• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data

    2022-07-20 01:35:58YANGShunSONGHaibinZHANGKun
    Advances in Polar Science 2022年1期
    關(guān)鍵詞:山丘區(qū)沭河東平湖

    YANG Shun, SONG Haibin* & ZHANG Kun

    Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data

    YANG Shun1,2, SONG Haibin1,2*& ZHANG Kun1,2

    1School of Ocean and Earth Science, Tongji University, Shanghai 200092, China;2State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

    The submesoscale processes, including submesoscale eddies and fronts, have a strong vertical velocity, can thus make important supplements to the nutrients in the upper ocean. Using legacy multichannel seismic data AP25 of cruise EW9101 acquired northeast of the South Shetland Islands (Antarctic Peninsula) in February 1991, we identified an oceanic submesoscale eddy with the horizontal scale of ~4 km and a steep shelf break front that has variable dip angles from 5oto 10o. The submesoscale eddy is an anticyclonic eddy, which carries warm core water, can accelerate ice shelves melting. The upwelling induced by shelf break front may play an important role in transporting nutrients to the sea surface. The seismic images with very high lateral resolution may provide a new insight to understand the submesoscale and even small-scale oceanic phenomena in the interior.

    submesoscale eddy, shelf break front,seismic oceanography,South Shetland Islands

    1 Introduction

    Heat and material transports in oceans play a dominant role in regulating global climate and in controlling the oceanic absorption of greenhouse gases that are responsible for global warming (Zhang et al., 2014). Oceanic eddies have been recognized as key contributors in transporting heat, dissolved carbon, and other biogeochemical tracers (McGillicuddy et al., 2007; Dong et al., 2014). Surface- intensified mesoscale eddies have been studied extensively using altimetric observations (Chelton et al., 2007). However, we know much less about the contribution of subsurface eddies, particularly submesoscale ones, due to their small spatial and temporal scales (McWilliams, 2016). Same as submesoscale eddies, oceanic fronts are also submesoscale processes (Capet et al., 2008; McWilliams, 2016). The submesoscale processes, including submesoscale eddies and fronts, have a strong vertical velocity that can even reach 100 m·d?1. These submesoscale processes can sustain vertical secondary circulation with time scales comparable with the nutrient uptake by phytoplankton, thus make important supplements to the nutrients in the upper ocean (McGillicuddy et al., 2007; Zhang et al., 2019).

    Oceanic eddies can be divided into cyclonic and anticyclonic eddies based on their different rotation modes. The cyclonic and anticyclonic eddies rotate counterclockwise (clockwise) and clockwise (counterclockwise) in the northern (southern) hemisphere, respectively (Pingree and Le Cann, 1992). There are downwellings in anticyclonic eddies for the Coriolis force induced by the earth’s rotation, thus can form concave isopycnal/isothermal surfaces (Zhang et al., 2014).

    Different from oceanic eddies and fronts in the low and middle latitudes, those in polar regions are more important in regulating global climate for a large number of ice shelves in polar regions. A study by NASA found that ocean waters melting the undersides of Antarctic ice shelves are responsible for most of the continent’s ice shelf mass loss (Rignot et al., 2013). The eddies can carry warm-core water mass for a long distance, while almost maintaining the properties of core water. Thus, the core water mass that is warmer than surface waters will melt the undersides of Antarctic ice shelves (Gunn et al., 2018). Up to now, however, there are few researches on imaging water columns using seismic data in polar regions except Gunn et al. (2018).

    Here, we found a submesoscale eddy and a shelf break front in north of the South Shetland Islands (SSI) using a new method named seismic oceanography (SO). SO uses multichannel seismic (MCS) reflection data to produce detailed images of the water column (Holbrook et al., 2003; Holbrook and Fer, 2005; Ruddick et al., 2009). Seismic imaging (i.e., acoustic reflection) can be approximately thought to be the smoothed vertical gradient of seawater temperature (Ruddick et al., 2009). Compared with the traditional physical oceanography methods, SO has the advantages of high acquisition efficiency, very high lateral resolution (~10 m) and full depth imaging of seawater column (Dong et al., 2010; Song et al., 2021). Many researchers have used seismic data to image oceanic eddies in different regions, including the west exit of the Mediterranean Sea (Biescas et al., 2008; Pinheiro et al., 2010; Song et al., 2011), South China Sea (Huang et al., 2013), Gulf of Alaska (Tang et al., 2014, 2020), southeast of New Zealand (Gorman et al., 2018), Bellingshausen Sea (Gunn et al., 2018), Middle Atlantic Bight (Gula et al., 2019), Southwest Atlantic Ocean (Gunn et al., 2020), Northwest Pacific Ocean (Zhang et al., 2021) and the Pacific coast of Central America (Yang et al., 2021). Compared with eddies, the researches on oceanic fronts are less and mainly consist of Newfoundland Basin of Northwest Atlantic Ocean (Holbrook et al., 2003), east of Japan (Nakamura et al., 2006), and Southwest Atlantic Ocean (Gunn et al., 2020). They used seismic data, combined withstation observations such as Conductivity-Temperature-Depth (CTD) and eXpendable Bathy-Thermograph (XBT), remote sensing observations of sea surface temperature (SST), sea surface height (SSH), chl-concentration, and sometimes numerical simulations of fluid dynamics, to study the oceanic eddies and fronts.

    Figure 1 Bathymetry of the study region. The red line is seismic line AP25, and the 5 red dots are CTD stations in February. The isolines are isobaths of 100, 200, 500, 1000, 2000, 3000, 4000, and 5000 m, respectively. SSI = South Shetland Islands and EI = Elephant Island.

    2 Oceanographic setting

    SSI is located in southern Drake Strait and the northern tip of the Antarctic Peninsula (AP). Due to the complex topography, the water masses and circulations around the SSI are complex and variable (Zhou et al., 2006). The dominant circulations north of the SSI are the northeastward Antarctic Circumpolar Current (ACC) and Antarctic Slope Current (ASC) that flow southwestward along the outer shelf. As the only eastward circulation connecting the major oceans, ACC consists of a series of oceanic fronts. From north to south, these fronts are Subantarctic Front (SF), Polar Front (PF), Southern ACC Front (SACCF), and Southern Boundary (SB) (Orsi et al., 1995; Zhou and Zhu, 2020).

    The waters associated with the ACC are the warm Antarctic Surface Water (ASW), the cold Winter Water (WW) below the ASW, and the warm Circumpolar Deep Water (CDW). The CDW can be further separated into the Upper CDW (UCDW) and the Lower CDW (LCDW) based on their origins from the Indian-Pacific oceans and the Atlantic Ocean, respectively (Zhou et al., 2010). WW is caused by the salt precipitation of sea ice, the sensible heat dissipation to the atmosphere, and the vertical mixing of seawater driven by wind (Zhou and Zhu, 2020). Figure 2 shows the properties of these water masses surrounding SSI.

    Figure 2 The legacy CTD data. a,Temperature; b,Salinity; c,Sound speed profiles; d,diagram. ASW = Antarctic Surface Water, WW = Winter Water, and CDW = Circumpolar Deep Water. The color of the dots indicates the depth of the samples. The contours are corresponding density anomalies calculated by the equation of the state of seawater.

    3 Seismic data and hydrographic data

    3.1 Seismic acquisition and processing

    Multi-channel seismic data was acquired during R/V Maurice Ewing Expedition EW9101 conducted in February 1991. The original purpose of the seismic data acquisition is the geophysical study of the Pacific margin of Antarctica, including the Antarctic Peninsula and areas south to the intersection of the Heezen Fracture Zone with the margin. The acoustic source is an airgun array with a capacity of 136.9 L (8353 cu in). The shot interval was 20 s for ~50 m, and the nominal distance between the shot and the nearest channel is 263 m. There are 144 channels originally recorded, and group spacing is 25 m. The sample interval is 4 ms, and the record length is 12 s. Here we only use seismic line AP25 that acquired on 22 February 1991, to analyze the water masses. Note that there are only 120 channels available because the nearest 24 channels are empty and no data is recorded, hence the actual distance between the shot and the nearest effective channel is 863 m.

    The data quality of distant channels is poor because of far offset and seawater reflections are much weaker than strata reflections, so we used the nearest channel (120th channel) of each shot to produce the common offset gathers (COGs). Then COGs are processed with normal moveout correction with a constant velocity of 1460 m·s?1. The velocity is referenced from the legacy sound speed of this region shown in Figure 2c. In addition, 1D and 2D filterings are needed to suppress the noise. To avoid strata interference during filterings, it is necessary to mute the reflections below the seafloor before filterings.

    3.2 Hydrographic data

    The seismic data was acquired in 1991, which is too early to find coincident hydrographic data. We used legacy CTD data to distinguish water masses and calculate sound speed using the equation of state of seawater. The temperature- salinity relationship of these CTD casts is shown in Figure 2d. Water masses surrounding SSI can be divided into ASW, coldest WW below ASW, and warm CDW below WW. The CTD data is collected from February 1994 to 1996, and from the National Center of Environmental Information (NCEI) of National Oceanic and Atmospheric Administration (NOAA) (https://www.ncei.noaa.gov/ access/global-temperature-salinity-profile-programme/gwi.html). We also used monthly mean chl-concentration data in February 2001 by MODIS-terra sensor from NASA’s Ocean Color Web (https://oceancolor.gsfc.nasa.gov/). The resolution of Chl-data is 4 km. We used daily sea ice area fraction on February 22, 2003 by multi-sensor satellites from Natural Environment Research Council (NERC) Earth Observation Data Acquisition and Analysis Service (NEODAAS, https://www.neodaas.ac.uk/Home). The horizontal resolution of sea ice data is 1 km.

    4 Results

    4.1 Submesoscale eddy

    Seismic line AP25 with a length of ~156 km is almost perpendicular to the coastline of SSI and passes through the shelf, slope and trench from southeast to northwest (Figure 1). From Figure 3a, we can identify these submarine topography. Figure 3b shows the water column reflections in the box in Figure 3a after special processing for the seawater column (described in subsection 3.1). There are two obvious features, which are concave reflections and oblique reflections in the left and right, respectively. We enlarge these reflections in Figures 3c and 3d, respectively.

    Based on previous researches on oceanic eddies using seismic data (Biescas et al., 2008; Pinheiro et al., 2010; Song et al., 2011; Gorman et al., 2018), we suggested that the concave reflections (Figure 3c) are the lower boundary of an eddy. This eddy should be anticyclonic. Unfortunately, the upper boundary of the eddy is muted during the processing of water direct wave suppression.

    Figure 3 The seismic image of line AP25. a, Sub-seafloor reflections after stack and migration. The shot spacing is ~50 m. The position of shelf break is marked. b, Water column reflections in the box in (a). The image shows oceanic eddy and front. The reflections below the seafloor are muted. c, Seismic image of submesoscale eddy in the box in (b). d, Seismic image of shelf break front in the box in (b). The reference slope angles of 2°, 5°, and 10° are shown. The reflections below the seafloor are muted. The reflections in the upper 100 m are also muted for the processing of direct wave suppression.

    The eddy has a maximum depth near 500 m, and the upper boundary is shallower than 100 m. Therefore, the vertical scale of the anticyclonic eddy is more than 400 m. The reflections of the left boundary are narrow and steep, while there are a series of sub-horizontal reflections on the right of the right boundary. The eddy has a horizontal scale of 4 km (equals to ~80 shots). The reflections of the core and the boundaries are weak and intense respectively, which demonstrates that the interior water is homogeneous and different from that around it.

    Submesoscale eddies have the radii smaller than the first baroclinic Rossby radii of deformationR,1and larger than turbulent boundary layer thickness (Mcwilliams, 1985, 2016).R,1is a function of the Brunt–V?is?l? frequency (density stratification), the scale height, andgeographic latitude (Chelton et al., 1998; Nurser and Bacon, 2014). TheR,1is about 9 km in the shelf of SSI (Chelton et al., 1998). Here, the eddy has a horizontal scale of ~4 km, which is smaller than the local first baroclinic Rossby radius, thus is a submesoscale eddy.

    4.2 Shelf break front

    As shown in Figure 3d, there are a series of oblique reflections near the shelf break. The dipping direction of the reflections is opposite to that of the continental slope. The foot of the reflections locates the upper slope and near the shelf break. We interpreted that the oblique structure is shelf break front. The front is located near the southern ACC boundary (SB) (Orsi et al., 1995). It is noted that the front is steep and has variable dip angles of ~5o in the upper part and ~10o in the lower part (Figure 5). The foot of the front reaching the slope is ~550 m deep. The front may reach the sea surface if the reflections in the upper 100 m were not muted.

    Figure 4 a, Density profiles calculated from the legacy temperature and salinity data shown in Figure 2; b, Vertical density gradient calculated from the density in (a); The black solid lines are measured data, and the green solid line is the smoothed data; c, Brunt-V?is?l? frequency calculated from the density in (a). The black solid lines are measured data, and the green solid line is the smoothed data.

    Figure 5 Monthly mean sea surface temperature (a) and velocity (b) in February 1993. The solid black line is seismic line AP25. The black arrow indicates the reference velocity. The temperature and velocity data is from CMEMS.

    Figure 6 a, Distribution of shelf break front picked from the seismic profile; b, The slope angle of the shelf break front.

    Shelf-break front is frontal formations where cross-shelf waters encounter slope waters from the deeper oceans, often associated with upwelling (Condie, 1993; Gawarkiewicz and Plueddemann, 2020). The seasonally transitional features are sites of high temperature, salinity, and density gradients and often of high productivity where deep upwelled water contributes high nutrients.

    5 Discussion

    5.1 The influence on climate and ecosystem

    According to the traditional view, ablation from Antarctic ice shelves occurs mostly by iceberg calving, with basal melting only contributing 10%–28% of the total mass loss (Jacobs et al., 1992). New research indicated that ocean waters melting the undersides of Antarctic ice shelves are responsible for most of the continent’s ice shelf mass loss (Rignot et al., 2013). In the Southern Ocean, the lower CDW, which are warmer than upper ASW and WW, can transport warm water across the shelf and intrude the ice shelves. The cross-shelf transportation of warm water may increase the melting of the foundation, thereby promoting splitting glacier and ice loss (Rignot et al., 2008). The anticyclonic eddy can carry warm core water for a long distance, while almost maintaining the properties of core water (Mcwilliams, 1985). Thus, apart from the lower warm CDW, the core water mass that is warmer than surface water and surrounding water will melt the undersides of Antarctic ice shelves (Gunn et al., 2018). In this work, this submesoscale eddy may trap warm core water. This may promote the melting of sea ice.

    Submesoscale processes including submesoscale eddies and fronts are particularly relevant to phytoplankton productivity because the time scales on which they act are similar to those of phytoplankton growth (Zhang et al., 2019). The vertical secondary circulations in the fronts and the lateral boundaries of the eddies tend to destroy the lateral buoyancy gradient and restore the oceanic density stratification, which can induce upwelling (Capet et al., 2008; McWilliams et al., 2009; McWilliams, 2016) (Figure 7). The upwelling can transport nutrients from the bottom to the surface. Especially in the shelf-break front zone, there is almost the highest primary productivity (Gawarkiewicz and Plueddemann, 2020). A study in the Cosmonaut Sea found that half of the cumulative krill density across that survey was found within 80 km of the 1000 m isobath (the shelf break), and 40% within 40 km (Jarvis et al., 2010). Many researchers found that the zooplankton and related biological quantity are quite high near the shelf break of the SSI (Corzo et al., 2005; Reiss et al., 2008; Joiris and Dochy, 2013). As shown in Figure 8a, chl-concentration observed from MODIS-Terra near shelf-break is obviously higher than that north of shelf.

    Figure 7 Sketch of vertical secondary circulations of the anticyclonic eddy (left) and the shelf break front (right).

    5.2 Limitations of seismic data

    In this study, seismic data has some limitations. As shown in Figure 8b, there may be some thin ice covering the sea surface, which will increase the difficulty of seismic acquisition, and reduce the quality of seismic data. In addition, the minimum distance between the shot and geophone is 863 m, which is too far to acquire high signal-noise ratio data.

    The difference of water columns at middle and low latitudes is mainly caused by the temperature difference, while in polar regions, it is mainly caused by salinity difference. The seismic reflection coefficients are more affected by temperature than salinity (Ruddick et al., 2009). Therefore, seismic oceanographic imaging in polar regions will be more difficult. Sea ice cover will also have a certain impact on seismic acquisition and data signal-to-noise ratio. We may use a larger capacity airgun to collect seismic data in the ice-free period as far as possible to improve the signal-to-noise ratio.

    6 Conclusion

    Using legacy multichannel seismic data AP25 of cruise EW9101 acquired on the northeast of SSI in February 1991, we identified the oceanic submesoscale eddy with the horizontal scale ~4 km and a steep shelf break front that has variable dip angles from 5oto 10o. The submesoscale eddy is an anticyclonic eddy, which carries warm core water, can accelerate ice shelf melting. The upwelling induced by shelf break front may play an important role in transporting nutrients to the sea surface. The seismic images with very high lateral resolution may provide a new insight to understand the submesoscale and even small-scale oceanic phenomena in the interior.

    Figure 8 a, The monthly mean Chl-concentration around SSI in February 2001 from MODIS-Terra. The black line is seismic line AP25. Note that the color scale is displayed in logarithm. b, Thedaily area fraction of sea ice around SSI on February 22, 2003 from NEODAAS.

    Acknowledgements We thank the cruise members of R/V Maurice Ewing cruise EW9101 for acquiring the seismic data. The seismic data is provided by MGDS (https://www.marine-geo.org/tools/search/Files. php?data_set_uid=6923). The legacy CTD data is provided by NCEI (https://www.ncei.noaa.gov/access/global-temperature-salinity-profile- programme/gwi.html). The Chl-data is provided by NASA’s Ocean Color Web (https://oceancolor.gsfc.nasa.gov/). The sea ice data is provided by NEODAAS (https://www.neodaas.ac.uk/Home). This work was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant nos. IRASCC 01-03-01, 01-03-02), and is funded by the National Natural Science Foundation of China (Grant no. 41976048), and the National Key R&D Program of China (Grant no. 2018YFC0310000). We would like to thank four anonymous reviewers, and Guest Editor Prof. Jiuxin Shi, for their valuable suggestions and comments thatimproved this article.

    Biescas B, Sallarès V, Pelegrí J L, et al. 2008. Imaging meddy finestructure using multichannel seismic reflection data. Geophys Res Lett, 35(11): L11609, doi:10.1029/2008gl033971.

    Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California Current system. part II: frontal processes. J Phys Oceanogr, 38(1): 44-64, doi:10.1175/ 2007jpo3672.1.

    Chelton D B, deSzoeke R A, Schlax M G, et al. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr, 28(3): 433-460, doi:10.1175/1520-0485(1998)028<0433: gvotfb>2.0.co;2.

    Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophys Res Lett, 34(15): L15606, doi:10.1029/2007gl030812.

    Condie S A. 1993. Formation and stability of shelf break fronts. J Geophys Res, 98(C7): 12405, doi:10.1029/93jc00624.

    Corzo A, Rodríguez-Gálvez S, Lubian L, et al. 2005. Spatial distribution of transparent exopolymer particles in the Bransfield Strait, Antarctica. J Plankton Res, 27(7): 635-646, doi:10.1093/plankt/fbi038.

    Dong C M, McWilliams J C, Liu Y, et al. 2014. Global heat and salt transports by eddy movement. Nat Commun, 5: 3294, doi:10.1038/ ncomms4294.

    Dong C Z, Song H B, Bai Y, et al. 2010. The latest development of Seismic Oceanography. Prog Geophys, 25(1): 109-123 (in Chinese with English abstract).

    Gawarkiewicz G, Plueddemann A J. 2020. Scientific rationale and conceptual design of a process-oriented shelfbreak observatory: the OOI Pioneer Array. J Oper Oceanogr, 13(1): 19-36, doi:10.1080/1755876X.2019.1679609.

    Gorman A R, Smillie M W, Cooper J K, et al. 2018. Seismic characterization of oceanic water masses, water mass boundaries, and mesoscale eddies SE of New Zealand. J Geophys Res Oceans, 123(2): 1519-1532, doi:10.1002/2017jc013459.

    Gula J, Blacic T M, Todd R E. 2019. Submesoscale coherent vortices in the Gulf Stream. Geophys Res Lett, 46(5): 2704-2714, doi:10.1029/ 2019gl081919.

    Gunn K L, White N, Caulfield C C P. 2020. Time-lapse seismic imaging of oceanic fronts and transient lenses within south Atlantic Ocean. J Geophys Res Oceans, 125(7): e2020JC016293, doi:10.1029/2020jc 016293.

    Gunn K L, White N J, Larter R D, et al. 2018. Calibrated seismic imaging of eddy-dominated warm-water transport across the Bellingshausen Sea, Southern Ocean. J Geophys Res Oceans, 123(4): 3072-3099, doi:10.1029/2018jc013833.

    Holbrook W S, Fer I. 2005. Ocean internal wave spectra inferred from seismic reflection transects. Geophys Res Lett, 32(15): L15604, doi:10.1029/2005gl023733.

    Holbrook W S, Pa?ramo P, Pearse S, et al. 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301(5634): 821-824, doi:10.1126/science.1085116.

    Huang X H, Song H B, Bai Y, et al. 2013. Estimation of geostrophic velocity from seismic images of mesoscale eddy in the South China Sea. Chin J Geophys, 56(1): 181-187 (in Chinese with English abstract).

    Jacobs S S, Helmer H H, Doake C S M, et al. 1992. Melting of ice shelves and the mass balance of Antarctica. J Glaciol, 38(130): 375-387, doi:10.3189/s0022143000002252.

    Jarvis T, Kelly N, Kawaguchi S, et al. 2010. Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill () off East Antarctica (30-80°E) in January-March 2006. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 916-933, doi:10.1016/j.dsr2.2008.06.013.

    Joiris C R, Dochy O. 2013. A major autumn feeding ground for fin whales, southern fulmars and grey-headed albatrosses around the South Shetland Islands, Antarctica. Polar Biol, 36(11): 1649-1658, doi:10.1007/s00300-013-1383-8.

    McWilliams J C. 1985. Submesoscale, coherent vortices in the ocean. Rev Geophys, 23(2): 165, doi:10.1029/rg023i002p00165.

    McWilliams J C. 2016. Submesoscale currents in the ocean. Proc R Soc A, 472(2189): 20160117, doi:10.1098/rspa.2016.0117.

    McWilliams J C, Colas F, Molemaker M J. 2009. Cold filamentary intensification and oceanic surface convergence lines. Geophys Res Lett, 36(18): L18602, doi:10.1029/2009gl039402.

    Nakamura Y, Noguchi T, Tsuji T, et al. 2006. Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front. Geophys Res Lett, 33(23): L23605, doi:10.1029/2006gl027437.

    Nurser A J G, Bacon S. 2014. The Rossby radius in the Arctic Ocean. Ocean Sci, 10(6): 967-975, doi:10.5194/os-10-967-2014.

    Orsi A H, Whitworth T, Nowlin W D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap, 42(5): 641-673, doi:10.1016/0967-0637(95) 00021-W.

    Pingree R D, Le Cann B. 1992. Three anticyclonic slope water oceanic eDDIES (SWODDIES) in the Southern Bay of Biscay in 1990. Deep Sea Res A Oceanogr Res Pap, 39(7-8): 1147-1175, doi:10.1016/0198- 0149(92)90062-X.

    Pinheiro L M, Song H B, Ruddick B, et al. 2010. Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data. J Mar Syst, 79(1-2): 89-100, doi:10.1016/j.jmarsys.2009.07.004.

    一是加快雨洪資源利用,著力提升現(xiàn)代水網(wǎng)保障能力。加快南水北調(diào)配套工程建設(shè),開工建設(shè)引黃濟(jì)青改擴(kuò)建工程。積極推進(jìn)雨洪資源利用,先期規(guī)劃實(shí)施一期工程18座大中型水庫增容,新建8座山丘區(qū)水庫、6座地下水庫和32座平原水庫,以及沂沭河洪水調(diào)配東線工程和東平湖增容工程,努力提高水資源供給能力。

    Reiss C S, Cossio A M, Loeb V, et al. 2008. Variations in the biomass of Antarctic krill () around the South Shetland Islands, 1996–2006. ICES J Mar Sci, 65(4): 497-508, doi:10.1093/icesjms/ fsn033.

    Rignot E, Bamber J L, van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci, 1(2): 106-110, doi:10.1038/ngeo102.

    Rignot E, Jacobs S, Mouginot J, et al. 2013. Ice-shelf melting around Antarctica. Science, 341(6143): 266-270, doi:10.1126/science.1235798.

    Ruddick B, Song H B, Dong C Z, et al. 2009. Water column seismic images as maps of temperature gradient. Oceanography, 22(1): 192-205, doi:10.5670/oceanog.2009.19.

    Sallarès V, Biescas B, Buffett G, et al. 2009. Relative contribution of temperature and salinity to ocean acoustic reflectivity. Geophys Res Lett, 36: L00D06, doi:10.1029/2009gl040187.

    Sheen K L, White N, Caulfield C P, et al. 2011. Estimating geostrophic shear from seismic images of oceanic structure. J Atmos Ocean Technol, 28(9): 1149-1154, doi:10.1175/jtech-d-10-05012.1.

    Song H B, Chen J X, Pinheiro L M, et al. 2021. Progress and prospects of seismic oceanography. Deep Sea Res Part I Oceanogr Res Pap, 177: 103631, doi:10.1016/j.dsr.2021.103631.

    Song H B, Pinheiro L M, Ruddick B, et al. 2011. Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia). J Mar Res, 69(4): 827-842, doi:10.1357/0022240 11799849309.

    Tang Q S, Gulick S P S, Sun J, et al. 2020. Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the Gulf of Alaska investigated by marine seismic survey data. J Geophys Res Oceans, 125(1): e2019JC015393, doi:10.1029/2019jc015393.

    Tang Q S, Gulick S P S, Sun L T. 2014. Seismic observations from a Yakutat eddy in the northern Gulf of Alaska. J Geophys Res Oceans, 119(6): 3535-3547, doi:10.1002/2014jc009938.

    Yang S, Song H B, Fan W H, et al. 2021. Submesoscale features of a cyclonic eddy in the Gulf of Papagayo, Central America. Chin J Geophys, 64(4): 1328-1340, doi:10.6038/cjg2021O0204 (in Chinese with English abstract).

    Zhang J C, Luo Y M, Xing J H. 2021. Seismic images of shallow waters over the Shatsky Rise in the Northwest Pacific Ocean. J Ocean Univ China, 20(5): 1079-1088, doi:10.1007/s11802-021-4581-y.

    Zhang Z G, Qiu B, Klein P, et al. 2019. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nat Commun, 10: 2838, doi:10.1038/s41467-019-10883-w.

    Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322-324, doi:10.1126/science.1252418.

    Zhou M, Niiler P P, Zhu Y W, et al. 2006. The western boundary current in the Bransfield Strait, Antarctica. Deep Sea Res Part I Oceanogr Res Pap, 53(7): 1244-1252, doi:10.1016/j.dsr.2006.04.003.

    Zhou M, Zhu Y W, Dorland R D, et al. 2010. Dynamics of the current system in the southern Drake Passage. Deep Sea Res Part I Oceanogr Res Pap, 57(9): 1039-1048, doi:10.1016/j.dsr.2010.05.012.

    Zhou M X, Zhu G P. 2020. Water mass structure in the euphotic zone around south Shetland Islands, Antarctic during summer 2013. Chin J Polar Res, 32(1): 90-101 (in Chinese with English abstract).

    31 March 2021;

    17 February 2022;

    30 March 2022

    10.13679/j.advps.2021.0004

    , ORCID: 0000-0001-8031-9983, E-mail: hbsong@#edu.cn

    : Yang S, Song H B, Zhang K.Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data. Adv Polar Sci, 2022, 33(1): 110-118,doi:10.13679/j.advps.2021.0004

    猜你喜歡
    山丘區(qū)沭河東平湖
    美麗的沭河公園
    修復(fù)漁業(yè)資源,改善水域環(huán)境
    ——東平湖增殖放流活動實(shí)施
    我家門前沭水流
    1990—2016年東平湖水位變化及其對水質(zhì)的影響
    山丘區(qū)高效節(jié)水灌溉模式與投資控制分析
    蘆 葦
    再去看看東平湖(外二首)
    核桃源(2019年3期)2019-11-14 05:38:55
    城市山丘區(qū)防汛安置點(diǎn)規(guī)劃模型探析
    基于Landsat數(shù)據(jù)的近30年東平湖濕地植被覆蓋演變研究
    山丘區(qū)排澇流量計(jì)算與分析
    99热精品在线国产| 亚洲久久久久久中文字幕| 成人鲁丝片一二三区免费| 国产在线精品亚洲第一网站| 成年版毛片免费区| 欧美又色又爽又黄视频| 少妇被粗大猛烈的视频| 丝袜美腿在线中文| 成年女人毛片免费观看观看9| 精品久久久久久成人av| 国产成+人综合+亚洲专区| 每晚都被弄得嗷嗷叫到高潮| 久久人人爽人人爽人人片va | 欧洲精品卡2卡3卡4卡5卡区| 美女被艹到高潮喷水动态| 国产亚洲精品久久久久久毛片| 亚洲乱码一区二区免费版| 宅男免费午夜| 欧美黑人巨大hd| 亚洲五月婷婷丁香| 国产视频内射| 午夜福利在线在线| 又爽又黄a免费视频| 直男gayav资源| 啦啦啦韩国在线观看视频| 国产综合懂色| 天堂影院成人在线观看| 在线免费观看不下载黄p国产 | 久久午夜福利片| 国产精华一区二区三区| 欧美乱妇无乱码| 97超级碰碰碰精品色视频在线观看| 亚洲人与动物交配视频| 性欧美人与动物交配| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一电影网av| 丰满人妻熟妇乱又伦精品不卡| 窝窝影院91人妻| 久久久久免费精品人妻一区二区| av在线观看视频网站免费| 国产三级黄色录像| 高清毛片免费观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 成人国产综合亚洲| 国产男靠女视频免费网站| 亚洲av日韩精品久久久久久密| 亚洲五月婷婷丁香| 亚洲欧美日韩高清在线视频| 九九在线视频观看精品| 黄片小视频在线播放| 一区二区三区免费毛片| 国产精品伦人一区二区| 国产单亲对白刺激| 男女下面进入的视频免费午夜| 国产主播在线观看一区二区| 男人舔女人下体高潮全视频| 日韩欧美精品v在线| www日本黄色视频网| 美女免费视频网站| 日韩欧美一区二区三区在线观看| 日韩欧美一区二区三区在线观看| 91麻豆精品激情在线观看国产| 精品乱码久久久久久99久播| 国产精品爽爽va在线观看网站| 日本 欧美在线| 免费观看的影片在线观看| 免费在线观看亚洲国产| 精品午夜福利视频在线观看一区| 国产久久久一区二区三区| 久久国产精品人妻蜜桃| 亚洲国产日韩欧美精品在线观看| 黄色日韩在线| 身体一侧抽搐| 国产乱人视频| 美女大奶头视频| 精品一区二区免费观看| ponron亚洲| 在线观看66精品国产| 99久久久亚洲精品蜜臀av| 在线观看av片永久免费下载| 欧美日本亚洲视频在线播放| 少妇丰满av| 亚洲av美国av| 88av欧美| 91av网一区二区| 欧美bdsm另类| 最近中文字幕高清免费大全6 | 男女之事视频高清在线观看| 人妻久久中文字幕网| 久久人妻av系列| 少妇高潮的动态图| 精华霜和精华液先用哪个| 欧美一区二区国产精品久久精品| 免费在线观看成人毛片| 免费观看精品视频网站| 午夜福利在线观看免费完整高清在 | 国产三级黄色录像| 亚洲第一欧美日韩一区二区三区| 天天一区二区日本电影三级| 此物有八面人人有两片| 精品一区二区三区人妻视频| 国产淫片久久久久久久久 | 成人亚洲精品av一区二区| 免费搜索国产男女视频| 国内少妇人妻偷人精品xxx网站| 成人国产一区最新在线观看| 日韩中字成人| 亚洲无线在线观看| a级毛片免费高清观看在线播放| 男女床上黄色一级片免费看| 国产精品女同一区二区软件 | 一夜夜www| 日本一二三区视频观看| 中文字幕精品亚洲无线码一区| 免费黄网站久久成人精品 | 宅男免费午夜| 久久久久久大精品| 国产精品一区二区三区四区久久| 九九热线精品视视频播放| 欧美成人性av电影在线观看| 精品免费久久久久久久清纯| 69人妻影院| 亚洲国产色片| 可以在线观看的亚洲视频| 日韩 亚洲 欧美在线| 亚洲人成网站在线播| a级一级毛片免费在线观看| 在线观看舔阴道视频| 麻豆久久精品国产亚洲av| 亚洲电影在线观看av| 12—13女人毛片做爰片一| 午夜a级毛片| 亚洲熟妇熟女久久| 亚洲无线在线观看| 一区二区三区四区激情视频 | 中文字幕高清在线视频| h日本视频在线播放| 最好的美女福利视频网| 久久国产乱子免费精品| 亚州av有码| 两个人视频免费观看高清| 一本一本综合久久| 国产精品久久久久久久久免 | 在线天堂最新版资源| h日本视频在线播放| 国产视频一区二区在线看| 久久精品91蜜桃| 网址你懂的国产日韩在线| 午夜福利18| 宅男免费午夜| 夜夜爽天天搞| xxxwww97欧美| 在线播放国产精品三级| 欧美不卡视频在线免费观看| www日本黄色视频网| 一区二区三区四区激情视频 | 亚洲熟妇熟女久久| 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 黄片小视频在线播放| 能在线免费观看的黄片| 成年版毛片免费区| 国产亚洲欧美在线一区二区| 婷婷丁香在线五月| 免费在线观看影片大全网站| 亚洲av熟女| 欧美国产日韩亚洲一区| 亚洲av成人精品一区久久| 亚洲 国产 在线| 欧美性感艳星| 乱码一卡2卡4卡精品| 99久久久亚洲精品蜜臀av| 国产男靠女视频免费网站| 最近中文字幕高清免费大全6 | 看黄色毛片网站| 国产精品久久久久久久电影| 97人妻精品一区二区三区麻豆| 国产精品1区2区在线观看.| 亚洲久久久久久中文字幕| 免费观看精品视频网站| 91九色精品人成在线观看| 五月伊人婷婷丁香| 免费观看的影片在线观看| 啦啦啦观看免费观看视频高清| 欧美+日韩+精品| 草草在线视频免费看| 午夜老司机福利剧场| 精品国内亚洲2022精品成人| 久久久久亚洲av毛片大全| 99国产综合亚洲精品| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 99国产综合亚洲精品| 久久精品国产亚洲av天美| 麻豆久久精品国产亚洲av| 宅男免费午夜| 如何舔出高潮| 此物有八面人人有两片| 一区二区三区四区激情视频 | 精品一区二区免费观看| 麻豆av噜噜一区二区三区| 激情在线观看视频在线高清| 香蕉av资源在线| 高清毛片免费观看视频网站| 欧美潮喷喷水| 美女免费视频网站| 青草久久国产| 婷婷亚洲欧美| 国产私拍福利视频在线观看| av女优亚洲男人天堂| 色5月婷婷丁香| 男女做爰动态图高潮gif福利片| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 久久国产乱子免费精品| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 长腿黑丝高跟| 热99re8久久精品国产| 国产精品国产高清国产av| www.999成人在线观看| 女人被狂操c到高潮| 亚洲欧美日韩东京热| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 中文亚洲av片在线观看爽| 国产av不卡久久| 能在线免费观看的黄片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇熟女久久| 99久久成人亚洲精品观看| 国产高潮美女av| 丝袜美腿在线中文| 亚洲国产日韩欧美精品在线观看| 美女黄网站色视频| 免费看日本二区| 又黄又爽又免费观看的视频| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 精品人妻偷拍中文字幕| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| 亚洲精品在线观看二区| 青草久久国产| 精品不卡国产一区二区三区| 亚洲最大成人av| 老女人水多毛片| 少妇人妻一区二区三区视频| 国产美女午夜福利| 色哟哟哟哟哟哟| 久久久精品欧美日韩精品| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 岛国在线免费视频观看| 看免费av毛片| 少妇丰满av| 一级黄片播放器| 日本黄色视频三级网站网址| 欧美黑人欧美精品刺激| 亚洲不卡免费看| 亚洲专区中文字幕在线| 性色avwww在线观看| 午夜免费男女啪啪视频观看 | 欧美又色又爽又黄视频| 超碰av人人做人人爽久久| 午夜久久久久精精品| .国产精品久久| 精品久久久久久久久av| 真实男女啪啪啪动态图| 久久国产乱子免费精品| 在线看三级毛片| 色5月婷婷丁香| 国产av不卡久久| 老司机福利观看| 一进一出抽搐gif免费好疼| 国产黄色小视频在线观看| 又爽又黄a免费视频| 国产野战对白在线观看| 亚洲成人久久爱视频| 特级一级黄色大片| 久久久成人免费电影| 夜夜夜夜夜久久久久| 两个人的视频大全免费| 丝袜美腿在线中文| 在线播放无遮挡| 国产私拍福利视频在线观看| 国产成人欧美在线观看| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 内射极品少妇av片p| 麻豆国产97在线/欧美| 高清在线国产一区| 一级a爱片免费观看的视频| www.www免费av| 韩国av一区二区三区四区| 日本 av在线| 三级毛片av免费| 麻豆成人av在线观看| 在线免费观看的www视频| 精品熟女少妇八av免费久了| 永久网站在线| 一边摸一边抽搐一进一小说| 在线播放无遮挡| 日本精品一区二区三区蜜桃| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣高清无吗| 久久久久国内视频| 国产毛片a区久久久久| 亚洲最大成人av| 亚洲欧美日韩高清在线视频| 久久亚洲精品不卡| 一级av片app| 嫩草影视91久久| 日韩欧美精品免费久久 | 久久天躁狠狠躁夜夜2o2o| 国产成+人综合+亚洲专区| 国产精品三级大全| 精品久久久久久久久久久久久| 色在线成人网| 简卡轻食公司| 欧美日韩黄片免| 国产精品久久视频播放| 小蜜桃在线观看免费完整版高清| 波多野结衣高清作品| 国产精品伦人一区二区| 男人舔奶头视频| 在线观看午夜福利视频| 白带黄色成豆腐渣| 精品午夜福利在线看| av黄色大香蕉| 国产私拍福利视频在线观看| 精品午夜福利视频在线观看一区| 精品人妻1区二区| 最近中文字幕高清免费大全6 | 国内精品久久久久精免费| 极品教师在线视频| 一个人看的www免费观看视频| 九九久久精品国产亚洲av麻豆| 毛片女人毛片| 天堂av国产一区二区熟女人妻| 色在线成人网| 欧美激情在线99| 免费在线观看日本一区| 国产爱豆传媒在线观看| 亚洲av第一区精品v没综合| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区 | 搡老妇女老女人老熟妇| 欧美xxxx性猛交bbbb| 成人国产综合亚洲| 一级a爱片免费观看的视频| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 欧美+亚洲+日韩+国产| 禁无遮挡网站| 黄色日韩在线| 国产精品久久视频播放| 在线国产一区二区在线| 88av欧美| 久久人妻av系列| 久久婷婷人人爽人人干人人爱| 无人区码免费观看不卡| 国产高潮美女av| 男插女下体视频免费在线播放| 在线观看舔阴道视频| 久久精品影院6| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 成人无遮挡网站| 日韩精品中文字幕看吧| 最近中文字幕高清免费大全6 | 欧美最新免费一区二区三区 | 91在线观看av| 熟女人妻精品中文字幕| 国产乱人视频| xxxwww97欧美| 欧美日本亚洲视频在线播放| 可以在线观看的亚洲视频| 久久精品91蜜桃| 91久久精品国产一区二区成人| 天天一区二区日本电影三级| 免费观看人在逋| 欧美潮喷喷水| 国产成人福利小说| a级一级毛片免费在线观看| 亚洲内射少妇av| 一本精品99久久精品77| 国产真实伦视频高清在线观看 | 久久久久久大精品| 最近在线观看免费完整版| 99久久精品一区二区三区| 国产野战对白在线观看| 嫩草影院入口| 韩国av一区二区三区四区| 搡老岳熟女国产| 亚洲成av人片免费观看| 亚洲av电影不卡..在线观看| 国产视频一区二区在线看| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| 天堂av国产一区二区熟女人妻| 少妇丰满av| bbb黄色大片| 国产免费男女视频| 精品人妻1区二区| 国产中年淑女户外野战色| 此物有八面人人有两片| 十八禁人妻一区二区| 午夜两性在线视频| 欧美乱妇无乱码| 亚洲电影在线观看av| 女人十人毛片免费观看3o分钟| 91九色精品人成在线观看| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 极品教师在线免费播放| 99国产精品一区二区三区| 久久久久久久精品吃奶| 熟女电影av网| 精品免费久久久久久久清纯| 免费人成在线观看视频色| 国产伦精品一区二区三区视频9| 色尼玛亚洲综合影院| 婷婷六月久久综合丁香| 国产中年淑女户外野战色| 亚洲精品亚洲一区二区| 亚洲人成电影免费在线| 日本黄大片高清| 狠狠狠狠99中文字幕| 丁香六月欧美| 国产亚洲欧美在线一区二区| 国产大屁股一区二区在线视频| 神马国产精品三级电影在线观看| 成人性生交大片免费视频hd| 99国产极品粉嫩在线观看| 国产69精品久久久久777片| 亚洲精品在线观看二区| 国产69精品久久久久777片| 2021天堂中文幕一二区在线观| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 精品国产三级普通话版| 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| 99热这里只有精品一区| 18禁黄网站禁片免费观看直播| 一区二区三区四区激情视频 | 一级毛片久久久久久久久女| 国产亚洲精品av在线| av天堂在线播放| 99久久精品国产亚洲精品| 日韩欧美精品v在线| 人妻久久中文字幕网| 国产欧美日韩一区二区三| 亚洲美女搞黄在线观看 | 久久热精品热| 成年免费大片在线观看| 国内精品美女久久久久久| 成人无遮挡网站| 变态另类成人亚洲欧美熟女| 超碰av人人做人人爽久久| 日日摸夜夜添夜夜添av毛片 | 日本撒尿小便嘘嘘汇集6| 日韩欧美精品v在线| 99热这里只有精品一区| 99热只有精品国产| 国产精品久久久久久久久免 | 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 无人区码免费观看不卡| 欧美日韩综合久久久久久 | 国产精华一区二区三区| 欧美+日韩+精品| 国产黄色小视频在线观看| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 91麻豆av在线| 国产成年人精品一区二区| 亚洲avbb在线观看| 国产高潮美女av| 听说在线观看完整版免费高清| 超碰av人人做人人爽久久| 欧美另类亚洲清纯唯美| 亚洲天堂国产精品一区在线| 免费黄网站久久成人精品 | 国产av在哪里看| 乱人视频在线观看| 亚洲在线观看片| 国产高清激情床上av| 首页视频小说图片口味搜索| 午夜福利高清视频| 国产精品av视频在线免费观看| 精品人妻熟女av久视频| 国产视频一区二区在线看| 国产黄色小视频在线观看| 亚洲国产精品久久男人天堂| 久久久精品大字幕| 久久久久久久久久黄片| 首页视频小说图片口味搜索| 精品一区二区三区视频在线观看免费| 黄色视频,在线免费观看| 免费观看精品视频网站| 久久国产乱子伦精品免费另类| 舔av片在线| 色5月婷婷丁香| 国产精品久久久久久人妻精品电影| 色5月婷婷丁香| 天天躁日日操中文字幕| 一区二区三区高清视频在线| 国产欧美日韩一区二区精品| 日韩欧美国产一区二区入口| 国内久久婷婷六月综合欲色啪| 一a级毛片在线观看| 别揉我奶头 嗯啊视频| 国产成年人精品一区二区| 一本精品99久久精品77| 国产精品一及| 国产精品野战在线观看| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕 | 国产免费男女视频| 亚洲熟妇熟女久久| 久久久久久久久久成人| 成年人黄色毛片网站| 欧美日本亚洲视频在线播放| 欧美黄色淫秽网站| 欧美激情国产日韩精品一区| 露出奶头的视频| 欧美高清成人免费视频www| 噜噜噜噜噜久久久久久91| 国产亚洲精品综合一区在线观看| 90打野战视频偷拍视频| 免费av观看视频| 最近视频中文字幕2019在线8| 国产伦一二天堂av在线观看| av国产免费在线观看| 两人在一起打扑克的视频| 自拍偷自拍亚洲精品老妇| 欧美3d第一页| av国产免费在线观看| 精品久久久久久成人av| 亚洲va日本ⅴa欧美va伊人久久| 女生性感内裤真人,穿戴方法视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本亚洲视频在线播放| 国产精品女同一区二区软件 | 亚洲av五月六月丁香网| 搡老岳熟女国产| 欧美午夜高清在线| 色综合欧美亚洲国产小说| 午夜福利18| 日韩av在线大香蕉| 欧美黄色淫秽网站| 老熟妇仑乱视频hdxx| 99精品久久久久人妻精品| 人妻夜夜爽99麻豆av| 久久亚洲真实| 亚洲欧美日韩东京热| 亚洲中文字幕日韩| 欧美激情在线99| av在线老鸭窝| 色综合亚洲欧美另类图片| 国产av不卡久久| 18美女黄网站色大片免费观看| 蜜桃亚洲精品一区二区三区| 国产精品一区二区三区四区免费观看 | 中文字幕高清在线视频| 久久精品国产清高在天天线| 床上黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 嫁个100分男人电影在线观看| 在线观看舔阴道视频| 中文字幕人成人乱码亚洲影| 亚洲成av人片免费观看| 亚洲欧美日韩东京热| 午夜免费激情av| 九色国产91popny在线| 美女黄网站色视频| 精品久久久久久久人妻蜜臀av| 91久久精品电影网| 欧美成人a在线观看| 一区二区三区高清视频在线| 久久性视频一级片| 熟女电影av网| 欧美成人一区二区免费高清观看| 亚洲av二区三区四区| 成人性生交大片免费视频hd| 一区二区三区高清视频在线| 淫秽高清视频在线观看| 麻豆av噜噜一区二区三区| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 淫妇啪啪啪对白视频| 久久久久久国产a免费观看| 中文在线观看免费www的网站| 波多野结衣高清作品| 免费一级毛片在线播放高清视频| 一进一出好大好爽视频| 免费av观看视频| 青草久久国产| 好男人电影高清在线观看| 亚洲不卡免费看| 国产精品一区二区三区四区久久| 欧美乱色亚洲激情| 国产一区二区在线av高清观看| 国产又黄又爽又无遮挡在线| 国产精品一及| 人妻丰满熟妇av一区二区三区| 日韩人妻高清精品专区| 狂野欧美白嫩少妇大欣赏| 国产私拍福利视频在线观看| xxxwww97欧美| 欧美日本亚洲视频在线播放|