• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer

    2022-07-20 01:34:50ZHANGWeiHAOQiangHEJianfengPANJianming
    Advances in Polar Science 2022年1期

    ZHANG Wei, HAO Qiang*, HE Jianfeng & PAN Jianming

    Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer

    ZHANG Wei1,2, HAO Qiang1,2*, HE Jianfeng3& PAN Jianming1,2

    1Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou 310000, China;2Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310000, China;3Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai 200136, China

    The size-fractionated composition of phytoplankton greatly influences the transfer efficiency of biomass in pelagic food chains and the biological carbon flux from surface waters to the deep sea. To better understand phytoplankton abundance and composition in polynya, ice zone, and open ocean regions of the Amundsen Sea Sector of the Southern Ocean (110°W–150°W), its size-fractionated distribution and vertical structure are reported for January to February 2020. Vertical integrated (0–200 m) chlorophyll (Chl)concentrations within Amundsen polynya regions are significantly higher than those within ice zone (test,< 0.01) and open ocean (test,< 0.01) regions, averaging 372.3 ± 189.0, 146.2 ± 152.1, and 49.0 ± 20.8 mg·m?2, respectively. High Chl is associated with shallow mixed-layer depths and near-shelf regions, especially at the southern ends of 112°W and 145°W. Netplankton (> 20 μm) contribute 60% of the total Chl in Amundsen polynya and sea ice areas, and form subsurface chlorophyll maxima (SCM) above the pycnocline in the upper water column, probably because of diatom blooms. Net-, nano-, and picoplankton comprise 39%, 32%, and 29% of total Chl in open ocean stations, respectively. The open-ocean SCM migrates deeper and is below the pycnocline.The Amundsen Sea SCM is moderately, positively correlated with the euphotic zone depth and moderately, negatively correlated with column-integrated net- and nanoplankton Chl.

    size-fractionated phytoplankton, chlorophyll, subsurface chlorophyll maxima, polynya, Amundsen Sea

    1 Introduction0F

    Because of its high productivity and extensive sea–air gas and heat exchange, the Amundsen Sea is disproportionately important in Antarctic elemental cycles relative to its size (Sarmiento et al., 2004). Polynyas, seasonal open waters surrounded by sea ice, are focal points for the exchange of matter and energy between the atmosphere and polar oceans (Smith Jr. and Barber, 2007). Polynyas in the Amundsen Sea are expansive, the most productive in the Antarctic, and vary substantially between years (Arrigo et al., 2012). Seasonally averaged chlorophyll(Chl-) concentrations in Amundsen Sea polynya, 2.2 ± 3.0 mg·m?3, are almost 47% higher than the much larger Ross Sea polynya (1.5 ± 1.5 mg·m?3), with mean Chl varying substantially from 1997–2002 (138% of the mean) (Yager et al., 2012). Substantial interannual variations in Chl might be attributed to recent rapid glacier and ice cover melting in the Amundsen Sea (Rignot et al., 2008), driven mainly by increased relatively warm (~ 2°C) Circumpolar Deep Water below the ice shelf (Jacobs et al., 2011). Normally, Amundsen Sea Chl begins to increase in October because of increased light, and peaks during the austral summer in December and January (Arrigo and van Dijken, 2003).

    Environmental changes in the Southern Ocean significantly impact phytoplankton community structure. Moline et al. (2004) reported that periodic shifts in phytoplankton community structure, from netplankton (large diatoms) to relatively small nanoplankton (cryptophytes), might be closely related to changes in glacial meltwater runoff. In the nutrient-rich, strongly stratified western Ross Sea waters in the summer, the highest Chl (129–358 mg·m?2in the upper 100 m) occurred in the stratified region and was dominated by netplankton. However, in nutrient-poor, unstratified south-central Ross Sea waters in early spring, moderate Chl (55–186 mg·m?2in the upper 100 m) occurred in polynya and ice-edge areas, dominated by nanoplankton () (Goffart et al., 2000).

    Phytoplankton size structure is controlled by complex interactions between physical mixing conditions, the light environment, and macro- and micronutrient concentrations. Changes in phytoplankton community structure have significant biological and chemical implications (Fragoso and Smith, 2012). For example,(nanoplankton) absorbs twice as much CO2per mole of phosphate removed than do diatoms (netplankton) (Arrigo et al., 1999). Additionally, it is not the preferred prey of microzooplankton, and its presence is closely linked to the dimethyl sulfide cycle between the ocean and atmosphere (Liss et al., 1994; Caron et al., 2000). Picoplankton also plays an important role in energy flow and nutrient cycling in marine planktonic ecosystems. Phototrophic picoplankton contributes significantly to phytoplankton biomass and production, while non-photosynthetic picoplankton is instrumental in carbon and nutrient transformation and remineralization.Therefore, monitoring of both the total and size-fractionated phytoplankton in the Amundsen Sea is necessary to identify responses of these marine ecosystems to environmental change.

    Southern Ocean phytoplankton are important in Antarctic food webs and for regulating global climate through the oceanic carbon cycle (Deppeler and Davidson, 2017). In this region, phytoplankton blooms mainly comprise large diatoms with a unique physiology adapted to low iron, light, and temperature conditions (Strzepek et al., 2019). Under severe iron limitation and in intensely stratified waters, large diatoms aggregate in the pycnocline and form a subsurface chlorophyll maximum (SCM) in the Seasonal Ice Zone (Gomi et al., 2007). Most commonly tropical SCM forms just above the pycnocline and is directly related to an increase in phytoplankton abundance. Unlike in the tropics, the Southern Ocean SCM is usually located at or below the pycnocline (Tripathy et al., 2015). The SCM contributes to water column primary production, facilitating large-scale downward carbon export events, and represents an area where macrofauna forage and intense zooplanktonic grazing occurs (Siegelman et al., 2019).

    With limited information available on the spatial and temporal formation of the Antarctic SCM, especially in the Amundsen Sea, studying its formation in this area will help identify the distributions of subsurface phytoplankton communities that are currently undetectable by satellites. We investigate total and size-fractionated phytoplankton and subsurface chlorophyll maxima in the Amundsen Sea polynya, ice zones, and open ocean regions during the austral summer of 2020. Differences in phytoplankton composition and bathymetric distribution between the Amundsen polynya, ice zones, and open ocean are identified, and possible reasons are discussed.

    2 Materials and methods

    2.1 Study area and sea ice concentrations

    The western-Antarctic Amundsen Sea lies between Cape Flying Fish (the northwestern tip of Thurston Island) and Cape Dart, Siple Island. From 3 January to 5 February 2020 aboard the Chinese icebreaker R/V, samples from 46 size-fractionated Chl stations (Figure 1) from Amundsen polynya (AP), ice zones, and open ocean regions were collected. Polynya regions had sea-ice concentrations below 10% and were surrounded by ice (Arrigo and van Dijken, 2003). Two polynya regions (red dashed ellipses) were identified, with labelled dark dots indicating polynya stations (Figure 2). Sea-ice was absent in open-ocean stations. Data for sea-ice concentrations are derived from the Norwegian Meteorological Institute (https://osi-saf. eumetsat.int/products/sea-ice-products).

    Figure 1 Amundsen Sea size-fractionated Chl-stations (dots) and transects (lines), 2020.

    Figure 2 Sea ice concentration derived from the Norwegian Meteorological Institute. Dashed ellipses: red, polynya regions; black, open-ocean regions. Labeled dark dots indicate polynya stations.

    2.2 Euphotic zone and mixed layer depths (MLDs)

    We define the depth of the mixed layer as the depth at which the density is 0.05 kg·m?3higher than that of the sea surface (Brainerd and Gregg, 1995). The depth at which photosynthetically active radiation (PAR) is 1% that of surface PAR is defined as the euphotic zone depth (eu). Vertical light attenuation (d) for each station is calculated from the linear relationship established betweendand average Chl-concentrations (Morel et al., 2007).euis quantitatively related withd(Yang et al., 2015) as follows:

    2.3 Size-fractionated Chl analyses and vertical distribution

    Water samples for size-fractionated Chl were obtained for each station at 7 depths (0, 30, 50, 75, 100, 150, 200 m) using a CTD rosette sampler. Water samples (0.5–1 L) were filtered sequentially through 20 and 2 μm Nucleopore filters (47 mm) and Whatman GF/F filters (47 mm). Chl on filters was extracted in 90% acetone at ?20°C for 24 h. Chl samples were measured onboard using a Trilogy fluorometer (Turner Designs, USA) (Holm-Hansen et al., 1965).

    2.4 SCM analysis

    SCM was obtained by fitting measured vertical Chl-data to a slightly modified version of the MB89 pattern (Uitz et al., 2006), using:

    2.5 Data analysis

    A Spearman correlation analysis was conducted to examine correlations between SCM and sea ice concentration,eu, MLD, and size-fractionated column-integrated Chl at survey stations. A Students-test was used to analyze for significant differences. Analyses were performed using SPSS 22.0.

    3 Results

    3.1 Euphotic zone and MLDs

    euranged 11.3–24.3 m in the AP, 33.7–74.5 m in open ocean, and 13.1–53.5 m in ice zones (Table 1). Euphotic zone depth at AP stations were significantly lower than in open sea (test,< 0.01) and sea ice (test,< 0.05) stations because of higher Chl-concentrations.

    MLD in AP, open ocean, and ice zones are detailed in Table 1. Because of stratification from melted sea ice or surface warming, MLD ranged 10–55 m at all stations. MLD in AP, open ocean, and ice zones did not differ significantly (test,> 0.05).

    3.2 Total and size-fractionated Chl

    Total column (200 m) integrated Chl (Figure 3) in AP stations ranged 167.6–766.3 mg·m?2(mean ± SD, 372.3 ± 189.0 mg·m?2), in open ocean stations 18.6–90.7 mg·m?2(49.0 ± 20.8 mg·m?2), and in ice zone stations 35.4– 424.8 mg·m?2(146.2 ± 152.1 mg·m?2). The highest and lowest integrated Chl values were 766.3 mg·m?2at station RA2-2 and 18.6 mg·m?2at station A3-8. Total column-integrated Chl in the AP was significantly higher than in open ocean (test,< 0.01) and ice zones (test,< 0.01). Total column-integrated Chl within ice zones was greater than in open ocean regions, but the difference was not significant (test,> 0.05). Highest Chl values occurred near shelf regions, especially at the southern ends of transects RA2 and A11.

    Table 1 Amundsen Sea sea-ice concentration, Zeu, MLD, SCM, size-fractionated Chl, and total column integrated Chl

    Continued

    Figure 3 Total column-integrated Chl (0–200 m).

    Column-integrated Chl (0–200 m, mg·m?2) values for netplankton (> 20 μm), nanoplankton (2–20 μm), and picoplankton (0.2–2 μm) in AP, open ocean, and ice zones are presented in Figure 4. Highest and lowest netplankton values were 590.9 mg·m?2at station RA2-2 and 1.8 mg·m?2at station A3-8, ranging 66.0–590.9 mg·m?2(233.6 ± 159.8 mg·m?2) in AP stations, 1.8–62.3 mg·m?2(19.0 ± 14.8 mg·m?2) in open ocean stations, and 3.4–350.2 mg·m?2(96.5 ± 132.3 mg·m?2) in ice zones (Figure 4a). Column-integrated netplankton Chl in AP stations was significantly higher than in open sea (test,< 0.01) and sea-ice (test,< 0.05) stations. The netplankton and total Chl-distributions were similar.

    Highest and lowest nanoplankton Chl values were 140.6 mg·m?2at station A9-2 and 6.1 mg·m?2at station A3-8, ranging30.9–140.6 mg·m?2(75.9 ± 34.0 mg·m?2) in AP stations, 6.1–34.6 mg·m?2(15.9 ± 7.0 mg·m?2) in open ocean stations, and 12.8–77.6 mg·m?2(30.9 ± 20.3 mg·m?2) in ice zones (Figure 4b). Nanoplankton Chl in AP stations was significantly higher than in the open ocean (test,< 0.01) and ice zones (test,< 0.01). Column-integrated nanoplankton Chl in ice zones was significantly higher than in the open ocean regions (test,< 0.05).

    Figure 4 Column-integrated Chl (0–200 m) for netplankton (> 20 μm, a), nanoplankton (2–20 μm, b), and picoplankton (0.2–2 μm, c).

    Highest and lowest integrated picoplankton Chl values were 173.9 mg·m?2at station A9-2 and 8.0 mg·m?2at station A3-10, ranging 16.3–173.9 mg·m?2(62.8 ± 42.0 mg·m?2) in AP stations, 8.0–32.7 mg·m?2(14.1 ± 5.3 mg·m?2) in open ocean stations, and 15.1–22.8 mg·m?2(18.8 ± 2.6 mg·m?2) in ice zones (Figure 4c). Picoplankton Chl in the AP was significantly higher than in the open ocean (test,< 0.01) and ice zones (test,< 0.01). Although the integrated picoplankton Chl in ice zones was similar to that of open ocean regions, they differed significantly (test,< 0.05).

    Size-fractionated Chl indicates two distinctly different phytoplankton communities exist in the Amundsen Sea (Figure 5). In polynya, net-, nano-, and picoplankton cells comprise 63%, 20%, and 17% of the total Chl, respectively (Figure 5b).In ice zones, net-, nano-, and picoplankton cells comprise 63%, 23%, and 14% of the total Chl, respectively (Figure 5c). In contrast, the contribution to total Chl of net- (39%), nano- (32%), and picoplankton(29%) in open ocean stations was more evenly spread. The total phytoplankton community in the Amundsen Sea was dominated by netplankton, accounting for 60% of the total Chl, followed by nano-plankton (22%) and picoplankton (18%) (Figure 5a).

    Figure 5 Size-fractionated Chl compositions in the overall Amundsen Sea (a), polynya (b), ice zones (c), and open ocean areas (d).

    Chl-vertical distributions are shown in Figure 6. Maximum Chl occurs above 50 m, and decreases from 50–200 m Chl at all stations. Average Chl in the upper 50 m at AP stations, 4.9 ± 2.9 mg·m?3, was significantly higher than in ice zones (2.9 ± 3.4 mg·m?3,test,< 0.01) and open ocean stations (0.5 ± 0.4 mg·m?3,test,< 0.01). Intermediate average Chl values occurred in ice zones; open ocean stations had the lowest average Chl-concentration.

    Chl-vertical distributions from 0–200 m along transects RA1–3, and A3 are presented in Figure 7. Maxima in the upper 50 m are associated with AP stations near the coast along all transects, and deep Chl-(> 50 m) are associated with AP station RA2-2 along transect RA2 (Figure 7b).

    3.3 SCM

    Chl-vertical profiles and corresponding modeled dimensionless Chl-profiles are shown in Figure 8. Measured Chl-vertical profiles were used in conjunction with equation (2), with the fitting procedure allowing the five parameters in this equation to be derived for each station (Table S1). Corresponding modeled dimensionless Chl-profiles compared well with measured Chl-vertical profiles for all stations (Figure 8). TheSCM ranged 0– 59.0 m (20.0 ± 16.5 m) in AP stations, 0–86.9 m (36.6 ± 28.6 m) in the open ocean, and 0–86.9 m (22.9 ± 31.2 m) in ice zones (Table 1). Average SCM values are lowest in the AP, followed by ice zones, then the open ocean.

    SCM distributions along transects RA1 (a), RA2 (b), RA3 (c), and A3 (d) are presented in Figure 7. In polynya and ice zones near the shelf, the SCM was very low and generally remained at approximately 10 m. As the latitude decreases, in the open ocean, the SCM occurred deeper, excepting station RA1-5 on transect RA1, RA2-5 on transect RA2, and A3-10 on transect A3. Marginal ice zone stations RA1-5 and RA2-5, where sea ice melting released phytoplankton and iron, resulted in the SCM occurring in the upper water column, above the mixed layer. At station A3-10, physical processes such as eddies may have reintroduced the limiting micro-nutrient iron from depths into the upper water column, causing a phytoplankton bloom, lowering the SCM.

    4 Discussion

    4.1 Amundsen Sea Chl-a concentrations

    Phytoplankton concentrations in the Amundsen Sea vary seasonally (Kim et al., 2015). Average column-integrated Chl from 0–30 m peaked in summer and decreased in winter (Smith et al., 1998). A comparison of dominant phytoplankton and Chl-concentrations throughout the Southern Ocean is presented in Table 2. Lee et al. (2012) reported high average Chl in polynya stations (395.1 ± 219.4 mg·m?2) compared to non-polynya stations (33.2 ± 23.9 mg·m?2) integrated from the surface to the bottom of the euphotic zone from 21 December 2010 to 23 January 2011. In contrast, Kim et al. (2016) reported a relatively low average Chl (49.2 mg·m?2) from 11 February to 14 March 2012. We report average Chl (372.32 ± 189.00 mg·m?2) from 3 January to 5 February 2020, column integrated from 0–200 m in polynya, being twice higher than in ice zones (146.17 ± 152.07 mg·m?2) and seven times higher than in open ocean areas (48.95 ± 20.82 mg·m?2). Ouraverage Chl in polynya areas is within the range reported by Lee et al. (2012), but significantly higher in non-polynya areas, possibly due to different integrated depths between studies (~ 50 m in the euphotic zone in Lee et al. (2012), but 200 m herein).

    4.2 Amundsen Sea phytoplankton composition

    Phytoplankton community structure can significantly affect trophic levels, phytoplankton biochemical composition, and particulate organic carbon transfer efficiency in pelagic food chains (Harrison et al., 1990; Lee et al., 2007; Cotti-Rausch et al., 2020). While the biomass of phytoplankton of given sizes can affect food webs, the activity of size fractions is more directly relevant to trophic dynamics and biogeochemical cycling (Cotti-Rausch et al., 2020). At higher ammonium concentrations (~ 5 μM) in the Chukchi Sea and Bering Strait, small phytoplankton (< 5 μm) incorporate more carbon into proteins than larger phytoplankton (> 5 μm) (Lee et al., 2009). We reported netplankton (> 20 μm) to dominate (63%) in polynya and ice zones, possibly because ofblooms in seasonal ice zones and coastal Antarctic waters (DiTullio et al., 2000). In contrast, with decreased latitude, the proportion of netplankton gradually decreases and that of nano- and picoplankton increases. The three size-fractionated phytoplankton groups are more evenly distributed in open ocean stations, possibly because of iron limitation inhibiting uptake of major macronutrients by phytoplankton (Peloquin and Smith, 2007).

    Figure 6 Chl-vertical distributions in polynya (a), ice zone (b), and open ocean (c) stations.

    Figure 7 Chl-distributions from 0–200 m along transects RA1 (a), RA2 (b), RA3 (c), and A3 (d). Dashed lines: black, MLD; orange, SCM.

    Figure 8 Chl-vertical profiles and corresponding modeled dimensionless Chl-profiles at polynya (a), ice zone (b), and open-ocean (c) stations.

    4.3 Amundsen Sea subsurface chlorophyll maxima

    The stability of the tropical SCM relies on the vertical mixing input of limiting nutrients that enter the base of the mixed layer through the pycnocline, combined with a light field that decreases exponentially with depth (Latasa et al., 2017). This creates an optimum depth for phytoplankton to grow (at the SCM), usually just above the pycnocline (Baldry et al., 2020). Unalike tropical regions, sufficient subsurface inputs of iron, the limiting micro-nutrient, are not widely present in the Southern Ocean (Arteaga et al., 2019). The Southern Ocean SCM is influenced by various processes, such as iron fertilization from land masses, sea-ice retreat, eddies, buoyancy regulation by large diatoms, and grazing (Ardyna et al., 2019). In Amundsen Sea polynya and ice edge areas, sea-ice retreat releases phytoplankton, alleviates light limitation, and increases bioavailable iron concentrations with the melting of ice, resulting in surface water phytoplankton blooms. Around the Amundsen Sea shelf, the continuous supply of iron from ocean depths because of the Antarctic Circumpolar Current promotes large-scale phytoplankton blooms dominated by diatoms (netplankton, > 20 μm) in surface waters. The Amundsen Sea SCM is moderately, positively correlated witheu, and moderately, negatively correlated with column-integrated net- and nanoplankton Chl (Table 3). With diatom blooms,eudecreases and diatom SCMs occur in surface blooms, above the pycnocline. The diatom SCM forms under continuous iron or silicate limiting conditions with the reduction of surface blooms (Gomi et al., 2007).When nutrients from meltwater are rapidly depleted, the net- and nanoplankton column-integrated Chl gradually decreases and the surface bloom at the sea ice edge sinks rapidly. Sinking phytoplankton find an appropriate environment deeper than the pycnocline, aggregating to form a SCM in the Amundsen Sea open ocean.

    5 Summary and conclusions

    Average column-integrated (0–200 m) Chl from 3 January to 5 February 2020 in the Amundsen polynya ranged 372.3 ± 189.0 mg·m?2, consistent with values reported by Lee et al. (2012) for average Chl integrated from surface to the bottom of the euphotic zone in polynya regions. However, our average Chl in non-polynya areas is significantly higher than that reported by Lee et al. (2012). Phytoplankton communities in Amundsen Sea polynya and ice zones are dominated by netplankton, which accounts for 60% of the total Chl because ofblooms (DiTullio et al., 2000). Diatom SCMs are located in surface blooms, above the pycnocline. In contrast, net-, nano-, and picoplankton contribute more evenly to total Chl in open-ocean stations, likely because of iron limitation. In the open ocean, because of iron and light colimitation, the SCM migrates deeper and occurs below the pycnocline. The Amundsen Sea SCM is moderately correlated witheuand column-integrated net- and nanoplankton Chl. In the Amundsen Sea, sea-ice concentrations decrease by about 7% per decade (Cavalieri and Parkinson, 2008). To better understand the mechanisms driving significant differences in Chl, phytoplankton composition, and SCM depths among polynya and non-polynya areas in the Amundsen Sea, more seasonal and annual surveys are required.

    Table 2 Comparison of dominant phytoplankton and Chl-a concentrations in the Southern Ocean

    Notes: * mean Chl-concentration from satellite data; ** column-integrated Chl-concentration in the upper 100 m; *** column-integrated Chl-concentration from surface to the bottom of the euphotic zone; **** column-integrated Chl-concentration in the upper 200 m.

    Table 3 Correlations between the SCM and environmental parameters

    Notes: *< 0.05, **< 0.01.

    Acknowledgments We thank the captain, Bing Zhu and crew of R/V, and Mr. Shuo He from Zhejiang University for their assistance during sampling. This research was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant no. IRASCC 01-02-01).We appreciate two anonymous reviewers, and Guest Editor Prof. Rujian Wang for their constructive comments that have further improved the manuscript.

    Note Zhang Wei and Hao Qiangcontributedequallytothisworkandshouldbeconsideredco-firstauthors.

    Ardyna M, Lacour L, Sergi S, et al. 2019. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat Commun, 10(1), 2451, doi:10.1038/s41467-019-09973-6.

    Arrigo K R, van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res, 108(C8): 3271, doi:10.1029/2002jc001739.

    Arrigo K R, Lowry K E, van Dijken G L. 2012. Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 71-76: 5-15, doi:10.1016/ j.dsr2.2012.03.006.

    Arrigo K R, Robinson D H, Worthen D L, et al. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2in the Southern Ocean. Science, 283(5400): 365-367, doi:10.1126/science. 283.5400.365.

    Arteaga L A, Pahlow M, Bushinsky S M, et al. 2019. Nutrient controls on export production in the Southern Ocean. Global Biogeochem Cycles, 33(8): 942-956, doi:10.1029/2019gb006236.

    Baldry K, Strutton P G, Hill N A, et al. 2020. Subsurface chlorophyll-maxima in the Southern Ocean. Front Mar Sci, 7: 671, doi:10.3389/ fmars.2020.00671.

    Brainerd K E, Gregg M C. 1995. Surface mixed and mixing layer depths. Deep Sea Res Part I Oceanogr Res Pap, 42(9): 1521-1543, doi:10.1016/0967-0637(95)00068-H.

    Caron D A, Dennett M R, Lonsdale D J, et al. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 47(15-16): 3249-3272, doi:10.1016/S0967-0645(00)00067- 9.

    Cavalieri D J, Parkinson C L. 2008. Antarctic sea ice variability and trends, 1979–2006. J Geophys Res, 113(C7): C07004, doi:10.1029/2007jc 004564.

    Cotti-Rausch B E, Lomas M W, Lachenmyer E M, et al. 2020. Size-fractionated biomass and primary productivity of Sargasso Sea phytoplankton. Deep Sea Res Part I Oceanogr Res Pap, 156: 103141, doi:10.1016/j.dsr.2019.103141.

    Deppeler S L, Davidson A T. 2017. Southern Ocean phytoplankton in a changing climate. Front Mar Sci, 4: 1-28, doi:10.3389/fmars.2017. 00040.

    DiTullio G R, Grebmeier J M, Arrigo K R, et al. 2000. Rapid and early export ofblooms in the Ross Sea, Antarctica. Nature, 404(6778): 595-598, doi:10.1038/35007061.

    Fragoso G M, Smith W O. 2012. Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica. J Mar Syst, 89(1): 19-29, doi:10.1016/j.jmarsys.2011.07.008.

    Goffart A, Catalano G, Hecq J H. 2000. Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. J Mar Syst, 27(1-3): 161-175, doi:10.1016/S0924-7963(00)00065-8.

    Gomi Y, Taniguchi A, Fukuchi M. 2007. Temporal and spatial variation of the phytoplankton assemblage in the eastern Indian sector of the Southern Ocean in summer 2001/2002. Polar Biol, 30(7): 817-827, doi:10.1007/s00300-006-0242-2.

    Harrison P J, Thompson P A, Calderwood G S. 1990. Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol, 2(1): 45-56, doi:10.1007/BF02179768.

    Holm-Hansen O, Lorenzen C J, Holmes R W, et al. 1965. Fluorometric determination of chlorophyll. J Mar Sci, 30: 3-15, doi:10.1093/ icesjms/30.1.3.

    Jacobs S S, Jenkins A, Giulivi C F, et al. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat Geosci, 4(8): 519-523, doi:10.1038/ngeo1188.

    Kim B K, Joo H, Song H J, et al. 2015. Large seasonal variation in phytoplankton production in the Amundsen Sea. Polar Biol, 38(3): 319-331, doi:10.1007/s00300-014-1588-5.

    Kim B K, Lee J H, Joo H, et al. 2016. Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 123: 42-49, doi:10.1016/j.dsr2.2015.04.024.

    Latasa M, Cabello A M, Morán X A G, et al. 2017. Distribution of phytoplankton groups within the deep chlorophyll maximum. Limnol Oceanogr, 62(2): 665-685, doi:10.1002/lno.10452.

    Lee, S H, Kim B K, Yun M S, et al. 2012. Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biol, 35: 1721-1733, doi:10.1007/s00300-012-1220-5.

    Lee S H, Kim H J, Whitledge T E. 2009. High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea Cont Shelf Res, 29(14): 1689-1696, doi:10.1016/j.csr.2009.05.012.

    Lee S H, Whitledge T E, Kang S H. 2007. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont Shelf Res, 27(17): 2231-2249, doi:10.1016/j.csr.2007. 05.009.

    Liss P S, Malin G, Turner S M, et al. 1994. Dimethyl sulphide and: a review. J Mar Syst, 5(1): 41-53, doi:10.1016/0924- 7963(94)90015-9.

    Moline M A, Claustre H, Frazer T K, et al. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol, 10(12): 1973-1980, doi:10.1111/j.1365-2486. 2004.00825.x.

    Morel A, Huot Y, Gentili B, et al. 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens Environ, 111(1): 69-88, doi:10.1016/j.rse.2007.03.012.

    Peloquin J A, Smith W O. 2007. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition. J Geophys Res, 112(C8): C08013, doi:10.1029/ 2006jc003816.

    Rignot E, Bamber J L, van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci, 1 (2): 106-110, doi:10.1038/ngeo102.

    Saggiomo V, Carrada G C, Mangoni O, et al. 1998. Spatial and temporal variability of size-fractionated biomass and primary production in the Ross Sea (Antarctica) during austral spring and summer. J Mar Syst, 17(1-4): 115-127, doi:10.1016/S0924-7963(98)00033-5.

    Sarmiento J L, Slater R, Barber R, et al. 2004. Response of ocean ecosystems to climate warming. Global Biogeochem Cycles, 18(3): GB3003, doi:10.1029/2003gb002134.

    Siegelman L, O’Toole M, Flexas M, et al. 2019. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci Rep, 9(1), 5588, doi:10.1038/s41598-019-42117-w.

    Smith R C, Baker K S, Vernet M. 1998. Seasonal and interannual variability of phytoplankton biomass west of the Antarctic Peninsula. J Mar Syst, 17(1-4): 229-243, doi:10.1016/s0924-7963(98)00040-2.

    Smith Jr. W, Barber D. 2007. Polynyas: windows to the world. Elsevier.

    Strzepek R F, Boyd P W, Sunda W G. 2019. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. PNAS, 116(10): 4388-4393, doi:10.1073/pnas.1810886116.

    Tripathy S C, Pavithran S, Sabu P, et al. 2015. Deep chlorophyll maximum and primary productivity in Indian Ocean sector of the Southern Ocean: Case study in the Subtropical and Polar Front during austral summer 2011. Deep Sea Res Part II Top Stud Oceanogr, 118: 240-249, doi:10.1016/j.dsr2.2015.01.004.

    Uitz J, Claustre H, Morel A, et al. 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res, 111(C8): C08005, doi:10.1029/ 2005jc003207.

    Yager P, Sherrell R, Stammerjohn S, et al. 2012. ASPIRE: The Amundsen Sea polynya international research expedition. Oceanography, 25(3): 40-53, doi:10.5670/oceanog.2012.73.

    Yang W, Matsushita B, Yoshimura K, et al. 2015. A modified semianalytical algorithm for remotely estimating euphotic zone depth in Turbid Inland waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8: 1-10, doi:10.1109/ JSTARS.2015.2415853.

    Table S1 Values of the five parameters to be used in equation (7) obtained for the dimensionless vertical profiles of Chl-and subsurface chlorophyll maximum (SCM) for all stations in the Amundsen Sea polynya, ice zones, and open ocean

    LocationStationChl-aSCM/m CbSCmaxdmaxDd PolynyaRA1-1?0.15?0.011.370.673.579.19 RA1-2?0.040.001.480.891.7413.29 RA1-30.160.021.340.660.9713.61 RA2-20.310.010.951.022.9213.39 RA2-3?0.030.001.410.701.6911.35 RA2-40.960.100.591.620.8633.60 RA3-30.030.001.360.311.255.70 A3-1?0.060.002.99?6.277.030.00 A9-00.170.011.150.991.7617.87 A9-21.140.091.103.041.1359.02 A9-30.950.121.261.570.4938.19 A11-00.010.001.291.624.4318.25 A11-10.070.001.69?4.087.030.00 A11-20.690.051.142.241.8339.77 A11-30.270.031.431.120.8526.45 Ice zonesRA2-1?0.030.001.321.132.9015.77 RA3-20.000.001.240.371.356.74 A3-363.045.90?69.19?3.459.890.00 A3-5?0.42?0.071.66?0.603.090.00 A3-61.220.351.651.690.1786.91 RA1-0?0.040.001.320.812.2810.59 RA1-40.940.260.561.350.8272.45 RA3-40.040.003.280.490.3811.02 RA3-50.810.180.510.580.4525.18 A11-4?27.20?2.6541.17?7.1111.680.00 Open oceanRA1-50.340.060.870.371.0412.37 A3-100.050.011.250.320.9911.07 A3-71.100.330.571.520.6485.86 RA1-70.780.171.860.830.2234.83 A3-80.560.221.310.990.4673.70 RA2-50.350.060.950.430.7314.81 RA2-60.610.110.580.490.9818.11 RA2-70.590.130.900.720.3830.91 A3-90.800.151.141.390.6851.28 A4-60.290.051.04?0.341.950.00 RA3-60.600.130.610.530.7922.33 RA3-70.480.100.700.491.0819.96 RA4-60.390.090.940.910.7954.51 RA4-7?9.47?1.6211.00?1.074.430.00 RA4-81.240.414.681.440.1486.92 A4-7?0.31?0.151.360.801.3841.96 A4-80.880.250.751.320.7576.45 A4-90.420.070.770.560.7923.98

    10.13679/j.advps.2021.0035

    12 July 2021;

    26 October 2021;

    30 March 2022

    : Zhang W, Hao Q, He J F, et al.Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer. Adv Polar Sci, 2022, 33(1): 1-13,doi:10.13679/j.advps.2021.0035

    , ORCID: 0000-0003-2145-2703, E-mail: haoq@sio.org.cn

    国产欧美日韩一区二区三区在线 | 亚洲,欧美,日韩| 男人和女人高潮做爰伦理| 色视频在线一区二区三区| 精品国产一区二区久久| 久久热精品热| 欧美三级亚洲精品| 欧美区成人在线视频| 黄色配什么色好看| 蜜桃在线观看..| 大又大粗又爽又黄少妇毛片口| 亚洲精品中文字幕在线视频 | 如何舔出高潮| 熟女人妻精品中文字幕| 精品久久久精品久久久| 久久 成人 亚洲| 一级毛片久久久久久久久女| 成人18禁高潮啪啪吃奶动态图 | 免费看光身美女| 亚洲,欧美,日韩| 在线精品无人区一区二区三| 少妇精品久久久久久久| 高清在线视频一区二区三区| 亚洲不卡免费看| 亚洲精品中文字幕在线视频 | 久久精品国产亚洲av涩爱| 精品一品国产午夜福利视频| 新久久久久国产一级毛片| 国产在线一区二区三区精| 自线自在国产av| 欧美 日韩 精品 国产| 香蕉精品网在线| 男人狂女人下面高潮的视频| 丝袜在线中文字幕| 久久精品久久久久久久性| 99热6这里只有精品| 亚洲精品乱久久久久久| 夜夜看夜夜爽夜夜摸| 国产一区有黄有色的免费视频| 精品国产国语对白av| 国产欧美日韩综合在线一区二区 | 肉色欧美久久久久久久蜜桃| 夜夜爽夜夜爽视频| 少妇人妻精品综合一区二区| 大片电影免费在线观看免费| 亚洲中文av在线| 亚洲人与动物交配视频| 一级二级三级毛片免费看| 最黄视频免费看| 夜夜看夜夜爽夜夜摸| 日本免费在线观看一区| 中文字幕人妻丝袜制服| av天堂中文字幕网| 亚洲欧美成人精品一区二区| 国产精品不卡视频一区二区| 国产精品人妻久久久久久| 黑丝袜美女国产一区| 日本-黄色视频高清免费观看| 亚洲av日韩在线播放| 久久毛片免费看一区二区三区| 国产成人精品婷婷| 美女大奶头黄色视频| 精品99又大又爽又粗少妇毛片| 在线播放无遮挡| 精品国产一区二区三区久久久樱花| freevideosex欧美| 日韩成人伦理影院| 日韩精品免费视频一区二区三区 | 国产在线视频一区二区| 黄色日韩在线| 精品国产露脸久久av麻豆| 男的添女的下面高潮视频| 日日啪夜夜撸| 国产精品福利在线免费观看| 婷婷色麻豆天堂久久| 性高湖久久久久久久久免费观看| 人体艺术视频欧美日本| 欧美xxⅹ黑人| 亚洲精品乱码久久久久久按摩| 婷婷色麻豆天堂久久| 日本午夜av视频| 最近最新中文字幕免费大全7| 亚洲一级一片aⅴ在线观看| 欧美精品国产亚洲| 91久久精品国产一区二区三区| 精品久久久久久久久av| 美女国产视频在线观看| 九色成人免费人妻av| 97在线视频观看| 9色porny在线观看| 国产成人a∨麻豆精品| 亚洲四区av| 秋霞在线观看毛片| 如何舔出高潮| 国产色爽女视频免费观看| 日日摸夜夜添夜夜添av毛片| 免费看不卡的av| 在线精品无人区一区二区三| 高清午夜精品一区二区三区| 22中文网久久字幕| 中文欧美无线码| 日韩制服骚丝袜av| 18禁裸乳无遮挡动漫免费视频| 一本色道久久久久久精品综合| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产成人久久av| 久久韩国三级中文字幕| 一级黄片播放器| 在线观看一区二区三区激情| 国产精品.久久久| 亚洲精品乱码久久久久久按摩| 99热网站在线观看| 亚洲,一卡二卡三卡| 中文字幕精品免费在线观看视频 | 色5月婷婷丁香| 全区人妻精品视频| freevideosex欧美| www.色视频.com| 噜噜噜噜噜久久久久久91| 国产亚洲最大av| 高清不卡的av网站| 久久久久精品性色| 免费看av在线观看网站| 亚洲av在线观看美女高潮| 国产淫语在线视频| 高清视频免费观看一区二区| 成人免费观看视频高清| 亚洲av欧美aⅴ国产| 亚洲熟女精品中文字幕| 久久久久久伊人网av| 国产精品三级大全| 中文字幕av电影在线播放| 久久国内精品自在自线图片| 国产精品99久久99久久久不卡 | 永久免费av网站大全| 午夜日本视频在线| 蜜臀久久99精品久久宅男| 搡女人真爽免费视频火全软件| 色婷婷av一区二区三区视频| av免费观看日本| 丰满乱子伦码专区| videossex国产| 欧美丝袜亚洲另类| tube8黄色片| 丁香六月天网| 欧美老熟妇乱子伦牲交| 国产有黄有色有爽视频| av在线观看视频网站免费| 99久久精品热视频| 免费不卡的大黄色大毛片视频在线观看| 天堂8中文在线网| 丝袜脚勾引网站| 精品久久久噜噜| 成年人免费黄色播放视频 | 久久99精品国语久久久| 亚洲天堂av无毛| 久久久精品94久久精品| 亚洲高清免费不卡视频| 亚洲精品成人av观看孕妇| 精品亚洲乱码少妇综合久久| 国产精品不卡视频一区二区| 国产精品一区二区性色av| 99热国产这里只有精品6| 视频区图区小说| 国产男女内射视频| 啦啦啦中文免费视频观看日本| 免费在线观看成人毛片| 男人狂女人下面高潮的视频| kizo精华| 国产精品一区二区性色av| 七月丁香在线播放| 看免费成人av毛片| 久久久国产精品麻豆| 久久久午夜欧美精品| 久久久久久久久大av| 嫩草影院新地址| 一级二级三级毛片免费看| 午夜福利影视在线免费观看| 中文乱码字字幕精品一区二区三区| 成年人午夜在线观看视频| 韩国高清视频一区二区三区| 国产色婷婷99| 波野结衣二区三区在线| 黄片无遮挡物在线观看| 精品久久国产蜜桃| 人妻人人澡人人爽人人| 国产精品蜜桃在线观看| 高清视频免费观看一区二区| 日韩人妻高清精品专区| 亚洲自偷自拍三级| 日韩免费高清中文字幕av| 狂野欧美白嫩少妇大欣赏| 午夜精品国产一区二区电影| 成年女人在线观看亚洲视频| 99精国产麻豆久久婷婷| 亚洲天堂av无毛| 免费大片18禁| 韩国av在线不卡| 久热这里只有精品99| 亚洲第一区二区三区不卡| 亚洲欧美成人综合另类久久久| 一边亲一边摸免费视频| 久久国内精品自在自线图片| 国产深夜福利视频在线观看| 在线精品无人区一区二区三| 边亲边吃奶的免费视频| 亚洲美女视频黄频| 亚洲,一卡二卡三卡| 欧美丝袜亚洲另类| 赤兔流量卡办理| 国产精品久久久久久久电影| 26uuu在线亚洲综合色| 国产精品女同一区二区软件| 欧美xxxx性猛交bbbb| 亚洲国产精品国产精品| 亚洲国产日韩一区二区| 国产精品偷伦视频观看了| 丰满乱子伦码专区| 久久精品夜色国产| 精品一品国产午夜福利视频| 欧美日韩一区二区视频在线观看视频在线| 精品一区二区免费观看| 欧美日韩视频高清一区二区三区二| 简卡轻食公司| 夜夜爽夜夜爽视频| 99视频精品全部免费 在线| 看非洲黑人一级黄片| 91久久精品国产一区二区成人| 国产精品久久久久久精品古装| 亚洲精品一二三| 久久久久久久久久久久大奶| 啦啦啦在线观看免费高清www| 啦啦啦中文免费视频观看日本| 色视频www国产| 91精品伊人久久大香线蕉| 一级毛片电影观看| 一本一本综合久久| 亚洲不卡免费看| 女人久久www免费人成看片| 成人黄色视频免费在线看| 18禁在线播放成人免费| 在线观看www视频免费| 亚洲国产精品999| av播播在线观看一区| 久久青草综合色| 中文字幕制服av| 日韩,欧美,国产一区二区三区| 一级,二级,三级黄色视频| 亚洲怡红院男人天堂| 日本av手机在线免费观看| videossex国产| 亚洲不卡免费看| 国产欧美亚洲国产| 国产熟女午夜一区二区三区 | 男女边摸边吃奶| 免费久久久久久久精品成人欧美视频 | 国产一区二区三区av在线| 亚洲精品国产成人久久av| av一本久久久久| 最近2019中文字幕mv第一页| 免费看不卡的av| 欧美日韩精品成人综合77777| 六月丁香七月| 国产亚洲av片在线观看秒播厂| 免费av不卡在线播放| 欧美日韩精品成人综合77777| 精品少妇久久久久久888优播| 欧美丝袜亚洲另类| 伦精品一区二区三区| 亚洲国产精品一区二区三区在线| av又黄又爽大尺度在线免费看| 一区二区三区乱码不卡18| 日韩精品免费视频一区二区三区 | 高清不卡的av网站| 亚洲美女搞黄在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美日韩卡通动漫| 热99国产精品久久久久久7| 免费少妇av软件| 欧美精品人与动牲交sv欧美| 丰满乱子伦码专区| 国产视频内射| 久久精品国产亚洲av涩爱| 99热国产这里只有精品6| 精品少妇内射三级| 高清毛片免费看| 人人妻人人澡人人爽人人夜夜| 日韩伦理黄色片| 一区二区三区四区激情视频| 中文字幕制服av| 亚洲经典国产精华液单| 日本wwww免费看| 午夜91福利影院| 日日啪夜夜爽| 国产av码专区亚洲av| 少妇被粗大猛烈的视频| 国产高清有码在线观看视频| 国产爽快片一区二区三区| 九九在线视频观看精品| 免费不卡的大黄色大毛片视频在线观看| 男人和女人高潮做爰伦理| 久久毛片免费看一区二区三区| 蜜臀久久99精品久久宅男| 91精品国产国语对白视频| 高清在线视频一区二区三区| av.在线天堂| a级毛片免费高清观看在线播放| 成年人午夜在线观看视频| 国产精品不卡视频一区二区| 一区二区av电影网| 曰老女人黄片| 99国产精品免费福利视频| 精品国产一区二区久久| 99久久精品国产国产毛片| 国产免费又黄又爽又色| 亚洲精品日韩在线中文字幕| 国产精品免费大片| 亚洲成人一二三区av| av福利片在线观看| 日韩大片免费观看网站| 亚洲婷婷狠狠爱综合网| 久久精品熟女亚洲av麻豆精品| 欧美日韩在线观看h| 成人无遮挡网站| 成人美女网站在线观看视频| 亚洲精品久久久久久婷婷小说| 91精品国产国语对白视频| tube8黄色片| 免费观看av网站的网址| 国产一区亚洲一区在线观看| 一本一本综合久久| 久热这里只有精品99| 国产 一区精品| 久久青草综合色| 乱码一卡2卡4卡精品| 欧美xxⅹ黑人| 搡老乐熟女国产| 韩国高清视频一区二区三区| 国产熟女欧美一区二区| 日韩强制内射视频| 亚洲国产精品国产精品| 国产毛片在线视频| 大话2 男鬼变身卡| 一级二级三级毛片免费看| 亚洲av免费高清在线观看| 中文在线观看免费www的网站| 日本黄大片高清| 9色porny在线观看| 观看免费一级毛片| 蜜臀久久99精品久久宅男| 亚洲成人手机| 精品亚洲成a人片在线观看| 欧美精品一区二区大全| 国产高清国产精品国产三级| 99热这里只有精品一区| 国产免费福利视频在线观看| 一级二级三级毛片免费看| 又爽又黄a免费视频| 国产黄色免费在线视频| 亚洲成人手机| 久热这里只有精品99| 美女主播在线视频| 亚洲精品国产av成人精品| 在线观看免费视频网站a站| av福利片在线| 亚洲欧美中文字幕日韩二区| 高清视频免费观看一区二区| 桃花免费在线播放| 亚洲国产精品成人久久小说| 国产伦在线观看视频一区| 国产精品国产三级国产av玫瑰| 人妻系列 视频| 老司机影院毛片| 精品一区在线观看国产| 性色av一级| 99视频精品全部免费 在线| 亚洲精品国产色婷婷电影| 熟妇人妻不卡中文字幕| 人妻夜夜爽99麻豆av| 人人澡人人妻人| 在线观看人妻少妇| 亚洲真实伦在线观看| 午夜福利影视在线免费观看| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 精品少妇内射三级| 日韩视频在线欧美| 男女边摸边吃奶| 国产高清三级在线| av在线观看视频网站免费| 精品卡一卡二卡四卡免费| 亚洲人成网站在线观看播放| www.色视频.com| 久久99热6这里只有精品| 国产免费一级a男人的天堂| 狂野欧美激情性xxxx在线观看| av黄色大香蕉| av免费观看日本| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 国产男人的电影天堂91| 极品教师在线视频| 久久久久久久久久久久大奶| 毛片一级片免费看久久久久| 日韩在线高清观看一区二区三区| 日日撸夜夜添| 欧美日韩亚洲高清精品| 国产有黄有色有爽视频| 国产精品女同一区二区软件| 国产高清三级在线| 免费观看a级毛片全部| 亚洲精品日本国产第一区| 黄色一级大片看看| 亚洲内射少妇av| 久久精品国产鲁丝片午夜精品| 这个男人来自地球电影免费观看 | 久久鲁丝午夜福利片| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| 午夜福利网站1000一区二区三区| 国产成人a∨麻豆精品| 免费看不卡的av| av又黄又爽大尺度在线免费看| 女的被弄到高潮叫床怎么办| 午夜福利网站1000一区二区三区| 一区二区三区四区激情视频| 另类亚洲欧美激情| 亚洲美女视频黄频| 青春草国产在线视频| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 搡女人真爽免费视频火全软件| 免费黄色在线免费观看| 国产av码专区亚洲av| 少妇裸体淫交视频免费看高清| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 日韩 亚洲 欧美在线| av.在线天堂| 毛片一级片免费看久久久久| 免费看不卡的av| 国产成人精品婷婷| 国产在线一区二区三区精| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 久久久久久久久久久免费av| 人人澡人人妻人| 国产午夜精品一二区理论片| 中文欧美无线码| 亚洲国产精品成人久久小说| 国产av码专区亚洲av| 久久6这里有精品| 亚洲精品aⅴ在线观看| 99久久精品热视频| 久久久久国产精品人妻一区二区| 波野结衣二区三区在线| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽人人片av| 老司机影院毛片| 男女国产视频网站| 亚洲国产欧美日韩在线播放 | 少妇被粗大的猛进出69影院 | √禁漫天堂资源中文www| 99热这里只有是精品在线观看| 熟女电影av网| 免费观看性生交大片5| 成人午夜精彩视频在线观看| 一个人免费看片子| 国产精品偷伦视频观看了| 丝袜脚勾引网站| 国产精品久久久久久久电影| av国产精品久久久久影院| 少妇被粗大猛烈的视频| 黄色视频在线播放观看不卡| 夫妻性生交免费视频一级片| 成人18禁高潮啪啪吃奶动态图 | 久久久欧美国产精品| 99久久精品热视频| 久热久热在线精品观看| 国产成人精品无人区| 亚洲,一卡二卡三卡| 国产精品人妻久久久久久| 久久久国产一区二区| 日本91视频免费播放| 亚洲精品日韩av片在线观看| 男人和女人高潮做爰伦理| 免费av不卡在线播放| 亚洲,一卡二卡三卡| 内射极品少妇av片p| 青春草亚洲视频在线观看| 男女无遮挡免费网站观看| 十分钟在线观看高清视频www | 亚洲性久久影院| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品一区二区| 少妇丰满av| 青春草国产在线视频| 亚洲精品自拍成人| 水蜜桃什么品种好| 久久99一区二区三区| 99九九在线精品视频 | 只有这里有精品99| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 好男人视频免费观看在线| 成人免费观看视频高清| 天美传媒精品一区二区| 亚洲无线观看免费| 久久午夜综合久久蜜桃| 成年女人在线观看亚洲视频| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 丝瓜视频免费看黄片| 91午夜精品亚洲一区二区三区| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 高清欧美精品videossex| 国产高清不卡午夜福利| 高清不卡的av网站| 亚洲欧美日韩东京热| 亚洲情色 制服丝袜| 久久亚洲国产成人精品v| 成人影院久久| 两个人免费观看高清视频 | 亚洲丝袜综合中文字幕| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 久久久久久久久久久丰满| 一区二区av电影网| 自线自在国产av| 视频区图区小说| 国产深夜福利视频在线观看| 国产精品秋霞免费鲁丝片| 女的被弄到高潮叫床怎么办| 欧美日韩视频精品一区| 国产69精品久久久久777片| 亚洲真实伦在线观看| 国产中年淑女户外野战色| 亚洲av中文av极速乱| 在线免费观看不下载黄p国产| 久久久久久久久久久久大奶| 水蜜桃什么品种好| 一级,二级,三级黄色视频| 水蜜桃什么品种好| 男人舔奶头视频| 99热全是精品| 中文欧美无线码| 热re99久久精品国产66热6| 哪个播放器可以免费观看大片| 简卡轻食公司| 亚洲精品亚洲一区二区| 韩国av在线不卡| 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 国产 一区精品| 亚洲精品456在线播放app| 最黄视频免费看| 熟妇人妻不卡中文字幕| 久久久久久伊人网av| 在线观看一区二区三区激情| 日韩三级伦理在线观看| 国产日韩欧美在线精品| 大片电影免费在线观看免费| 午夜免费观看性视频| 精品一区在线观看国产| 熟女av电影| 嫩草影院新地址| 波野结衣二区三区在线| 99九九在线精品视频 | 插阴视频在线观看视频| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人久久小说| 国产永久视频网站| 一级黄片播放器| 欧美亚洲 丝袜 人妻 在线| 美女视频免费永久观看网站| av免费观看日本| 老熟女久久久| 亚洲美女视频黄频| 国产爽快片一区二区三区| 久久久久久伊人网av| 国产精品麻豆人妻色哟哟久久| 国产男人的电影天堂91| 国产伦精品一区二区三区四那| 久久影院123| 少妇高潮的动态图| 亚洲精品国产av成人精品| 制服丝袜香蕉在线| 国产老妇伦熟女老妇高清| 午夜日本视频在线| 亚洲av综合色区一区| 欧美日韩精品成人综合77777| 高清毛片免费看| 久久久久视频综合| 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 国产成人一区二区在线| 国产综合精华液| 日韩熟女老妇一区二区性免费视频| 在线观看国产h片| 亚洲性久久影院| 久久精品久久精品一区二区三区| 岛国毛片在线播放| 性色avwww在线观看| 日韩欧美 国产精品| 免费在线观看成人毛片| 最黄视频免费看| av线在线观看网站| 99久久精品热视频| 日本欧美视频一区|