• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer

    2022-07-20 01:34:50ZHANGWeiHAOQiangHEJianfengPANJianming
    Advances in Polar Science 2022年1期

    ZHANG Wei, HAO Qiang*, HE Jianfeng & PAN Jianming

    Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer

    ZHANG Wei1,2, HAO Qiang1,2*, HE Jianfeng3& PAN Jianming1,2

    1Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou 310000, China;2Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310000, China;3Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai 200136, China

    The size-fractionated composition of phytoplankton greatly influences the transfer efficiency of biomass in pelagic food chains and the biological carbon flux from surface waters to the deep sea. To better understand phytoplankton abundance and composition in polynya, ice zone, and open ocean regions of the Amundsen Sea Sector of the Southern Ocean (110°W–150°W), its size-fractionated distribution and vertical structure are reported for January to February 2020. Vertical integrated (0–200 m) chlorophyll (Chl)concentrations within Amundsen polynya regions are significantly higher than those within ice zone (test,< 0.01) and open ocean (test,< 0.01) regions, averaging 372.3 ± 189.0, 146.2 ± 152.1, and 49.0 ± 20.8 mg·m?2, respectively. High Chl is associated with shallow mixed-layer depths and near-shelf regions, especially at the southern ends of 112°W and 145°W. Netplankton (> 20 μm) contribute 60% of the total Chl in Amundsen polynya and sea ice areas, and form subsurface chlorophyll maxima (SCM) above the pycnocline in the upper water column, probably because of diatom blooms. Net-, nano-, and picoplankton comprise 39%, 32%, and 29% of total Chl in open ocean stations, respectively. The open-ocean SCM migrates deeper and is below the pycnocline.The Amundsen Sea SCM is moderately, positively correlated with the euphotic zone depth and moderately, negatively correlated with column-integrated net- and nanoplankton Chl.

    size-fractionated phytoplankton, chlorophyll, subsurface chlorophyll maxima, polynya, Amundsen Sea

    1 Introduction0F

    Because of its high productivity and extensive sea–air gas and heat exchange, the Amundsen Sea is disproportionately important in Antarctic elemental cycles relative to its size (Sarmiento et al., 2004). Polynyas, seasonal open waters surrounded by sea ice, are focal points for the exchange of matter and energy between the atmosphere and polar oceans (Smith Jr. and Barber, 2007). Polynyas in the Amundsen Sea are expansive, the most productive in the Antarctic, and vary substantially between years (Arrigo et al., 2012). Seasonally averaged chlorophyll(Chl-) concentrations in Amundsen Sea polynya, 2.2 ± 3.0 mg·m?3, are almost 47% higher than the much larger Ross Sea polynya (1.5 ± 1.5 mg·m?3), with mean Chl varying substantially from 1997–2002 (138% of the mean) (Yager et al., 2012). Substantial interannual variations in Chl might be attributed to recent rapid glacier and ice cover melting in the Amundsen Sea (Rignot et al., 2008), driven mainly by increased relatively warm (~ 2°C) Circumpolar Deep Water below the ice shelf (Jacobs et al., 2011). Normally, Amundsen Sea Chl begins to increase in October because of increased light, and peaks during the austral summer in December and January (Arrigo and van Dijken, 2003).

    Environmental changes in the Southern Ocean significantly impact phytoplankton community structure. Moline et al. (2004) reported that periodic shifts in phytoplankton community structure, from netplankton (large diatoms) to relatively small nanoplankton (cryptophytes), might be closely related to changes in glacial meltwater runoff. In the nutrient-rich, strongly stratified western Ross Sea waters in the summer, the highest Chl (129–358 mg·m?2in the upper 100 m) occurred in the stratified region and was dominated by netplankton. However, in nutrient-poor, unstratified south-central Ross Sea waters in early spring, moderate Chl (55–186 mg·m?2in the upper 100 m) occurred in polynya and ice-edge areas, dominated by nanoplankton () (Goffart et al., 2000).

    Phytoplankton size structure is controlled by complex interactions between physical mixing conditions, the light environment, and macro- and micronutrient concentrations. Changes in phytoplankton community structure have significant biological and chemical implications (Fragoso and Smith, 2012). For example,(nanoplankton) absorbs twice as much CO2per mole of phosphate removed than do diatoms (netplankton) (Arrigo et al., 1999). Additionally, it is not the preferred prey of microzooplankton, and its presence is closely linked to the dimethyl sulfide cycle between the ocean and atmosphere (Liss et al., 1994; Caron et al., 2000). Picoplankton also plays an important role in energy flow and nutrient cycling in marine planktonic ecosystems. Phototrophic picoplankton contributes significantly to phytoplankton biomass and production, while non-photosynthetic picoplankton is instrumental in carbon and nutrient transformation and remineralization.Therefore, monitoring of both the total and size-fractionated phytoplankton in the Amundsen Sea is necessary to identify responses of these marine ecosystems to environmental change.

    Southern Ocean phytoplankton are important in Antarctic food webs and for regulating global climate through the oceanic carbon cycle (Deppeler and Davidson, 2017). In this region, phytoplankton blooms mainly comprise large diatoms with a unique physiology adapted to low iron, light, and temperature conditions (Strzepek et al., 2019). Under severe iron limitation and in intensely stratified waters, large diatoms aggregate in the pycnocline and form a subsurface chlorophyll maximum (SCM) in the Seasonal Ice Zone (Gomi et al., 2007). Most commonly tropical SCM forms just above the pycnocline and is directly related to an increase in phytoplankton abundance. Unlike in the tropics, the Southern Ocean SCM is usually located at or below the pycnocline (Tripathy et al., 2015). The SCM contributes to water column primary production, facilitating large-scale downward carbon export events, and represents an area where macrofauna forage and intense zooplanktonic grazing occurs (Siegelman et al., 2019).

    With limited information available on the spatial and temporal formation of the Antarctic SCM, especially in the Amundsen Sea, studying its formation in this area will help identify the distributions of subsurface phytoplankton communities that are currently undetectable by satellites. We investigate total and size-fractionated phytoplankton and subsurface chlorophyll maxima in the Amundsen Sea polynya, ice zones, and open ocean regions during the austral summer of 2020. Differences in phytoplankton composition and bathymetric distribution between the Amundsen polynya, ice zones, and open ocean are identified, and possible reasons are discussed.

    2 Materials and methods

    2.1 Study area and sea ice concentrations

    The western-Antarctic Amundsen Sea lies between Cape Flying Fish (the northwestern tip of Thurston Island) and Cape Dart, Siple Island. From 3 January to 5 February 2020 aboard the Chinese icebreaker R/V, samples from 46 size-fractionated Chl stations (Figure 1) from Amundsen polynya (AP), ice zones, and open ocean regions were collected. Polynya regions had sea-ice concentrations below 10% and were surrounded by ice (Arrigo and van Dijken, 2003). Two polynya regions (red dashed ellipses) were identified, with labelled dark dots indicating polynya stations (Figure 2). Sea-ice was absent in open-ocean stations. Data for sea-ice concentrations are derived from the Norwegian Meteorological Institute (https://osi-saf. eumetsat.int/products/sea-ice-products).

    Figure 1 Amundsen Sea size-fractionated Chl-stations (dots) and transects (lines), 2020.

    Figure 2 Sea ice concentration derived from the Norwegian Meteorological Institute. Dashed ellipses: red, polynya regions; black, open-ocean regions. Labeled dark dots indicate polynya stations.

    2.2 Euphotic zone and mixed layer depths (MLDs)

    We define the depth of the mixed layer as the depth at which the density is 0.05 kg·m?3higher than that of the sea surface (Brainerd and Gregg, 1995). The depth at which photosynthetically active radiation (PAR) is 1% that of surface PAR is defined as the euphotic zone depth (eu). Vertical light attenuation (d) for each station is calculated from the linear relationship established betweendand average Chl-concentrations (Morel et al., 2007).euis quantitatively related withd(Yang et al., 2015) as follows:

    2.3 Size-fractionated Chl analyses and vertical distribution

    Water samples for size-fractionated Chl were obtained for each station at 7 depths (0, 30, 50, 75, 100, 150, 200 m) using a CTD rosette sampler. Water samples (0.5–1 L) were filtered sequentially through 20 and 2 μm Nucleopore filters (47 mm) and Whatman GF/F filters (47 mm). Chl on filters was extracted in 90% acetone at ?20°C for 24 h. Chl samples were measured onboard using a Trilogy fluorometer (Turner Designs, USA) (Holm-Hansen et al., 1965).

    2.4 SCM analysis

    SCM was obtained by fitting measured vertical Chl-data to a slightly modified version of the MB89 pattern (Uitz et al., 2006), using:

    2.5 Data analysis

    A Spearman correlation analysis was conducted to examine correlations between SCM and sea ice concentration,eu, MLD, and size-fractionated column-integrated Chl at survey stations. A Students-test was used to analyze for significant differences. Analyses were performed using SPSS 22.0.

    3 Results

    3.1 Euphotic zone and MLDs

    euranged 11.3–24.3 m in the AP, 33.7–74.5 m in open ocean, and 13.1–53.5 m in ice zones (Table 1). Euphotic zone depth at AP stations were significantly lower than in open sea (test,< 0.01) and sea ice (test,< 0.05) stations because of higher Chl-concentrations.

    MLD in AP, open ocean, and ice zones are detailed in Table 1. Because of stratification from melted sea ice or surface warming, MLD ranged 10–55 m at all stations. MLD in AP, open ocean, and ice zones did not differ significantly (test,> 0.05).

    3.2 Total and size-fractionated Chl

    Total column (200 m) integrated Chl (Figure 3) in AP stations ranged 167.6–766.3 mg·m?2(mean ± SD, 372.3 ± 189.0 mg·m?2), in open ocean stations 18.6–90.7 mg·m?2(49.0 ± 20.8 mg·m?2), and in ice zone stations 35.4– 424.8 mg·m?2(146.2 ± 152.1 mg·m?2). The highest and lowest integrated Chl values were 766.3 mg·m?2at station RA2-2 and 18.6 mg·m?2at station A3-8. Total column-integrated Chl in the AP was significantly higher than in open ocean (test,< 0.01) and ice zones (test,< 0.01). Total column-integrated Chl within ice zones was greater than in open ocean regions, but the difference was not significant (test,> 0.05). Highest Chl values occurred near shelf regions, especially at the southern ends of transects RA2 and A11.

    Table 1 Amundsen Sea sea-ice concentration, Zeu, MLD, SCM, size-fractionated Chl, and total column integrated Chl

    Continued

    Figure 3 Total column-integrated Chl (0–200 m).

    Column-integrated Chl (0–200 m, mg·m?2) values for netplankton (> 20 μm), nanoplankton (2–20 μm), and picoplankton (0.2–2 μm) in AP, open ocean, and ice zones are presented in Figure 4. Highest and lowest netplankton values were 590.9 mg·m?2at station RA2-2 and 1.8 mg·m?2at station A3-8, ranging 66.0–590.9 mg·m?2(233.6 ± 159.8 mg·m?2) in AP stations, 1.8–62.3 mg·m?2(19.0 ± 14.8 mg·m?2) in open ocean stations, and 3.4–350.2 mg·m?2(96.5 ± 132.3 mg·m?2) in ice zones (Figure 4a). Column-integrated netplankton Chl in AP stations was significantly higher than in open sea (test,< 0.01) and sea-ice (test,< 0.05) stations. The netplankton and total Chl-distributions were similar.

    Highest and lowest nanoplankton Chl values were 140.6 mg·m?2at station A9-2 and 6.1 mg·m?2at station A3-8, ranging30.9–140.6 mg·m?2(75.9 ± 34.0 mg·m?2) in AP stations, 6.1–34.6 mg·m?2(15.9 ± 7.0 mg·m?2) in open ocean stations, and 12.8–77.6 mg·m?2(30.9 ± 20.3 mg·m?2) in ice zones (Figure 4b). Nanoplankton Chl in AP stations was significantly higher than in the open ocean (test,< 0.01) and ice zones (test,< 0.01). Column-integrated nanoplankton Chl in ice zones was significantly higher than in the open ocean regions (test,< 0.05).

    Figure 4 Column-integrated Chl (0–200 m) for netplankton (> 20 μm, a), nanoplankton (2–20 μm, b), and picoplankton (0.2–2 μm, c).

    Highest and lowest integrated picoplankton Chl values were 173.9 mg·m?2at station A9-2 and 8.0 mg·m?2at station A3-10, ranging 16.3–173.9 mg·m?2(62.8 ± 42.0 mg·m?2) in AP stations, 8.0–32.7 mg·m?2(14.1 ± 5.3 mg·m?2) in open ocean stations, and 15.1–22.8 mg·m?2(18.8 ± 2.6 mg·m?2) in ice zones (Figure 4c). Picoplankton Chl in the AP was significantly higher than in the open ocean (test,< 0.01) and ice zones (test,< 0.01). Although the integrated picoplankton Chl in ice zones was similar to that of open ocean regions, they differed significantly (test,< 0.05).

    Size-fractionated Chl indicates two distinctly different phytoplankton communities exist in the Amundsen Sea (Figure 5). In polynya, net-, nano-, and picoplankton cells comprise 63%, 20%, and 17% of the total Chl, respectively (Figure 5b).In ice zones, net-, nano-, and picoplankton cells comprise 63%, 23%, and 14% of the total Chl, respectively (Figure 5c). In contrast, the contribution to total Chl of net- (39%), nano- (32%), and picoplankton(29%) in open ocean stations was more evenly spread. The total phytoplankton community in the Amundsen Sea was dominated by netplankton, accounting for 60% of the total Chl, followed by nano-plankton (22%) and picoplankton (18%) (Figure 5a).

    Figure 5 Size-fractionated Chl compositions in the overall Amundsen Sea (a), polynya (b), ice zones (c), and open ocean areas (d).

    Chl-vertical distributions are shown in Figure 6. Maximum Chl occurs above 50 m, and decreases from 50–200 m Chl at all stations. Average Chl in the upper 50 m at AP stations, 4.9 ± 2.9 mg·m?3, was significantly higher than in ice zones (2.9 ± 3.4 mg·m?3,test,< 0.01) and open ocean stations (0.5 ± 0.4 mg·m?3,test,< 0.01). Intermediate average Chl values occurred in ice zones; open ocean stations had the lowest average Chl-concentration.

    Chl-vertical distributions from 0–200 m along transects RA1–3, and A3 are presented in Figure 7. Maxima in the upper 50 m are associated with AP stations near the coast along all transects, and deep Chl-(> 50 m) are associated with AP station RA2-2 along transect RA2 (Figure 7b).

    3.3 SCM

    Chl-vertical profiles and corresponding modeled dimensionless Chl-profiles are shown in Figure 8. Measured Chl-vertical profiles were used in conjunction with equation (2), with the fitting procedure allowing the five parameters in this equation to be derived for each station (Table S1). Corresponding modeled dimensionless Chl-profiles compared well with measured Chl-vertical profiles for all stations (Figure 8). TheSCM ranged 0– 59.0 m (20.0 ± 16.5 m) in AP stations, 0–86.9 m (36.6 ± 28.6 m) in the open ocean, and 0–86.9 m (22.9 ± 31.2 m) in ice zones (Table 1). Average SCM values are lowest in the AP, followed by ice zones, then the open ocean.

    SCM distributions along transects RA1 (a), RA2 (b), RA3 (c), and A3 (d) are presented in Figure 7. In polynya and ice zones near the shelf, the SCM was very low and generally remained at approximately 10 m. As the latitude decreases, in the open ocean, the SCM occurred deeper, excepting station RA1-5 on transect RA1, RA2-5 on transect RA2, and A3-10 on transect A3. Marginal ice zone stations RA1-5 and RA2-5, where sea ice melting released phytoplankton and iron, resulted in the SCM occurring in the upper water column, above the mixed layer. At station A3-10, physical processes such as eddies may have reintroduced the limiting micro-nutrient iron from depths into the upper water column, causing a phytoplankton bloom, lowering the SCM.

    4 Discussion

    4.1 Amundsen Sea Chl-a concentrations

    Phytoplankton concentrations in the Amundsen Sea vary seasonally (Kim et al., 2015). Average column-integrated Chl from 0–30 m peaked in summer and decreased in winter (Smith et al., 1998). A comparison of dominant phytoplankton and Chl-concentrations throughout the Southern Ocean is presented in Table 2. Lee et al. (2012) reported high average Chl in polynya stations (395.1 ± 219.4 mg·m?2) compared to non-polynya stations (33.2 ± 23.9 mg·m?2) integrated from the surface to the bottom of the euphotic zone from 21 December 2010 to 23 January 2011. In contrast, Kim et al. (2016) reported a relatively low average Chl (49.2 mg·m?2) from 11 February to 14 March 2012. We report average Chl (372.32 ± 189.00 mg·m?2) from 3 January to 5 February 2020, column integrated from 0–200 m in polynya, being twice higher than in ice zones (146.17 ± 152.07 mg·m?2) and seven times higher than in open ocean areas (48.95 ± 20.82 mg·m?2). Ouraverage Chl in polynya areas is within the range reported by Lee et al. (2012), but significantly higher in non-polynya areas, possibly due to different integrated depths between studies (~ 50 m in the euphotic zone in Lee et al. (2012), but 200 m herein).

    4.2 Amundsen Sea phytoplankton composition

    Phytoplankton community structure can significantly affect trophic levels, phytoplankton biochemical composition, and particulate organic carbon transfer efficiency in pelagic food chains (Harrison et al., 1990; Lee et al., 2007; Cotti-Rausch et al., 2020). While the biomass of phytoplankton of given sizes can affect food webs, the activity of size fractions is more directly relevant to trophic dynamics and biogeochemical cycling (Cotti-Rausch et al., 2020). At higher ammonium concentrations (~ 5 μM) in the Chukchi Sea and Bering Strait, small phytoplankton (< 5 μm) incorporate more carbon into proteins than larger phytoplankton (> 5 μm) (Lee et al., 2009). We reported netplankton (> 20 μm) to dominate (63%) in polynya and ice zones, possibly because ofblooms in seasonal ice zones and coastal Antarctic waters (DiTullio et al., 2000). In contrast, with decreased latitude, the proportion of netplankton gradually decreases and that of nano- and picoplankton increases. The three size-fractionated phytoplankton groups are more evenly distributed in open ocean stations, possibly because of iron limitation inhibiting uptake of major macronutrients by phytoplankton (Peloquin and Smith, 2007).

    Figure 6 Chl-vertical distributions in polynya (a), ice zone (b), and open ocean (c) stations.

    Figure 7 Chl-distributions from 0–200 m along transects RA1 (a), RA2 (b), RA3 (c), and A3 (d). Dashed lines: black, MLD; orange, SCM.

    Figure 8 Chl-vertical profiles and corresponding modeled dimensionless Chl-profiles at polynya (a), ice zone (b), and open-ocean (c) stations.

    4.3 Amundsen Sea subsurface chlorophyll maxima

    The stability of the tropical SCM relies on the vertical mixing input of limiting nutrients that enter the base of the mixed layer through the pycnocline, combined with a light field that decreases exponentially with depth (Latasa et al., 2017). This creates an optimum depth for phytoplankton to grow (at the SCM), usually just above the pycnocline (Baldry et al., 2020). Unalike tropical regions, sufficient subsurface inputs of iron, the limiting micro-nutrient, are not widely present in the Southern Ocean (Arteaga et al., 2019). The Southern Ocean SCM is influenced by various processes, such as iron fertilization from land masses, sea-ice retreat, eddies, buoyancy regulation by large diatoms, and grazing (Ardyna et al., 2019). In Amundsen Sea polynya and ice edge areas, sea-ice retreat releases phytoplankton, alleviates light limitation, and increases bioavailable iron concentrations with the melting of ice, resulting in surface water phytoplankton blooms. Around the Amundsen Sea shelf, the continuous supply of iron from ocean depths because of the Antarctic Circumpolar Current promotes large-scale phytoplankton blooms dominated by diatoms (netplankton, > 20 μm) in surface waters. The Amundsen Sea SCM is moderately, positively correlated witheu, and moderately, negatively correlated with column-integrated net- and nanoplankton Chl (Table 3). With diatom blooms,eudecreases and diatom SCMs occur in surface blooms, above the pycnocline. The diatom SCM forms under continuous iron or silicate limiting conditions with the reduction of surface blooms (Gomi et al., 2007).When nutrients from meltwater are rapidly depleted, the net- and nanoplankton column-integrated Chl gradually decreases and the surface bloom at the sea ice edge sinks rapidly. Sinking phytoplankton find an appropriate environment deeper than the pycnocline, aggregating to form a SCM in the Amundsen Sea open ocean.

    5 Summary and conclusions

    Average column-integrated (0–200 m) Chl from 3 January to 5 February 2020 in the Amundsen polynya ranged 372.3 ± 189.0 mg·m?2, consistent with values reported by Lee et al. (2012) for average Chl integrated from surface to the bottom of the euphotic zone in polynya regions. However, our average Chl in non-polynya areas is significantly higher than that reported by Lee et al. (2012). Phytoplankton communities in Amundsen Sea polynya and ice zones are dominated by netplankton, which accounts for 60% of the total Chl because ofblooms (DiTullio et al., 2000). Diatom SCMs are located in surface blooms, above the pycnocline. In contrast, net-, nano-, and picoplankton contribute more evenly to total Chl in open-ocean stations, likely because of iron limitation. In the open ocean, because of iron and light colimitation, the SCM migrates deeper and occurs below the pycnocline. The Amundsen Sea SCM is moderately correlated witheuand column-integrated net- and nanoplankton Chl. In the Amundsen Sea, sea-ice concentrations decrease by about 7% per decade (Cavalieri and Parkinson, 2008). To better understand the mechanisms driving significant differences in Chl, phytoplankton composition, and SCM depths among polynya and non-polynya areas in the Amundsen Sea, more seasonal and annual surveys are required.

    Table 2 Comparison of dominant phytoplankton and Chl-a concentrations in the Southern Ocean

    Notes: * mean Chl-concentration from satellite data; ** column-integrated Chl-concentration in the upper 100 m; *** column-integrated Chl-concentration from surface to the bottom of the euphotic zone; **** column-integrated Chl-concentration in the upper 200 m.

    Table 3 Correlations between the SCM and environmental parameters

    Notes: *< 0.05, **< 0.01.

    Acknowledgments We thank the captain, Bing Zhu and crew of R/V, and Mr. Shuo He from Zhejiang University for their assistance during sampling. This research was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant no. IRASCC 01-02-01).We appreciate two anonymous reviewers, and Guest Editor Prof. Rujian Wang for their constructive comments that have further improved the manuscript.

    Note Zhang Wei and Hao Qiangcontributedequallytothisworkandshouldbeconsideredco-firstauthors.

    Ardyna M, Lacour L, Sergi S, et al. 2019. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat Commun, 10(1), 2451, doi:10.1038/s41467-019-09973-6.

    Arrigo K R, van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res, 108(C8): 3271, doi:10.1029/2002jc001739.

    Arrigo K R, Lowry K E, van Dijken G L. 2012. Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 71-76: 5-15, doi:10.1016/ j.dsr2.2012.03.006.

    Arrigo K R, Robinson D H, Worthen D L, et al. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2in the Southern Ocean. Science, 283(5400): 365-367, doi:10.1126/science. 283.5400.365.

    Arteaga L A, Pahlow M, Bushinsky S M, et al. 2019. Nutrient controls on export production in the Southern Ocean. Global Biogeochem Cycles, 33(8): 942-956, doi:10.1029/2019gb006236.

    Baldry K, Strutton P G, Hill N A, et al. 2020. Subsurface chlorophyll-maxima in the Southern Ocean. Front Mar Sci, 7: 671, doi:10.3389/ fmars.2020.00671.

    Brainerd K E, Gregg M C. 1995. Surface mixed and mixing layer depths. Deep Sea Res Part I Oceanogr Res Pap, 42(9): 1521-1543, doi:10.1016/0967-0637(95)00068-H.

    Caron D A, Dennett M R, Lonsdale D J, et al. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 47(15-16): 3249-3272, doi:10.1016/S0967-0645(00)00067- 9.

    Cavalieri D J, Parkinson C L. 2008. Antarctic sea ice variability and trends, 1979–2006. J Geophys Res, 113(C7): C07004, doi:10.1029/2007jc 004564.

    Cotti-Rausch B E, Lomas M W, Lachenmyer E M, et al. 2020. Size-fractionated biomass and primary productivity of Sargasso Sea phytoplankton. Deep Sea Res Part I Oceanogr Res Pap, 156: 103141, doi:10.1016/j.dsr.2019.103141.

    Deppeler S L, Davidson A T. 2017. Southern Ocean phytoplankton in a changing climate. Front Mar Sci, 4: 1-28, doi:10.3389/fmars.2017. 00040.

    DiTullio G R, Grebmeier J M, Arrigo K R, et al. 2000. Rapid and early export ofblooms in the Ross Sea, Antarctica. Nature, 404(6778): 595-598, doi:10.1038/35007061.

    Fragoso G M, Smith W O. 2012. Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica. J Mar Syst, 89(1): 19-29, doi:10.1016/j.jmarsys.2011.07.008.

    Goffart A, Catalano G, Hecq J H. 2000. Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. J Mar Syst, 27(1-3): 161-175, doi:10.1016/S0924-7963(00)00065-8.

    Gomi Y, Taniguchi A, Fukuchi M. 2007. Temporal and spatial variation of the phytoplankton assemblage in the eastern Indian sector of the Southern Ocean in summer 2001/2002. Polar Biol, 30(7): 817-827, doi:10.1007/s00300-006-0242-2.

    Harrison P J, Thompson P A, Calderwood G S. 1990. Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol, 2(1): 45-56, doi:10.1007/BF02179768.

    Holm-Hansen O, Lorenzen C J, Holmes R W, et al. 1965. Fluorometric determination of chlorophyll. J Mar Sci, 30: 3-15, doi:10.1093/ icesjms/30.1.3.

    Jacobs S S, Jenkins A, Giulivi C F, et al. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat Geosci, 4(8): 519-523, doi:10.1038/ngeo1188.

    Kim B K, Joo H, Song H J, et al. 2015. Large seasonal variation in phytoplankton production in the Amundsen Sea. Polar Biol, 38(3): 319-331, doi:10.1007/s00300-014-1588-5.

    Kim B K, Lee J H, Joo H, et al. 2016. Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 123: 42-49, doi:10.1016/j.dsr2.2015.04.024.

    Latasa M, Cabello A M, Morán X A G, et al. 2017. Distribution of phytoplankton groups within the deep chlorophyll maximum. Limnol Oceanogr, 62(2): 665-685, doi:10.1002/lno.10452.

    Lee, S H, Kim B K, Yun M S, et al. 2012. Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biol, 35: 1721-1733, doi:10.1007/s00300-012-1220-5.

    Lee S H, Kim H J, Whitledge T E. 2009. High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea Cont Shelf Res, 29(14): 1689-1696, doi:10.1016/j.csr.2009.05.012.

    Lee S H, Whitledge T E, Kang S H. 2007. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont Shelf Res, 27(17): 2231-2249, doi:10.1016/j.csr.2007. 05.009.

    Liss P S, Malin G, Turner S M, et al. 1994. Dimethyl sulphide and: a review. J Mar Syst, 5(1): 41-53, doi:10.1016/0924- 7963(94)90015-9.

    Moline M A, Claustre H, Frazer T K, et al. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol, 10(12): 1973-1980, doi:10.1111/j.1365-2486. 2004.00825.x.

    Morel A, Huot Y, Gentili B, et al. 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens Environ, 111(1): 69-88, doi:10.1016/j.rse.2007.03.012.

    Peloquin J A, Smith W O. 2007. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition. J Geophys Res, 112(C8): C08013, doi:10.1029/ 2006jc003816.

    Rignot E, Bamber J L, van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci, 1 (2): 106-110, doi:10.1038/ngeo102.

    Saggiomo V, Carrada G C, Mangoni O, et al. 1998. Spatial and temporal variability of size-fractionated biomass and primary production in the Ross Sea (Antarctica) during austral spring and summer. J Mar Syst, 17(1-4): 115-127, doi:10.1016/S0924-7963(98)00033-5.

    Sarmiento J L, Slater R, Barber R, et al. 2004. Response of ocean ecosystems to climate warming. Global Biogeochem Cycles, 18(3): GB3003, doi:10.1029/2003gb002134.

    Siegelman L, O’Toole M, Flexas M, et al. 2019. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci Rep, 9(1), 5588, doi:10.1038/s41598-019-42117-w.

    Smith R C, Baker K S, Vernet M. 1998. Seasonal and interannual variability of phytoplankton biomass west of the Antarctic Peninsula. J Mar Syst, 17(1-4): 229-243, doi:10.1016/s0924-7963(98)00040-2.

    Smith Jr. W, Barber D. 2007. Polynyas: windows to the world. Elsevier.

    Strzepek R F, Boyd P W, Sunda W G. 2019. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. PNAS, 116(10): 4388-4393, doi:10.1073/pnas.1810886116.

    Tripathy S C, Pavithran S, Sabu P, et al. 2015. Deep chlorophyll maximum and primary productivity in Indian Ocean sector of the Southern Ocean: Case study in the Subtropical and Polar Front during austral summer 2011. Deep Sea Res Part II Top Stud Oceanogr, 118: 240-249, doi:10.1016/j.dsr2.2015.01.004.

    Uitz J, Claustre H, Morel A, et al. 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res, 111(C8): C08005, doi:10.1029/ 2005jc003207.

    Yager P, Sherrell R, Stammerjohn S, et al. 2012. ASPIRE: The Amundsen Sea polynya international research expedition. Oceanography, 25(3): 40-53, doi:10.5670/oceanog.2012.73.

    Yang W, Matsushita B, Yoshimura K, et al. 2015. A modified semianalytical algorithm for remotely estimating euphotic zone depth in Turbid Inland waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8: 1-10, doi:10.1109/ JSTARS.2015.2415853.

    Table S1 Values of the five parameters to be used in equation (7) obtained for the dimensionless vertical profiles of Chl-and subsurface chlorophyll maximum (SCM) for all stations in the Amundsen Sea polynya, ice zones, and open ocean

    LocationStationChl-aSCM/m CbSCmaxdmaxDd PolynyaRA1-1?0.15?0.011.370.673.579.19 RA1-2?0.040.001.480.891.7413.29 RA1-30.160.021.340.660.9713.61 RA2-20.310.010.951.022.9213.39 RA2-3?0.030.001.410.701.6911.35 RA2-40.960.100.591.620.8633.60 RA3-30.030.001.360.311.255.70 A3-1?0.060.002.99?6.277.030.00 A9-00.170.011.150.991.7617.87 A9-21.140.091.103.041.1359.02 A9-30.950.121.261.570.4938.19 A11-00.010.001.291.624.4318.25 A11-10.070.001.69?4.087.030.00 A11-20.690.051.142.241.8339.77 A11-30.270.031.431.120.8526.45 Ice zonesRA2-1?0.030.001.321.132.9015.77 RA3-20.000.001.240.371.356.74 A3-363.045.90?69.19?3.459.890.00 A3-5?0.42?0.071.66?0.603.090.00 A3-61.220.351.651.690.1786.91 RA1-0?0.040.001.320.812.2810.59 RA1-40.940.260.561.350.8272.45 RA3-40.040.003.280.490.3811.02 RA3-50.810.180.510.580.4525.18 A11-4?27.20?2.6541.17?7.1111.680.00 Open oceanRA1-50.340.060.870.371.0412.37 A3-100.050.011.250.320.9911.07 A3-71.100.330.571.520.6485.86 RA1-70.780.171.860.830.2234.83 A3-80.560.221.310.990.4673.70 RA2-50.350.060.950.430.7314.81 RA2-60.610.110.580.490.9818.11 RA2-70.590.130.900.720.3830.91 A3-90.800.151.141.390.6851.28 A4-60.290.051.04?0.341.950.00 RA3-60.600.130.610.530.7922.33 RA3-70.480.100.700.491.0819.96 RA4-60.390.090.940.910.7954.51 RA4-7?9.47?1.6211.00?1.074.430.00 RA4-81.240.414.681.440.1486.92 A4-7?0.31?0.151.360.801.3841.96 A4-80.880.250.751.320.7576.45 A4-90.420.070.770.560.7923.98

    10.13679/j.advps.2021.0035

    12 July 2021;

    26 October 2021;

    30 March 2022

    : Zhang W, Hao Q, He J F, et al.Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer. Adv Polar Sci, 2022, 33(1): 1-13,doi:10.13679/j.advps.2021.0035

    , ORCID: 0000-0003-2145-2703, E-mail: haoq@sio.org.cn

    91字幕亚洲| 亚洲国产精品999| 日本五十路高清| 手机成人av网站| 日日摸夜夜添夜夜添小说| av网站在线播放免费| 午夜精品久久久久久毛片777| 一级,二级,三级黄色视频| 久久久国产精品麻豆| 91精品三级在线观看| 日韩电影二区| 国产野战对白在线观看| 国产免费现黄频在线看| 91成人精品电影| 亚洲成人免费电影在线观看| 在线观看舔阴道视频| 国产精品一区二区在线不卡| 首页视频小说图片口味搜索| 日韩有码中文字幕| 欧美成狂野欧美在线观看| a级毛片在线看网站| 99国产精品一区二区蜜桃av | 亚洲精华国产精华精| 国产伦人伦偷精品视频| 性高湖久久久久久久久免费观看| 午夜福利,免费看| 久久精品aⅴ一区二区三区四区| 国产成人系列免费观看| 黑人巨大精品欧美一区二区蜜桃| 麻豆乱淫一区二区| 天堂8中文在线网| 午夜成年电影在线免费观看| 亚洲精品日韩在线中文字幕| 中亚洲国语对白在线视频| 亚洲精品久久久久久婷婷小说| 桃红色精品国产亚洲av| 亚洲激情五月婷婷啪啪| 满18在线观看网站| 大陆偷拍与自拍| av有码第一页| 深夜精品福利| 80岁老熟妇乱子伦牲交| 日韩视频在线欧美| 人人妻,人人澡人人爽秒播| 国产精品久久久久久精品古装| 国产一级毛片在线| 在线观看www视频免费| 国产精品99久久99久久久不卡| 在线十欧美十亚洲十日本专区| 国产亚洲精品一区二区www | 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品电影小说| 老司机深夜福利视频在线观看 | 亚洲国产精品999| 精品人妻1区二区| 国产精品影院久久| 嫩草影视91久久| 91字幕亚洲| 乱人伦中国视频| 国产欧美日韩一区二区三区在线| 国产成人欧美| 国产无遮挡羞羞视频在线观看| 亚洲三区欧美一区| 亚洲五月色婷婷综合| 热re99久久国产66热| 亚洲精品久久午夜乱码| 国产av国产精品国产| 亚洲精品av麻豆狂野| 色婷婷av一区二区三区视频| 菩萨蛮人人尽说江南好唐韦庄| 操出白浆在线播放| 18禁黄网站禁片午夜丰满| 亚洲熟女精品中文字幕| 久久精品亚洲av国产电影网| 丝袜人妻中文字幕| 日韩人妻精品一区2区三区| 日韩人妻精品一区2区三区| 一级,二级,三级黄色视频| 国产男女超爽视频在线观看| 亚洲精品国产精品久久久不卡| 久久久久精品人妻al黑| 99国产精品免费福利视频| 亚洲久久久国产精品| 男人添女人高潮全过程视频| 欧美黑人精品巨大| videos熟女内射| 波多野结衣av一区二区av| 天天躁夜夜躁狠狠躁躁| 91字幕亚洲| 亚洲伊人色综图| 午夜福利视频在线观看免费| 国产精品麻豆人妻色哟哟久久| 精品人妻1区二区| av在线app专区| 丁香六月天网| 国产成人系列免费观看| 久久国产精品男人的天堂亚洲| av在线老鸭窝| 亚洲欧美色中文字幕在线| 午夜影院在线不卡| 国产真人三级小视频在线观看| 精品人妻在线不人妻| 香蕉国产在线看| 母亲3免费完整高清在线观看| 免费观看av网站的网址| 女人久久www免费人成看片| 岛国毛片在线播放| 天堂中文最新版在线下载| 久久天躁狠狠躁夜夜2o2o| 欧美人与性动交α欧美精品济南到| 久久这里只有精品19| 法律面前人人平等表现在哪些方面 | 各种免费的搞黄视频| 搡老乐熟女国产| 中文字幕高清在线视频| 曰老女人黄片| 999久久久精品免费观看国产| av天堂在线播放| 日韩电影二区| 国产又爽黄色视频| a级片在线免费高清观看视频| 欧美午夜高清在线| 亚洲成av片中文字幕在线观看| 深夜精品福利| 岛国毛片在线播放| 美女脱内裤让男人舔精品视频| 国产有黄有色有爽视频| 国产亚洲精品久久久久5区| 中文字幕人妻丝袜制服| 亚洲一码二码三码区别大吗| 欧美精品一区二区大全| 天天操日日干夜夜撸| 又大又爽又粗| 亚洲天堂av无毛| 黄色片一级片一级黄色片| 老司机午夜十八禁免费视频| 首页视频小说图片口味搜索| 法律面前人人平等表现在哪些方面 | 免费久久久久久久精品成人欧美视频| www.精华液| 高潮久久久久久久久久久不卡| 久久 成人 亚洲| 在线观看免费高清a一片| 精品卡一卡二卡四卡免费| 国产成+人综合+亚洲专区| 欧美国产精品va在线观看不卡| 老司机影院成人| 亚洲专区国产一区二区| 蜜桃国产av成人99| 婷婷成人精品国产| 乱人伦中国视频| 波多野结衣av一区二区av| 美女午夜性视频免费| 青春草视频在线免费观看| 欧美激情 高清一区二区三区| 亚洲久久久国产精品| 成人免费观看视频高清| 精品国产一区二区三区久久久樱花| 亚洲人成77777在线视频| 日本a在线网址| 老鸭窝网址在线观看| 日本av免费视频播放| 欧美亚洲 丝袜 人妻 在线| 十八禁人妻一区二区| 99久久国产精品久久久| 国产区一区二久久| 亚洲欧美成人综合另类久久久| 成人国语在线视频| 大片电影免费在线观看免费| 成人影院久久| 免费在线观看日本一区| 亚洲成人手机| 手机成人av网站| 亚洲熟女毛片儿| 三上悠亚av全集在线观看| 午夜影院在线不卡| 91麻豆精品激情在线观看国产 | 久久久久国产一级毛片高清牌| 夫妻午夜视频| 亚洲 欧美一区二区三区| 99久久99久久久精品蜜桃| 亚洲av片天天在线观看| 老司机深夜福利视频在线观看 | h视频一区二区三区| 亚洲av美国av| 国产一区二区激情短视频 | 热99re8久久精品国产| 18禁裸乳无遮挡动漫免费视频| 国产高清国产精品国产三级| 精品少妇久久久久久888优播| 黑人操中国人逼视频| 岛国在线观看网站| 久久久久久免费高清国产稀缺| 亚洲av成人不卡在线观看播放网 | 黄色视频,在线免费观看| 母亲3免费完整高清在线观看| 成人黄色视频免费在线看| 十分钟在线观看高清视频www| 久久ye,这里只有精品| 国产av国产精品国产| 美女国产高潮福利片在线看| 18禁裸乳无遮挡动漫免费视频| e午夜精品久久久久久久| 欧美国产精品一级二级三级| 久久99热这里只频精品6学生| av不卡在线播放| 欧美日韩黄片免| 国产一区有黄有色的免费视频| 亚洲国产精品999| 性高湖久久久久久久久免费观看| 国产精品 国内视频| 黄色片一级片一级黄色片| 精品一区在线观看国产| 色老头精品视频在线观看| av天堂在线播放| 久久av网站| 日韩视频一区二区在线观看| 一级片免费观看大全| 国产极品粉嫩免费观看在线| 欧美中文综合在线视频| 一级毛片精品| 9热在线视频观看99| 男人舔女人的私密视频| 国产免费av片在线观看野外av| 黄色视频,在线免费观看| 一区二区三区精品91| 三上悠亚av全集在线观看| 99精品欧美一区二区三区四区| 丝袜美腿诱惑在线| 最新的欧美精品一区二区| 精品国产一区二区久久| 午夜成年电影在线免费观看| 亚洲中文日韩欧美视频| 美女国产高潮福利片在线看| 999久久久国产精品视频| 精品国产一区二区三区四区第35| 国产精品.久久久| a在线观看视频网站| 正在播放国产对白刺激| 一本综合久久免费| 在线观看www视频免费| 青春草视频在线免费观看| 国产三级黄色录像| 亚洲一区二区三区欧美精品| 爱豆传媒免费全集在线观看| 亚洲欧美日韩高清在线视频 | 免费不卡黄色视频| 欧美久久黑人一区二区| 我要看黄色一级片免费的| 蜜桃国产av成人99| h视频一区二区三区| 俄罗斯特黄特色一大片| 久9热在线精品视频| 国产激情久久老熟女| 精品国产国语对白av| 精品亚洲成a人片在线观看| www.999成人在线观看| 国产精品久久久久久人妻精品电影 | 欧美97在线视频| 久久中文字幕一级| 亚洲欧美成人综合另类久久久| 精品第一国产精品| 女性被躁到高潮视频| 午夜免费成人在线视频| 色94色欧美一区二区| 成年人黄色毛片网站| av又黄又爽大尺度在线免费看| 国产免费一区二区三区四区乱码| 亚洲午夜精品一区,二区,三区| 自线自在国产av| 国产精品二区激情视频| 亚洲黑人精品在线| 国产精品成人在线| 91老司机精品| 成年人午夜在线观看视频| 女人高潮潮喷娇喘18禁视频| 十八禁网站免费在线| 中亚洲国语对白在线视频| 一区二区av电影网| 国产精品一区二区免费欧美 | 亚洲av日韩精品久久久久久密| 亚洲av国产av综合av卡| www.精华液| www日本在线高清视频| 老熟妇仑乱视频hdxx| 亚洲av美国av| 肉色欧美久久久久久久蜜桃| 亚洲精品国产精品久久久不卡| 电影成人av| 女人精品久久久久毛片| 男男h啪啪无遮挡| 亚洲专区中文字幕在线| 国产精品二区激情视频| 汤姆久久久久久久影院中文字幕| 大片电影免费在线观看免费| 超碰成人久久| 老汉色∧v一级毛片| 精品乱码久久久久久99久播| 69av精品久久久久久 | 中国美女看黄片| 国产激情久久老熟女| 丝袜脚勾引网站| 久久久欧美国产精品| 久久久久久久久久久久大奶| 一级片'在线观看视频| av电影中文网址| 国产真人三级小视频在线观看| 欧美激情高清一区二区三区| 99久久国产精品久久久| 国产av国产精品国产| 亚洲精品国产区一区二| 1024香蕉在线观看| 少妇的丰满在线观看| 女人爽到高潮嗷嗷叫在线视频| 日本91视频免费播放| 视频区欧美日本亚洲| 99精品久久久久人妻精品| 人人澡人人妻人| 激情视频va一区二区三区| 日韩,欧美,国产一区二区三区| a在线观看视频网站| 色综合欧美亚洲国产小说| av电影中文网址| 精品亚洲乱码少妇综合久久| videosex国产| 日本一区二区免费在线视频| 亚洲色图综合在线观看| 悠悠久久av| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 91大片在线观看| 国产精品免费视频内射| 男人添女人高潮全过程视频| 最近最新中文字幕大全免费视频| 亚洲精品乱久久久久久| 久久久精品94久久精品| 久久久久网色| 免费黄频网站在线观看国产| 久久av网站| 亚洲人成电影观看| 亚洲欧洲精品一区二区精品久久久| 中文字幕精品免费在线观看视频| 精品人妻1区二区| 大陆偷拍与自拍| 老司机福利观看| 老熟妇乱子伦视频在线观看 | 黄色视频,在线免费观看| 三级毛片av免费| 欧美日韩国产mv在线观看视频| 亚洲 国产 在线| 国产欧美亚洲国产| 操出白浆在线播放| 午夜福利视频精品| 99久久人妻综合| 久久国产精品大桥未久av| 国产精品秋霞免费鲁丝片| 欧美乱码精品一区二区三区| 日韩视频在线欧美| 欧美精品人与动牲交sv欧美| 黑人猛操日本美女一级片| 狂野欧美激情性bbbbbb| 久久亚洲精品不卡| 母亲3免费完整高清在线观看| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 久久精品aⅴ一区二区三区四区| 亚洲精品自拍成人| 久久ye,这里只有精品| 午夜两性在线视频| 欧美老熟妇乱子伦牲交| 一区二区三区精品91| 一级毛片女人18水好多| 午夜精品国产一区二区电影| 国产成人精品在线电影| 十分钟在线观看高清视频www| av不卡在线播放| 在线观看免费视频网站a站| 午夜福利免费观看在线| 国产成人免费观看mmmm| 日韩 亚洲 欧美在线| 黄片小视频在线播放| 国产一区二区在线观看av| 免费在线观看视频国产中文字幕亚洲 | 国产一卡二卡三卡精品| 欧美精品一区二区大全| 丰满人妻熟妇乱又伦精品不卡| 日韩中文字幕欧美一区二区| 99国产精品免费福利视频| 在线av久久热| 777久久人妻少妇嫩草av网站| 国产一卡二卡三卡精品| 美女主播在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产高清视频在线播放一区 | 黑人猛操日本美女一级片| 亚洲成人免费电影在线观看| 老汉色av国产亚洲站长工具| 一区二区av电影网| 欧美性长视频在线观看| 欧美变态另类bdsm刘玥| 男人操女人黄网站| 如日韩欧美国产精品一区二区三区| 精品国产乱子伦一区二区三区 | av网站免费在线观看视频| av天堂久久9| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| 成人三级做爰电影| 国产视频一区二区在线看| 人人妻人人爽人人添夜夜欢视频| 日本一区二区免费在线视频| 高清欧美精品videossex| h视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| xxxhd国产人妻xxx| 韩国精品一区二区三区| 性色av乱码一区二区三区2| 精品一区在线观看国产| 少妇 在线观看| 亚洲精品美女久久久久99蜜臀| 黄色片一级片一级黄色片| 老司机深夜福利视频在线观看 | 99精品久久久久人妻精品| 午夜日韩欧美国产| 啦啦啦免费观看视频1| 嫁个100分男人电影在线观看| 精品少妇久久久久久888优播| videos熟女内射| 中亚洲国语对白在线视频| 亚洲精品av麻豆狂野| 午夜免费成人在线视频| 交换朋友夫妻互换小说| 91大片在线观看| 韩国精品一区二区三区| 久久99一区二区三区| 精品一区二区三区av网在线观看 | 亚洲综合色网址| 97精品久久久久久久久久精品| 国产精品九九99| 777米奇影视久久| 亚洲五月色婷婷综合| 黄色视频不卡| 大型av网站在线播放| 狂野欧美激情性xxxx| 亚洲成人免费电影在线观看| 国产免费现黄频在线看| www.精华液| 久久久久久久大尺度免费视频| 精品免费久久久久久久清纯 | tube8黄色片| 日韩人妻精品一区2区三区| 亚洲情色 制服丝袜| 99热全是精品| 国产日韩欧美在线精品| 免费高清在线观看视频在线观看| 精品卡一卡二卡四卡免费| 成年动漫av网址| 久久性视频一级片| 一本久久精品| 捣出白浆h1v1| 成人国语在线视频| 日韩中文字幕欧美一区二区| 一个人免费在线观看的高清视频 | 大码成人一级视频| 国产亚洲一区二区精品| 成在线人永久免费视频| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 少妇裸体淫交视频免费看高清 | 啦啦啦中文免费视频观看日本| 91成人精品电影| 欧美亚洲 丝袜 人妻 在线| 一本综合久久免费| 久久av网站| 一区二区av电影网| 午夜激情av网站| 精品久久久久久久毛片微露脸 | 99国产精品99久久久久| 啦啦啦免费观看视频1| 成年人黄色毛片网站| 超碰成人久久| 国产精品一区二区在线观看99| 精品一区在线观看国产| 欧美+亚洲+日韩+国产| 亚洲精华国产精华精| 99久久综合免费| 国产欧美日韩一区二区三 | 精品一区在线观看国产| 久久人人97超碰香蕉20202| 亚洲一码二码三码区别大吗| 青青草视频在线视频观看| 女人高潮潮喷娇喘18禁视频| 伊人亚洲综合成人网| 久久 成人 亚洲| 午夜影院在线不卡| 成年人黄色毛片网站| 我要看黄色一级片免费的| www.999成人在线观看| 国产激情久久老熟女| 欧美精品高潮呻吟av久久| 久久九九热精品免费| 国产日韩欧美视频二区| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 亚洲久久久国产精品| 午夜久久久在线观看| 一个人免费看片子| 一区二区av电影网| 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| av国产精品久久久久影院| 深夜精品福利| 成人三级做爰电影| 成人国产一区最新在线观看| 日韩大码丰满熟妇| 国产亚洲精品一区二区www | 国产麻豆69| 免费在线观看视频国产中文字幕亚洲 | 精品人妻熟女毛片av久久网站| 色综合欧美亚洲国产小说| 女人被躁到高潮嗷嗷叫费观| 99国产精品一区二区蜜桃av | 国产在线观看jvid| 国产国语露脸激情在线看| 亚洲国产精品成人久久小说| 色94色欧美一区二区| 人人妻人人添人人爽欧美一区卜| 国产一区有黄有色的免费视频| 黄色片一级片一级黄色片| 日韩中文字幕欧美一区二区| 亚洲精品中文字幕一二三四区 | 女人精品久久久久毛片| 欧美亚洲日本最大视频资源| 国产黄色免费在线视频| 老司机深夜福利视频在线观看 | 国产国语露脸激情在线看| 国产亚洲一区二区精品| 母亲3免费完整高清在线观看| 99九九在线精品视频| 欧美激情极品国产一区二区三区| 国产高清videossex| 久久精品熟女亚洲av麻豆精品| 女人精品久久久久毛片| 中文字幕制服av| 91国产中文字幕| 国产亚洲av高清不卡| 黄频高清免费视频| 少妇猛男粗大的猛烈进出视频| 1024香蕉在线观看| 成人三级做爰电影| 97在线人人人人妻| 成年人黄色毛片网站| 下体分泌物呈黄色| 精品国产乱码久久久久久男人| 欧美久久黑人一区二区| 成年动漫av网址| 一本色道久久久久久精品综合| 999久久久精品免费观看国产| 精品福利永久在线观看| 老司机深夜福利视频在线观看 | 汤姆久久久久久久影院中文字幕| 欧美精品啪啪一区二区三区 | 免费在线观看影片大全网站| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 成人免费观看视频高清| 亚洲国产精品一区三区| 巨乳人妻的诱惑在线观看| 免费观看a级毛片全部| 久久久久久免费高清国产稀缺| cao死你这个sao货| 欧美乱码精品一区二区三区| 国产欧美亚洲国产| 久久影院123| 精品一品国产午夜福利视频| 亚洲免费av在线视频| 老熟妇仑乱视频hdxx| 国产精品成人在线| 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| 国产免费视频播放在线视频| 亚洲成av片中文字幕在线观看| 亚洲精品国产色婷婷电影| avwww免费| 欧美一级毛片孕妇| 一个人免费看片子| 久久久久视频综合| 亚洲少妇的诱惑av| 亚洲成国产人片在线观看| av天堂在线播放| 国产成人av教育| 12—13女人毛片做爰片一| 国产成人影院久久av| 水蜜桃什么品种好| 纵有疾风起免费观看全集完整版| 超碰成人久久| 国产有黄有色有爽视频| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 亚洲成人手机| 欧美黄色片欧美黄色片| 正在播放国产对白刺激| 男女无遮挡免费网站观看| 日本vs欧美在线观看视频| 久久国产精品男人的天堂亚洲| 欧美黄色淫秽网站| 午夜免费成人在线视频| 性少妇av在线| 亚洲全国av大片| 最黄视频免费看| 久久久久久久国产电影| 国产av又大| 999久久久国产精品视频| 欧美日韩视频精品一区| 建设人人有责人人尽责人人享有的|