.:22074058 and 21675077),the Project of Industry-University-Research Cooperation of Fujian Province(Grant No.:2019Y4010),and the Education-Science Research Project for Young and Middle-aged Teachers of Fujian(Grant No.:JAT200317).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2021.08.005.

    国产精品香港三级国产av潘金莲| 精品久久久久久成人av| 1024香蕉在线观看| 一级黄色大片毛片| 国产高清videossex| x7x7x7水蜜桃| 亚洲第一青青草原| 在线观看www视频免费| 欧美乱码精品一区二区三区| 亚洲色图综合在线观看| 91国产中文字幕| 男女下面进入的视频免费午夜 | 欧美黑人精品巨大| 男人舔女人的私密视频| 国产精品一区二区精品视频观看| 成人欧美大片| 成年女人毛片免费观看观看9| 久久精品91无色码中文字幕| 美女高潮喷水抽搐中文字幕| 久久国产精品男人的天堂亚洲| 老司机在亚洲福利影院| 中出人妻视频一区二区| 国产成人精品无人区| 日本免费a在线| 女生性感内裤真人,穿戴方法视频| 一个人免费在线观看的高清视频| 母亲3免费完整高清在线观看| 91国产中文字幕| 桃色一区二区三区在线观看| 亚洲五月天丁香| 日韩三级视频一区二区三区| 啦啦啦免费观看视频1| 老司机在亚洲福利影院| 日韩大尺度精品在线看网址 | 色老头精品视频在线观看| 91大片在线观看| 18禁黄网站禁片午夜丰满| 一夜夜www| 亚洲,欧美精品.| 自线自在国产av| 手机成人av网站| 精品国内亚洲2022精品成人| 欧美中文日本在线观看视频| www.www免费av| 色综合站精品国产| 国产高清激情床上av| 每晚都被弄得嗷嗷叫到高潮| 天天一区二区日本电影三级 | 精品人妻1区二区| 9热在线视频观看99| 啦啦啦韩国在线观看视频| 欧美黄色淫秽网站| 99riav亚洲国产免费| 视频区欧美日本亚洲| 在线观看一区二区三区| 久久久久久人人人人人| 一二三四在线观看免费中文在| 看黄色毛片网站| 亚洲avbb在线观看| 高清在线国产一区| 少妇的丰满在线观看| 99在线视频只有这里精品首页| 国产精品日韩av在线免费观看 | 如日韩欧美国产精品一区二区三区| 亚洲七黄色美女视频| 国产精品九九99| 宅男免费午夜| 国产精品久久久av美女十八| 国产欧美日韩一区二区三区在线| 国产精品98久久久久久宅男小说| 国产熟女xx| 麻豆一二三区av精品| 国产日韩一区二区三区精品不卡| 中文字幕色久视频| 亚洲成a人片在线一区二区| 99精品久久久久人妻精品| 亚洲av第一区精品v没综合| 亚洲精品粉嫩美女一区| avwww免费| 国产高清视频在线播放一区| 在线国产一区二区在线| 成人18禁高潮啪啪吃奶动态图| 亚洲免费av在线视频| 国产国语露脸激情在线看| a在线观看视频网站| 黄频高清免费视频| 中文字幕人妻丝袜一区二区| 欧美日本亚洲视频在线播放| 999久久久国产精品视频| 色哟哟哟哟哟哟| 老司机在亚洲福利影院| 美国免费a级毛片| 国产成人免费无遮挡视频| 成人18禁在线播放| 人妻久久中文字幕网| 一级作爱视频免费观看| 十八禁人妻一区二区| 精品国产一区二区久久| 琪琪午夜伦伦电影理论片6080| 国产又色又爽无遮挡免费看| 欧美+亚洲+日韩+国产| 精品一区二区三区视频在线观看免费| 韩国av一区二区三区四区| 精品国内亚洲2022精品成人| 欧美另类亚洲清纯唯美| 麻豆国产av国片精品| 视频在线观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 久久香蕉国产精品| 亚洲av美国av| 久热这里只有精品99| 亚洲欧美日韩无卡精品| 亚洲精品国产区一区二| 国产精品98久久久久久宅男小说| 咕卡用的链子| 91老司机精品| 国产片内射在线| 国产麻豆成人av免费视频| 日本免费a在线| 日韩成人在线观看一区二区三区| 国产精品98久久久久久宅男小说| 亚洲精品国产一区二区精华液| 日本一区二区免费在线视频| 国产精华一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 欧美成人免费av一区二区三区| 国产欧美日韩综合在线一区二区| 禁无遮挡网站| 最近最新中文字幕大全免费视频| 亚洲人成77777在线视频| АⅤ资源中文在线天堂| 黄片小视频在线播放| 美女午夜性视频免费| 在线视频色国产色| 久久久国产欧美日韩av| 999久久久国产精品视频| 亚洲精品国产区一区二| 亚洲中文字幕日韩| 亚洲自偷自拍图片 自拍| 色播在线永久视频| 国产精品电影一区二区三区| 中文字幕久久专区| 精品一区二区三区av网在线观看| √禁漫天堂资源中文www| 老司机福利观看| 女人被狂操c到高潮| 欧美黄色淫秽网站| 欧美中文日本在线观看视频| 熟女少妇亚洲综合色aaa.| 精品日产1卡2卡| 少妇的丰满在线观看| 欧美日韩福利视频一区二区| 久9热在线精品视频| 日本撒尿小便嘘嘘汇集6| e午夜精品久久久久久久| 亚洲欧美激情综合另类| 国产极品粉嫩免费观看在线| 国产麻豆成人av免费视频| 精品国产一区二区久久| 日韩一卡2卡3卡4卡2021年| 操出白浆在线播放| 三级毛片av免费| 欧美色欧美亚洲另类二区 | 一边摸一边抽搐一进一出视频| 欧美精品亚洲一区二区| 国产精品一区二区精品视频观看| 国产乱人伦免费视频| 九色亚洲精品在线播放| 9色porny在线观看| 啦啦啦观看免费观看视频高清 | 午夜福利18| 此物有八面人人有两片| 亚洲少妇的诱惑av| 搡老岳熟女国产| 久久中文看片网| 免费高清视频大片| 19禁男女啪啪无遮挡网站| 大型av网站在线播放| 这个男人来自地球电影免费观看| 又大又爽又粗| 精品国产一区二区久久| 日韩欧美国产在线观看| 最新美女视频免费是黄的| 啦啦啦观看免费观看视频高清 | 在线观看一区二区三区| 在线免费观看的www视频| videosex国产| 一夜夜www| 成年人黄色毛片网站| 中文字幕人妻熟女乱码| 夜夜夜夜夜久久久久| 国产97色在线日韩免费| 午夜久久久在线观看| 制服人妻中文乱码| 夜夜躁狠狠躁天天躁| 亚洲av片天天在线观看| 久久久久国产精品人妻aⅴ院| 激情视频va一区二区三区| 乱人伦中国视频| 欧美av亚洲av综合av国产av| 婷婷六月久久综合丁香| 在线天堂中文资源库| 国产成人影院久久av| 香蕉国产在线看| 成人18禁在线播放| 亚洲欧美日韩另类电影网站| 久久久久久免费高清国产稀缺| 纯流量卡能插随身wifi吗| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久成人aⅴ小说| 欧美中文日本在线观看视频| 国产一区二区三区在线臀色熟女| 天天添夜夜摸| 电影成人av| 精品无人区乱码1区二区| 精品午夜福利视频在线观看一区| 国产日韩一区二区三区精品不卡| 一级毛片精品| av免费在线观看网站| 色在线成人网| 变态另类丝袜制服| 久久久久久久久久久久大奶| 久久香蕉激情| aaaaa片日本免费| av天堂久久9| 窝窝影院91人妻| 精品国内亚洲2022精品成人| 91九色精品人成在线观看| 一区二区三区激情视频| 伊人久久大香线蕉亚洲五| 天天躁狠狠躁夜夜躁狠狠躁| 国产91精品成人一区二区三区| 成人免费观看视频高清| 一级,二级,三级黄色视频| 日本vs欧美在线观看视频| 久久久久精品国产欧美久久久| 看黄色毛片网站| 激情视频va一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲第一青青草原| 满18在线观看网站| 国产欧美日韩综合在线一区二区| 天堂影院成人在线观看| 成人永久免费在线观看视频| 亚洲专区国产一区二区| 久久国产精品男人的天堂亚洲| videosex国产| 亚洲精品久久成人aⅴ小说| 亚洲精品久久国产高清桃花| 淫妇啪啪啪对白视频| 久久久久久人人人人人| 久久中文字幕人妻熟女| x7x7x7水蜜桃| 曰老女人黄片| 亚洲视频免费观看视频| 免费搜索国产男女视频| tocl精华| 在线av久久热| 成人精品一区二区免费| 欧美性长视频在线观看| 老熟妇仑乱视频hdxx| 精品人妻在线不人妻| 淫秽高清视频在线观看| 久久九九热精品免费| 精品久久蜜臀av无| 亚洲男人的天堂狠狠| 亚洲国产日韩欧美精品在线观看 | 午夜影院日韩av| 91麻豆精品激情在线观看国产| 久久精品人人爽人人爽视色| 久久精品91无色码中文字幕| 少妇的丰满在线观看| 99精品在免费线老司机午夜| 99国产精品一区二区三区| 巨乳人妻的诱惑在线观看| 露出奶头的视频| 亚洲成av人片免费观看| 校园春色视频在线观看| 无限看片的www在线观看| 黄网站色视频无遮挡免费观看| 波多野结衣av一区二区av| 亚洲一区二区三区色噜噜| 亚洲国产精品999在线| 国产91精品成人一区二区三区| 亚洲av第一区精品v没综合| 国产麻豆成人av免费视频| 免费久久久久久久精品成人欧美视频| 亚洲午夜理论影院| 亚洲精品国产区一区二| 亚洲国产看品久久| av有码第一页| 国产麻豆69| 国产成人精品久久二区二区免费| 一二三四在线观看免费中文在| 他把我摸到了高潮在线观看| a在线观看视频网站| 国产精品野战在线观看| 乱人伦中国视频| 99国产精品一区二区蜜桃av| 国产激情久久老熟女| 曰老女人黄片| 此物有八面人人有两片| 国产免费av片在线观看野外av| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 精品卡一卡二卡四卡免费| 少妇熟女aⅴ在线视频| 亚洲中文字幕一区二区三区有码在线看 | 黄色女人牲交| 嫩草影院精品99| 波多野结衣一区麻豆| 一级毛片女人18水好多| 亚洲精品在线观看二区| 99在线人妻在线中文字幕| 亚洲国产欧美一区二区综合| 首页视频小说图片口味搜索| 精品高清国产在线一区| 国产一区二区三区视频了| 久久中文字幕一级| 日本在线视频免费播放| 日韩大尺度精品在线看网址 | 亚洲少妇的诱惑av| 在线观看免费视频网站a站| 51午夜福利影视在线观看| 亚洲人成伊人成综合网2020| 一级毛片女人18水好多| 午夜两性在线视频| 国产av一区二区精品久久| 制服丝袜大香蕉在线| 非洲黑人性xxxx精品又粗又长| 脱女人内裤的视频| 亚洲av五月六月丁香网| 国产三级在线视频| 黄色视频不卡| 免费搜索国产男女视频| x7x7x7水蜜桃| 国内精品久久久久精免费| 97人妻天天添夜夜摸| 日本五十路高清| 国产精品自产拍在线观看55亚洲| 热99re8久久精品国产| xxx96com| 乱人伦中国视频| 日韩av在线大香蕉| 正在播放国产对白刺激| 欧美久久黑人一区二区| 亚洲午夜理论影院| 亚洲五月色婷婷综合| 亚洲国产精品999在线| 亚洲九九香蕉| 人人妻人人澡人人看| 人人澡人人妻人| 久热爱精品视频在线9| 最好的美女福利视频网| 国产成年人精品一区二区| av超薄肉色丝袜交足视频| 免费不卡黄色视频| 一级毛片女人18水好多| 夜夜看夜夜爽夜夜摸| 久久精品aⅴ一区二区三区四区| 久久人妻福利社区极品人妻图片| 欧美色视频一区免费| 九色国产91popny在线| 欧美日韩精品网址| 成人国产一区最新在线观看| 99国产精品免费福利视频| 免费人成视频x8x8入口观看| 狂野欧美激情性xxxx| 国产亚洲精品综合一区在线观看 | 亚洲成av片中文字幕在线观看| 亚洲国产欧美一区二区综合| 国产亚洲欧美98| 亚洲午夜理论影院| 黑人巨大精品欧美一区二区蜜桃| 国产黄a三级三级三级人| 精品一区二区三区四区五区乱码| 久久国产精品人妻蜜桃| 欧美成人午夜精品| 黄色女人牲交| 一本久久中文字幕| av天堂久久9| 久久香蕉精品热| 国产91精品成人一区二区三区| 嫁个100分男人电影在线观看| netflix在线观看网站| 国产精品久久久av美女十八| 在线观看免费日韩欧美大片| 我的亚洲天堂| 搡老岳熟女国产| 欧美在线一区亚洲| 成熟少妇高潮喷水视频| 国产成+人综合+亚洲专区| 午夜影院日韩av| 欧美激情高清一区二区三区| 久久草成人影院| 欧美不卡视频在线免费观看 | 成人三级做爰电影| 女同久久另类99精品国产91| 亚洲,欧美精品.| 青草久久国产| 中文字幕av电影在线播放| 国产精品综合久久久久久久免费 | 成人手机av| 中文字幕久久专区| www.自偷自拍.com| 俄罗斯特黄特色一大片| 欧美成人免费av一区二区三区| 又黄又爽又免费观看的视频| av视频免费观看在线观看| 国产亚洲av嫩草精品影院| 久久精品国产综合久久久| 中文字幕最新亚洲高清| 高清在线国产一区| 亚洲成人免费电影在线观看| 亚洲,欧美精品.| 欧美色视频一区免费| 久久国产亚洲av麻豆专区| 亚洲美女黄片视频| 免费看十八禁软件| 99久久99久久久精品蜜桃| 国产在线观看jvid| 免费搜索国产男女视频| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 午夜亚洲福利在线播放| 欧美一级a爱片免费观看看 | 麻豆av在线久日| 一级毛片女人18水好多| 国产精品影院久久| 亚洲五月天丁香| 中文字幕高清在线视频| 一进一出抽搐gif免费好疼| 琪琪午夜伦伦电影理论片6080| 一区二区三区精品91| 色在线成人网| 亚洲精品粉嫩美女一区| 亚洲中文av在线| 久久草成人影院| 成人三级做爰电影| 国产亚洲av高清不卡| 亚洲精品久久成人aⅴ小说| 国产高清有码在线观看视频 | 少妇裸体淫交视频免费看高清 | 日韩欧美国产一区二区入口| 在线免费观看的www视频| av超薄肉色丝袜交足视频| 看免费av毛片| 女人被躁到高潮嗷嗷叫费观| 免费观看精品视频网站| 午夜成年电影在线免费观看| 亚洲自偷自拍图片 自拍| 国产亚洲av高清不卡| 久久久久久久午夜电影| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 久久香蕉精品热| 国产精品免费一区二区三区在线| 丝袜人妻中文字幕| 久久久久精品国产欧美久久久| 色哟哟哟哟哟哟| 久久婷婷人人爽人人干人人爱 | 久久久久九九精品影院| 亚洲一区高清亚洲精品| 咕卡用的链子| 国产亚洲精品第一综合不卡| 亚洲九九香蕉| 给我免费播放毛片高清在线观看| 亚洲国产欧美网| 变态另类成人亚洲欧美熟女 | av超薄肉色丝袜交足视频| 亚洲第一欧美日韩一区二区三区| 欧美乱色亚洲激情| 老汉色av国产亚洲站长工具| 大码成人一级视频| 九色亚洲精品在线播放| av欧美777| 18禁黄网站禁片午夜丰满| 看片在线看免费视频| 此物有八面人人有两片| 黄片大片在线免费观看| 人妻丰满熟妇av一区二区三区| 亚洲精品一区av在线观看| 精品熟女少妇八av免费久了| 一本综合久久免费| 一区福利在线观看| 亚洲欧美精品综合久久99| 在线观看66精品国产| 成人亚洲精品一区在线观看| 久久香蕉激情| 日本黄色视频三级网站网址| 欧美黄色片欧美黄色片| 欧美成人一区二区免费高清观看 | 亚洲成人国产一区在线观看| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 欧美日韩黄片免| 女性生殖器流出的白浆| 亚洲国产精品久久男人天堂| 国产精品一区二区精品视频观看| 日本 av在线| 欧美日韩福利视频一区二区| 亚洲av片天天在线观看| ponron亚洲| 亚洲av成人av| 嫁个100分男人电影在线观看| 精品一区二区三区av网在线观看| 亚洲国产毛片av蜜桃av| 黄频高清免费视频| 国产精品野战在线观看| 一区二区日韩欧美中文字幕| 亚洲五月天丁香| 一本综合久久免费| 国产一区在线观看成人免费| 亚洲一卡2卡3卡4卡5卡精品中文| 可以在线观看毛片的网站| 久久欧美精品欧美久久欧美| 麻豆av在线久日| 精品久久久久久久久久免费视频| 免费少妇av软件| 色精品久久人妻99蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜精品一区,二区,三区| 在线免费观看的www视频| 精品久久蜜臀av无| 精品福利观看| 俄罗斯特黄特色一大片| 成人亚洲精品av一区二区| 777久久人妻少妇嫩草av网站| 1024香蕉在线观看| 国产单亲对白刺激| 免费无遮挡裸体视频| 精品乱码久久久久久99久播| 99精品久久久久人妻精品| 精品卡一卡二卡四卡免费| 亚洲成人精品中文字幕电影| 18禁黄网站禁片午夜丰满| 国产亚洲精品综合一区在线观看 | 最新美女视频免费是黄的| 精品电影一区二区在线| 天堂√8在线中文| 国产成人av教育| 一级毛片高清免费大全| 国产男靠女视频免费网站| 少妇裸体淫交视频免费看高清 | 亚洲成a人片在线一区二区| 欧美不卡视频在线免费观看 | 日本 av在线| 欧美成狂野欧美在线观看| 国产精品亚洲美女久久久| 纯流量卡能插随身wifi吗| 亚洲片人在线观看| 久久九九热精品免费| 波多野结衣巨乳人妻| 久久欧美精品欧美久久欧美| 免费搜索国产男女视频| 黑人操中国人逼视频| 国产又爽黄色视频| 视频在线观看一区二区三区| 国内精品久久久久精免费| 亚洲精品在线观看二区| 高清黄色对白视频在线免费看| 在线国产一区二区在线| 亚洲第一av免费看| 亚洲五月天丁香| 黄色a级毛片大全视频| 此物有八面人人有两片| 满18在线观看网站| 午夜日韩欧美国产| avwww免费| 国产av又大| 丁香六月欧美| 国产又爽黄色视频| 女同久久另类99精品国产91| 久久婷婷人人爽人人干人人爱 | 很黄的视频免费| 岛国在线观看网站| 日韩欧美一区视频在线观看| 欧美成狂野欧美在线观看| 无限看片的www在线观看| 亚洲美女黄片视频| 亚洲七黄色美女视频| 国产片内射在线| 国产精品综合久久久久久久免费 | 女性生殖器流出的白浆| 在线av久久热| 老司机在亚洲福利影院| 国产xxxxx性猛交| 极品人妻少妇av视频| 国产成人欧美| 欧美日韩乱码在线| 精品久久久久久久久久免费视频| 久久久久亚洲av毛片大全| av在线天堂中文字幕| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 国产野战对白在线观看| 操美女的视频在线观看| 黄色成人免费大全| 美女高潮到喷水免费观看| 啦啦啦韩国在线观看视频| 国产精品九九99| 国内久久婷婷六月综合欲色啪| av欧美777| 别揉我奶头~嗯~啊~动态视频| 国产成人欧美| 久久精品91无色码中文字幕| 变态另类成人亚洲欧美熟女 | 中国美女看黄片| 侵犯人妻中文字幕一二三四区| 美女免费视频网站| 午夜精品在线福利| 少妇熟女aⅴ在线视频| 长腿黑丝高跟| 久久国产亚洲av麻豆专区| 午夜免费观看网址|