• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Co(Ⅱ)/Ni(Ⅱ) Coordination Polymer of Isomeric Terphenyl-2,2″,4,4″-tetracarboxylic Acids with a Single Water Bridge:Syntheses,Structures,and Magnetic Properties

    2022-07-12 07:40:20SUFengLIShaoDongHANChunWULinTaoWANGZhiJun
    無機化學(xué)學(xué)報 2022年7期

    SU Feng LI Shao-Dong HAN Chun WU Lin-Tao WANG Zhi-Jun

    (Department of Chemistry,Changzhi University,Changzhi,Shanxi 046011,China)

    Abstract:Two single water-bridged Co(Ⅱ)/Ni(Ⅱ) chains coordination polymers,namely[Co(m-H2tpta)(H2O)3]n(1)and{[Ni2(p-tpta)(H2O)6]·2H2O}n(2)were synthesized based on isomeric terphenyl-2,2″,4,4″-tetracarboxylic acid(m-H4tpta and p-H4tpta)ligands under hydrothermal conditions.They have been structurally characterized by FT-IR,elemental analysis,single-crystal,and powder X-ray diffraction analysis.Structurally,the central metal ions display slightly distorted octahedral geometries in 1 and 2,and are linked to 1D metal chains by single bridging water molecules.The isomeric H4tpta ligands coordinate metal ions in different μ1-η1∶η0∶η1∶η0and μ4-η1∶η1∶η1∶η1coordination modes,leading to the formation of 1D chain and 3D network structure.Complex 2 displays a 3D network with(4,4)-connected NbO net topology.Magnetically,complex 1 exhibited an antiferromagnetic interaction through μ2-H2O in the uniform Co(Ⅱ) chain model.Complex 2 also showed an antiferromagnetic coupling between Ni(Ⅱ) ions corresponding to magnetic coupling Ni—Ow—Ni angles.CCDC:1415021,1;1415020,2.

    Keywords:coordination polymers;1,1′∶3′,1″-terphenyl-2,2″,4,4″-tetracarboxylic acid;1,1′∶4′,1″-terphenyl-2,2″,4,4″-tetracarboxylic acid;crystal structures;magnetism

    0 Introduction

    The studies of magnetochemistry have been of interest for decades in transition metal coordination compounds due to the diverse structures and magnetic properties of single-molecule magnets(SMMs)and single-chain magnets(SCMs)systems[1-5].A large number of coordination polymers based on metal chains were constructed by different bridging paths such asμ2-oxo,μ2-COO-,μ2-N3-,andμ2-X-(X=F,Cl),which exhibited intriguing structures and interesting magnetic properties[6-10].In general,the main influence factors of the magnetic behavior are paramagnetic metal ions and the nature of the bridging mediums[11-12].For example,a series of isostructural polymers[M(o,p-H2bpta)]n,(o,p-H4bpta=2,2′,4,4′-biphenyltetracarboxylic acid,M=Mn(Ⅱ),Fe(Ⅱ),Co(Ⅱ),Ni(Ⅱ),and Cu(Ⅱ))with[M(μ2-COO)2]nchains showing weak ferro-or anti-ferromagnetic interactions transmitted by doublesyn-anticarboxylate bridges[13].[Mn2(4,4′-bipy)(m,m-bpta)]n(m,m-H4bpta=3,3′,5,5′-biphenyltetracarboxylic acid)with 1D zigzag chains exhibited intrachain antiferromagnetic coupling between Mn(Ⅱ)ions related to raresyn-syncarboxylate bridges[14].Three isomorphous[M(L)(N3)]n·3nH2O(L-=1-(4-carboxylatobenzyl)pyridinium-4-carboxylate,M=Mn(Ⅱ),Co(Ⅱ),and Ni(Ⅱ))polymers with triple-bridged chains showed antiferromagnetic interaction in the Mn(Ⅱ)compound but ferromagnetic interactions in the Co(Ⅱ)and Ni(Ⅱ) analogs[15].Two water-bridged Co(Ⅱ) chains,[Co(H2O)3(2-na)2]nand{[Co(H2O)3(1-na)2]·2H2O}n,with isomeric naphthoate(na-)spacers exhibited metamagnetic transition and unusual single-chain magnetic behaviors mediated by single water bridges[16].Additionally,the magnitude of magnetic coupling can be correlated with the distances of M…M or the geometrical configurations of metal ions and the types of the bridging mediums.

    This family ofμ-oxo systems has motivated interesting studies,aimed at gaining insight into magnetic phenomena and developing potential functional materials[17-19].Some experiments and theoretical research had given influence factors of magnetic coupling(geometric features such as the M—O—M angles and M—O bond lengths)[20-21].Whileμ-oxo bridges associated with other O-bridging moieties(hydroxo,carboxylato,carbonato,alkoxo,phenoxo,etc.)are also common in metal clusters and metal chain compounds[22-23].The most common feature of these compounds withμ-oxo bridges involves multiple bridges(double,or triple bridges).By contrast,the magnetic exchanges depending on the M—O—M angles could be justified and counterbalanced by other simultaneous bridging mediums[24].Hence,it is useful to clarify the relationship between structural features and the value of the intramolecular magnetic exchange interaction in the singlyμ-oxo bridged systems.Recently,we focus on the chain coordination polymers with a single water bridge that have shown a great diversity of intramolecular magnetic exchange phenomena.

    Herein,we report two magnetic Co/Ni(Ⅱ)coordination polymers with single-water bridges,namely[Co(m-H2tpta)(H2O)3]n(1)(m-H4tpta=1,1′∶3′,1″-terphenyl-2,2″,4,4″-tetracarboxylic acid),and{[Ni2(p-tpta)(H2O)6]·2H2O}n(p-H4tpta=1,1′∶4′,1″-terphenyl-2,2″,4,4″-tetracarboxylic acid)(2).The complexes contain 1D uniform metal chains formed by single water bridging metal ions.Complex 1 is a supramolecular architecture with 1D metal chains,and complex 2 exhibits a 3D network with(4,4)-connected NbO nets topology.The variable-temperature magnetic susceptibility measurements reveal that single water bridges can effectively mediate magnetic interactions between the spin carriers.Complex 1 exhibited an antiferromagnetic behavior.Complex 2 showed an antiferromagnetic coupling between the intrachain Ni(Ⅱ)ions.

    1 Experimental

    1.1 Material and measurement

    m-H4tpta andp-H4tpta were received from Jinan Camolai Trading Company,China.Other reagents and solvents were obtained from commercial sources and used without further purification.Powder X-ray diffraction(PXRD)data were collected on a Bruker D8-ADVANCE X-ray diffractometer with CuKαradiation(λ=0.154 18 nm,U=40 kV,I=25 mA)and 2θranging from 5°to 50°.The carbon,nitrogen,and hydrogen contents of the complexes were determined by CHNO-Rapid instrument.The FT-IR spectra were recorded from a pure solid sample in a range of 4 000-400 cm-1on a Bruker TENSOR27 spectrometer.Thermogravimetric(TG)studies were carried out on a Labsys Evo thermal analyzer with a temperature range of 298-1 073 K under nitrogen flow with a heating rate of 10 K·min-1.Magnetic susceptibility measurement data were performed by a SQUID magnetometer(Quantum MPMS)in a temperature range of 2-300 K by using an applied field of 1 000 Oe.Electron spin resonance(ESR)spectra were recorded with a Bruker EMXplus 10/12 spectrometer equipped with an ER4119 High-Q cylindrical cavity and Oxford ESR910 liquid helium continuous flow cryostat(Microwave power:1 mW)

    1.2 Preparation of complexes 1 and 2

    The pH value of a mixture ofm-H4tpta(0.041 g,0.10 mmol),CoCl2·6H2O(47.5 mg,0.20 mmol)in H2O(8 mL)was adjusted to about 6.5 with dilute KOH solution and then transferred to 13 mL Teflon-lined stainless steel reactor.The mixture was heated under autogenous pressure at 423 K for 72 h and then cooled to room temperature naturally.The pink block crystals of 1 were collected and washed with water.Yield:60%(based on Co). Elemental analysis Calcd. for C22H18O11Co(%):C 51.08,H 3.51.Found(%):C 50.96,H 3.68.IR(KBr,cm-1):3 274(s),1 945(w),1 690(s),1 606(m),1 555(s),1 432(s),1 371(m),1 220(s),1 123(m),899(w),780(m),685(m),511(w).

    A mixture ofp-H4tpta(0.041 g,0.10 mmol),NiCl2·6H2O(71.3 mg,0.30 mmol)in H2O(6 mL)was placed in a 13 mL Teflon-lined stainless steel reactor.When the pH value was adjusted toca.7.5 by KOH solution,the mixture was sealed and heated at 423 K for 72 h.After the mixture was slowly cooled to room temperature,green block crystals of 2 were obtained.Yield:72%(based on Ni).Elemental analysis Calcd.for C22H26O16Ni2(%):C 39.81,H 3.95.Found(%):C 38.92,H 3.88.IR(cm-1):3 166(m),2 035(w),1 607(s),1 575(s),1 535(s),1 440(s),1 382(s),1 170(w),1 073(w),914(w),821(m),781(m),729(m),670(w),530(w).

    1.3 X-ray crystallography

    Single-crystal X-ray diffraction data of complexes 1 and 2 were collected on a Bruker D8-Quest diffractometer equipped with a photon 100 detector by using a graphite monochromator utilizing MoKαradiation(λ=0.071 073 nm).Data integration and absorption correction were processed by the SAINT and SADABS programs.The structures were solved by intrinsic phasing with the SHELXS and refined by full-matrix leastsquares methods onF2by using the SHELXL-2018 program.H atoms bound to C atoms and carboxyl groups were placed in their expected positions accounting for the hybridization of the supporting atoms with C—H 0.093 nm and O—H 0.082 nm,and withUiso(H)=1.2Ueq(C).The H atoms of the water molecules were found from difference Fourier maps and fixed at their ideal positions according to hydrogen-bond geometries with O—H distances restraints of 0.082(1)nm andUiso(H)=1.5Ueq(O).For complex 2,the refinement of a twin processing improved the agreement between the structural model and the experimental data significantly.During the refinement,the reflection data were read via the HKLF 5 option in SHELXL and a parameter BASF was introduced,which was used to describe the fractional contribution of the twin domains.The fractional contributions of the two minor twin domains refined to 0.281 8(19)and 0.358 1(14).In addition,the water molecule(O8)of 2 was disordered over two positions with the site-occupation factors of 0.62(2)and 0.38(2)and treated anisotropically.A summary of the crystallographic data for complexes 1 and 2 is listed in Table 1.Selected bond lengths and angles for 1 and 2 are shown in Table S1(Supporting information).

    Table 1 Crystal data and structure refinement parameters for complexes 1 and 2

    CCDC:1415021,1;1415020,2.

    2 Results and discussion

    2.1 Crystal structure description

    Single-crystal X-ray crystallographic analysis reveals that complex 1 crystallizes in the orthorhombic crystal system with thePnmaspace group.Complex 1 consists of one Co(Ⅱ)ion,a halfm-H2tpta2-anion,and one and a half coordinated water molecules in the asymmetric unit.As illustrated in Fig.1a,the Co(Ⅱ)ion exhibits octahedral geometry,which is composed of two carboxylate oxygen atoms(O1 and O1i,Symmetry code:ix,-y+3/2,z)from onem-H2tpta2-ligand and two termi-nal water molecules(O6 and O6i)in the equatorial positions.The axial sites are occupied by two water molecules(O5 and O5ii,Symmetry code:iix+1/2,y,-z+1/2).The Co—O bond lengths range from 0.204 9(2)to 0.216 3(1)nm,and the O—Co—O bond angles are in a range of 85.14(7)°-95.88(8)°(Table S1).

    Fig.1 (a)Perspective view of the coordination of the Co(Ⅱ)ion for 1 with the thermal ellipsoids at a 30% probability level;(b)1D chain running along the a-axis(hydrogen atoms omitted for clarity);(c)A 2D sheet formed through the localized π-bonding interactions in the ac plane;(d)Packing hexagonal-shaped architecture viewed along the central projection,where hydrogen atoms are omitted for clarity

    Herein,m-H4tpta is partly deprotonated and the 2,2″-carboxylate groups chelate one Co(Ⅱ) ion with an O1—Co—O1 angle of 85.14(7)°.The dihedral angle is 31.455(7)°between the planes of the two terminal aromatic rings.Adjacent Co(Ⅱ)ions are bridged by a water molecule with the Co…Co distance of 0.391 4(2)nm and the Co1—O5—Co1iangle of 130.59(8)°,resulting in the formation of a singly water-bridged Co(Ⅱ)chain along thea-axis(Fig.1b).The bridging water molecule assumes a radial-radial disposition with Co—O distances of 0.214 5(1)and 0.216 3(1)nm.

    Thus,the coordination sites could be properly described ascis-arrangement concerning carboxylate groups and terminal water.In addition,intramolecular hydrogen bonds are observed between the carboxylate groups and coordinated water molecules,which form a compact structure.The intra-chain hydrogen bonds are formed between the water molecule(O6)and carboxylate(O6…O1 0.271 1(1)nm,Table S2),which produces a compact 1D chain.Additionally,weakp-πinteractions are established by C10/C12 and the phenyl rings(from C9 to C12 atoms)with the perpendicular distances of 0.308 6(2)and 0.317 0(2)nm.These chains are stacked through localizedπ-bonding interactions to form a 2D sheet in theacplane(Fig.1c),and further,give rise to a 3D supramolecular network by hydrogen bonds from carboxylate groups(O3…O2 0.274 9(2)nm,Fig.1d).

    Complex 2 features a chain-based 3D network constituted by thep-tpta4-ligands and bridging water molecules.It crystallizes in the triclinicP1 space group with the Ni(Ⅱ)ions located in the inversion centers.The asymmetric unit consists of one crystallographically independent Ni(Ⅱ)ions,halfp-tpta4-anions,three coordinated water molecules,and one lattice water molecule.As depicted in Fig.2a,the Ni(Ⅱ)ions adopt slightly distorted octahedral geometries defined by four water molecules and two carboxylate oxygen atoms from twop-tpta4-ligands.The Ni—O bond lengths are 0.202 8(5)-0.211 5(4)nm(Table S1),similar to those reported for other Ni(Ⅱ)multicarboxylates[25].The completely deprotonatedp-tpta4-ligand serves as a tetradentate ligand to bind four Ni(Ⅱ)ions withμ4-η1∶η1∶η1∶η1coordination mode.The dihedral angle formed by the planes of the two adjacent aromatic rings is 47.939(7)°.Thep-tpta4-ligand is linked to four Ni(Ⅱ)ions in monodentate mode,forming a 2D sheet in theabplane(Fig.2b).Adjacent Ni(Ⅱ)ions are bridged by water molecules to produce a water-bridged metal chain with Ni…Ni 0.387 1(1)nm and Ni—O7—Ni 133.3(2)°along thea-axis(Fig.2c).The octahedral geometries of Ni1 and Ni2 centers are interlinked to each other in a vertex-sharing fashion.Such neighboring 1D chains are further cross-linked via the organic backbonep-tpta4-ligands,generating a 3D pillaredlayered structure with channels along thea-axis(Fig.2d).The lattice water molecules(O8)are located in voids and fixed by coordinated water molecules by hydrogen bonds with O8…O3 0.278 2(9)nm and O5…O8 0.284 9(10)nm.In addition,the intra-chain hydro-gen bonds are generated between water molecules and carboxylate groups(Table S2),forming a compact network structure.From the topological point of view,thep-tpta4-ligand acts as a 4-connector linking four Ni(Ⅱ)ions and each Ni(Ⅱ)ion is a 4-connected node,the network can be simplified as a(4,4)-connected NbO topology[26]with the point symbol{64.82}(Fig.2e).

    Fig.2 (a)Perspective view of the coordination of the Ni(Ⅱ)ion for 2 with the thermal ellipsoids at 45% probability level;(b)2D layered structure formed by p-tpta4-ligands linking to Ni(Ⅱ)ions in the ab plane;(c)1D chain formed by water-bridged Ni(Ⅱ)ions running along[100]direction;(d)Packing of the 3D rhombus structure of 2 with the water molecules residing in channels(hydrogen atoms omitted for clarity);(e)NdO net topology with the point symbol{64.82}for 2

    2.2 PXRD analyses and thermal stability

    PXRD analyses of complexes 1 and 2 had been further performed at room temperature.The experimental patterns were in good agreement with the calculated patterns obtained from the crystal structures,indicating that the single-crystal structures are representative of the bulk materials(Fig.3).

    Fig.3 PXRD patterns of complexes 1(a)and 2(b)

    To investigate the thermal stability of complexes 1 and 2,thermal analyses were performed(Fig.4).For 1,the first weight loss was 10.02% at 398 K,corresponding to the sharp exothermic peak in the DSC(differential scanning calorimetry)curve,which is attributable to the loss of three coordinated water molecules(Calcd.10.43%).Framework decomposition of 1 occurred at 600 K,corresponding to the endothermic peaks of the DSC curve.The TG curve of 2 exhibited two continuous weight loss stages in a range of 333-434 K(16.35%),corresponding to the loss of two lattice water molecules(Calcd.5.42%)and four coordinated water molecules(Calcd.10.85%),respectively.Further,a weight loss of 5.30% is ascribed to the loss of two coordinated water molecules(Calcd.5.42%)in a range of 463-505 K.Finally,the decomposition of organic groups occurred at 723 K.The observed endothermic peaks of the DSC curve were approximate consistency with the TG results.

    2.3 Magnetic properties

    Magnetic measurements of complexes 1 and 2 were performed on powder samples.Magnetic susceptibility data were collected in the 2-300 K range with an applied magnetic field of 1 000 Oe.The magnetic couplings between metal ions with 3d7or 3d8electronic configurations could be effectively transmitted by a single atom bridge.According to the structural features,the complexes can exhibit antiferromagnetic interactions due to the larger bonding angles of M(Ⅱ)—O—M(Ⅱ).

    For complex 1,the temperature dependences of the molar susceptibilitiesχMand its productχMTare depicted in Fig.5.TheχMTvalue was 2.89 cm3·mol-1·K at 300 K,and largely exceeded that expected for the spin-only case(1.875 cm3·mol-1·K)withS=3/2 andg=2.0,indicating that an orbital contribution is involved.Upon cooling,theχMTcurve exhibited a continuous decrease with a minimum of 0.059 cm3·mol-1·K at 2 K,which is indicative of the antiferromagnetic coupling between the Co (Ⅱ) ions.While theχMvalue first increased to a broad maximum at 25 K,then decreased until 6 K,and finally increased again.The increasing trend can be attributed to the trace of paramagnetic impurities in the low-temperature range.Moreover,the presence of a broad maximum in theχMcurve at 25 K shows an antiferromagnetic ordering(Fig.5a).The magnetic susceptibility above 25 K was fitted by the Curie-Weiss law and the parameter(θ=-74.80(2)K,Fig.5b,Inset)can be the combined effect of the orbital contribution and possible antiferromagnetic coupling between the high-spin Co(Ⅱ)ions.The field-dependent magnetization at 2 K further confirms the antiferromagnetic interaction at low temperature,which had a value of 0.16μBat 7 T without saturation(Fig.5b).The hysteresis loop of 1 measured at 2 K exhibited no obvious opening,consistent with the antiferromagnetic phase of 1 under low fields.

    Fig.5(a)Temperature dependence of χMand χMT curves of complex 1;(b)Field dependent magnetization of 1 at 2 K

    For Co(Ⅱ)systems with the spin-orbit coupling contribution,it is difficult to find a precise expression to explain the magnetic properties of polymeric chains.This is due to the strong orbital contribution to the magnetic moment and thus to a strong magnetic anisotropy.The lines model is only valid for the ideal octahedral geometries of the Co(Ⅱ)ions with theOhsymmetry.However,a small deviation of the octahedron does not exert a significant influence on the magnetic property of the 1D infinite Co(Ⅱ)chain.Firstly,we have attempted to reproduce theoretically the experimental susceptibility by using the classical spin Heisenberg chain model[27]through the Hamiltonian(H→ =-J∑S→iS→i+1,J<0),in whichJis the nearest neighbor magnetic exchange constant andS→iis the total spin operator on sitei.Thus,the magnetic data of 1 was fitted by Eq.1:

    whereNA,g,μB,k,andTare the Avogadro constant,gfactor,the Bohr magneton,the Boltzmann constant,and the temperature of magnetic coupling,respectively.In addition,x=|J|/(kT),whereJis the intrachain spinexchange parameter between the adjacent Co(Ⅱ)ions.Some correction terms for a proportionρof paramagnetic impurity and temperature-independent paramagnetism(TIP)are included as appropriate.Srepresents the spin quantum number associated with mononuclear high spin Co(Ⅱ)ions.The total magnetic susceptibility is Eq.2:

    The best fits to the experimental data wereg=2.41(3),J=-9.94(3)cm-1,ρ=0.002 2(1),TIP=1.41(2)×10-4cm3·mol-1,andR=9.82×10-5for 1 in the total temperature range.A negativeJvalue indicates an antiferromagnetic coupling occurring between the Co(Ⅱ)ions.To determine thegfactor of the antiferromagnetic interaction,the ESR of the crystal powder sample was recorded.The ESR spectra of complex 1 had broad signals at 2 and 100 K and thegvalue obtained was 2.376(Fig.6).We did not try to assign other spectra since complicated transitions between spectral terms of the octahedral Co(Ⅱ)system.

    Fig.6 ESR spectra of the powder sample of complex 1 at 2 and 100 K

    Additionally,theχMTcurve can be fitted by using an expression derived from Rueff et al[28-29].According to the above description of theχMvsTcurve,the contribution of the paramagnetic Co(Ⅱ) ions(ρ)was added.The expression has been modified to be the following Eq.3,which can estimate the antiferromagnetic interactions of low-dimensional Co(Ⅱ)systems and adequately describe the spin-orbit coupling.Some reasonable results for magnetic coupling and spin-orbit interaction have been reported for 1D and,even,for 2D cobalt(Ⅱ)complexes.

    Here,the sum ofAandBis Curie constant(2.8-3.4 cm3·mol-1·K)for octahedral Co(Ⅱ) ions,andE1andE2represent the“activation energies”corresponding to the spin-orbit coupling and the antiferromagnetic exchange interaction,respectively.The best fit to the experimental data wasA=1.86(7)cm3·mol-1·K,E1/k=54.08(1)K,B=1.61(8)cm3·mol-1·K,E2/k=14.99(7)K,and the paramagnetic impurityρ=0.047(Fig.5a).The value found forA+B(3.47 cm3·mol-1·K)perfectly agreed with the Curie constant.Likewise,E1/k=55.72(2)K was consistent with those given by Rueff et al.for both the effects of spin-orbit coupling and site distortion in various Co(Ⅱ) complexes.E2> 0 indicates the antiferromagnetic interaction within the chain.

    For complex 2,the temperature dependences of the molar susceptibilities are shown in Fig.7a.TheχMTvalue was around 1.67(2)cm3·mol-1·K for 2 at 300 K,larger than the spin-only value(1.00 cm3·mol-1·K)expected for an isolated high-spin Ni(Ⅱ)ion(g=2.0 andS=1).Upon cooling,theχMTvalue gradually decreased to a minimum of 0.030(2)cm3·mol-1·K at 2 K,indicating the presence of an antiferromagnetic coupling between the Ni(Ⅱ) ions.The value ofχMcontinuously increased to a peak maximum(0.011 cm3·mol-1)at about 35 K,and then increased rapidly at 8 K,which shows the appearance of the trace of paramagnetic impurities in the low-temperature range.The magnetic susceptibility in a range of 50-300 K followed the Curie-Weiss law withC=2.39(2)cm3·mol-1·K andθ=-148.73(2)K(Fig.7b,Inset)for 2.The significantly negativeθvalue further indicates antiferromagnetic interaction between the Ni(Ⅱ)ions.

    According to the magnetic structure of 2,the magnetic coupling model can be handled as 1D uniform spin chains,whereas the interchain magnetic interaction should be ignored due to the longer distance of the ligand(Ni…Ni 0.898 4(1)nm).Thus,the magnetic exchange of 2 is only transmitted by a single waterbridged pathway with the Ni…Ni distance of 0.387 1(1)nm and Ni—Ow—Ni bonding angle of 133.34°,respectively.To estimate the intrachain interaction,we employed an isotropic Heisenberg chain to simulate the intra-chain antiferromagnetic coupling.The magnetic susceptibility was simulated within the classical approach according to Eq.4[30-31]:

    wherex=|J|/(kT),Jis the intrachain spin-exchange parameter of the adjacent Ni(Ⅱ)ions.According to the above description of theχMvsTcurve,the contribution of the paramagnetic Ni(Ⅱ) ions(ρ)and the TIP for the Ni(Ⅱ)complex were added.Thus,the fitting equation of total magnetic susceptibilities of 2 can be modified to Eq.5:

    The lines model can be successfully used to treat the magnetic data of the Ni(Ⅱ)compound.The best fits to the experimental data wereg=2.19(2),J=-31.31(4)cm-1,ρ=0.011(3)and TIP=4.74(2)×10-4cm3·mol-1,and

    R=1.62×10-5for 2 over the whole temperature range.Thegvalue is corresponding to the expectation for the reported Ni(Ⅱ) complexes[15,32].NegativeθandJvalues indicate antiferromagnetic interaction exchanged by the single water bridge between the Ni(Ⅱ)ions.The magnetization at 70 kOe(about 0.14μB)was far from the saturation value for one octahedral Ni(Ⅱ)ion at 2 K(Fig.7b),indicating antiferromagnetic coupling between the Ni(Ⅱ)ions.The hysteresis loop measured at 2 K exhibited no obvious opening,consistent with the antiferromagnetic phase under low fields.Compared with the Ni(Ⅱ) complexes involvingμ-oxo bridges(Table 2),one of the influence factors of magnetic exchange depends on the Ni—O—Ni bonding angles.The relationship is found between theJvalues and the bridging angles,for which a limit value of 97°,the magnetic interaction being antiferromagnetic for larger values of this angle.The most common feature of complexes containingμ-oxo bridges is several multiplicity bridges(double or triple bridges).The magnetic exchange could be mediated and counterbalanced depending on the Ni—O—Ni angles.However,magneto-structural studies on similar Ni(Ⅱ)complexes with a single-water bridge are scarce.The magnetic behavior of 2 agrees with the view that an anti-ferromagnetic interaction occurs by the larger Ni—O—Ni bonding angles between adjacent Ni(Ⅱ)ions.The coupling interaction is transmitted by a singleμ-oxo bridge,avoiding other effects from magnetic exchange mediums.It is worthwhile to the analysis of magnetic exchange relying on simultaneously multiple bridges.

    Table 2 Structural and magnetic parameters with the μ-oxo-bridged unit

    3 Conclusions

    In summary,two water-bridged Co(Ⅱ) and Ni(Ⅱ)complexes based on isomericm-H4tpta andp-H4tpta ligands have been successfully synthesized and structurally characterized.Complex 1 shows a 1D chain structure and is further extended to a 3D supramolecular architecture by intermolecular interactions.Complex 2 displays a(4,4)-connected 3D network with a single water-bridged Ni(Ⅱ)metal chain.Magnetic studies indicate that complex 1 shows antiferromagnetic behavior(E2/k=14.99(7)K)in the uniform chain model.Complex 2 exhibits an antiferromagnetic interaction(J=-31.31(4)cm-1)between intrachain Ni(Ⅱ)ions corresponding to larger Ni—Ow—Ni angles.Magnetic exchange interactions involvingμ-oxo bridges are com-mon in the coordination compounds.However,magnetic interactions transmitted via a single water-bridged mode are scarce,especially in Co(Ⅱ)/Ni(Ⅱ) coordination polymers.Single water-bridged Co(Ⅱ)/Ni(Ⅱ) chain complexes are rich sources for magnetic models,which provide an option for the analysis of multiple-bridged magnetic interaction involvingμ-oxo bridge.

    Conflicts of interest:The authors declare no competing financial interest.

    Supporting information is available at http://www.wjhxxb.cn

    久久久久久久精品精品| 国产精品秋霞免费鲁丝片| 一本—道久久a久久精品蜜桃钙片| 国产亚洲最大av| 国产成人免费无遮挡视频| 欧美日韩精品网址| 精品人妻一区二区三区麻豆| 亚洲精品美女久久av网站| 亚洲av欧美aⅴ国产| av福利片在线| 日韩成人av中文字幕在线观看| 亚洲av免费高清在线观看| 男人舔女人的私密视频| 久久亚洲国产成人精品v| 制服丝袜香蕉在线| 免费不卡的大黄色大毛片视频在线观看| 午夜免费鲁丝| 日韩中文字幕欧美一区二区 | 建设人人有责人人尽责人人享有的| 亚洲图色成人| 成人亚洲精品一区在线观看| 成人国产麻豆网| 色视频在线一区二区三区| 最近的中文字幕免费完整| 97在线人人人人妻| 人人妻人人澡人人爽人人夜夜| 日产精品乱码卡一卡2卡三| 久久久久视频综合| 丰满少妇做爰视频| 亚洲av在线观看美女高潮| 人妻一区二区av| 日本-黄色视频高清免费观看| 欧美bdsm另类| 啦啦啦中文免费视频观看日本| 国产精品免费视频内射| 免费看不卡的av| 精品福利永久在线观看| 国产男人的电影天堂91| av不卡在线播放| 999久久久国产精品视频| 人妻 亚洲 视频| 国产有黄有色有爽视频| 少妇人妻 视频| 久久久久久久久免费视频了| 精品国产超薄肉色丝袜足j| 午夜免费观看性视频| 狠狠婷婷综合久久久久久88av| 久久久久精品久久久久真实原创| 少妇猛男粗大的猛烈进出视频| 麻豆乱淫一区二区| 熟女av电影| 老鸭窝网址在线观看| av又黄又爽大尺度在线免费看| 男男h啪啪无遮挡| 国产精品国产三级国产专区5o| 亚洲精品久久成人aⅴ小说| 国产有黄有色有爽视频| 亚洲综合色网址| 亚洲欧美清纯卡通| 韩国精品一区二区三区| 色网站视频免费| 国产一区二区在线观看av| 欧美日韩视频高清一区二区三区二| 少妇熟女欧美另类| 18禁国产床啪视频网站| 亚洲精品,欧美精品| 日本猛色少妇xxxxx猛交久久| 日韩免费高清中文字幕av| 午夜精品国产一区二区电影| 黄色一级大片看看| 日本色播在线视频| 9色porny在线观看| 国产精品久久久久久久久免| 国产在线免费精品| av福利片在线| 亚洲成人手机| 久久精品国产鲁丝片午夜精品| 女性生殖器流出的白浆| 久久久精品国产亚洲av高清涩受| 精品少妇内射三级| 伊人久久国产一区二区| 国产av码专区亚洲av| 日韩伦理黄色片| 综合色丁香网| 老汉色∧v一级毛片| 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频精品一区| 日日摸夜夜添夜夜爱| 蜜桃国产av成人99| 黄色一级大片看看| 国产精品亚洲av一区麻豆 | 波多野结衣av一区二区av| 欧美最新免费一区二区三区| 最近最新中文字幕免费大全7| 王馨瑶露胸无遮挡在线观看| 亚洲第一av免费看| 午夜日本视频在线| 啦啦啦在线免费观看视频4| 亚洲av综合色区一区| 伦精品一区二区三区| 国产精品成人在线| 亚洲色图综合在线观看| 日韩制服丝袜自拍偷拍| 美女脱内裤让男人舔精品视频| 久久久精品国产亚洲av高清涩受| 我要看黄色一级片免费的| 亚洲伊人色综图| 99re6热这里在线精品视频| 日韩av在线免费看完整版不卡| 亚洲av日韩在线播放| 亚洲欧洲国产日韩| 天美传媒精品一区二区| 18禁观看日本| 最近中文字幕2019免费版| 美女国产视频在线观看| 老司机影院成人| 天天影视国产精品| 亚洲av国产av综合av卡| 亚洲,一卡二卡三卡| 99热全是精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产av国产精品国产| 日韩中文字幕欧美一区二区 | 波多野结衣av一区二区av| 一级毛片黄色毛片免费观看视频| 又粗又硬又长又爽又黄的视频| 老司机亚洲免费影院| 午夜影院在线不卡| 日韩av在线免费看完整版不卡| 在线观看国产h片| 日韩一区二区三区影片| 久久久久久久久久久免费av| 日韩三级伦理在线观看| 老司机亚洲免费影院| 99久久人妻综合| 亚洲精品一区蜜桃| 肉色欧美久久久久久久蜜桃| 免费观看a级毛片全部| 久久人人爽av亚洲精品天堂| 国产在线一区二区三区精| 90打野战视频偷拍视频| 久久久久视频综合| 日韩中文字幕欧美一区二区 | 在线观看免费视频网站a站| 亚洲精品日韩在线中文字幕| 91在线精品国自产拍蜜月| 久久精品国产鲁丝片午夜精品| 亚洲第一区二区三区不卡| 国产精品欧美亚洲77777| 秋霞在线观看毛片| 丝袜美腿诱惑在线| 国产精品 欧美亚洲| 麻豆乱淫一区二区| 免费观看av网站的网址| 国产亚洲最大av| 黄色 视频免费看| 日韩熟女老妇一区二区性免费视频| 日本vs欧美在线观看视频| 2021少妇久久久久久久久久久| 精品视频人人做人人爽| 婷婷色综合大香蕉| 丝袜脚勾引网站| 亚洲精品美女久久久久99蜜臀 | 日本av免费视频播放| 精品少妇内射三级| 国产日韩欧美亚洲二区| av有码第一页| 涩涩av久久男人的天堂| 水蜜桃什么品种好| 国产乱来视频区| 国产在线一区二区三区精| 日本黄色日本黄色录像| 日本免费在线观看一区| 美女主播在线视频| 国产激情久久老熟女| 国产av国产精品国产| 国产精品久久久久成人av| 少妇人妻精品综合一区二区| 18禁观看日本| 深夜精品福利| 日韩av不卡免费在线播放| 色婷婷av一区二区三区视频| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| 乱人伦中国视频| 18禁国产床啪视频网站| 电影成人av| 色吧在线观看| 高清不卡的av网站| 免费看av在线观看网站| 国产精品不卡视频一区二区| 五月伊人婷婷丁香| 亚洲精品成人av观看孕妇| 性高湖久久久久久久久免费观看| 国产高清国产精品国产三级| 91成人精品电影| 欧美日韩成人在线一区二区| 在线 av 中文字幕| 国产一区二区激情短视频 | 看免费成人av毛片| 日韩中字成人| 日韩欧美精品免费久久| 男女无遮挡免费网站观看| 免费观看av网站的网址| 十分钟在线观看高清视频www| 亚洲欧美精品综合一区二区三区 | 男的添女的下面高潮视频| 国产国语露脸激情在线看| 久久久久网色| 18禁国产床啪视频网站| 国产 一区精品| 亚洲 欧美一区二区三区| 丝袜喷水一区| 肉色欧美久久久久久久蜜桃| 熟女少妇亚洲综合色aaa.| 我的亚洲天堂| 午夜91福利影院| 一区二区三区乱码不卡18| 一区二区三区四区激情视频| 超碰97精品在线观看| 熟女av电影| 欧美日韩成人在线一区二区| 好男人视频免费观看在线| 黄色 视频免费看| 尾随美女入室| 精品国产一区二区久久| 91久久精品国产一区二区三区| 下体分泌物呈黄色| 巨乳人妻的诱惑在线观看| 国产免费现黄频在线看| 色网站视频免费| 日韩中字成人| 精品卡一卡二卡四卡免费| 天天躁夜夜躁狠狠躁躁| 国产精品av久久久久免费| 久久精品久久久久久噜噜老黄| 26uuu在线亚洲综合色| 国产成人91sexporn| 久久这里只有精品19| 高清av免费在线| 在线观看免费视频网站a站| 免费看av在线观看网站| 久久久久久久大尺度免费视频| 亚洲伊人色综图| 宅男免费午夜| av网站免费在线观看视频| 久久久久精品久久久久真实原创| 高清不卡的av网站| 久久久久人妻精品一区果冻| 啦啦啦视频在线资源免费观看| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区国产| 国产xxxxx性猛交| 亚洲精品自拍成人| 成人毛片a级毛片在线播放| 电影成人av| 国产男女超爽视频在线观看| 国产黄频视频在线观看| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 女人被躁到高潮嗷嗷叫费观| 日韩视频在线欧美| 国产av精品麻豆| 国产精品国产三级专区第一集| 一区二区三区精品91| 久久久久视频综合| 咕卡用的链子| 毛片一级片免费看久久久久| 建设人人有责人人尽责人人享有的| 美女国产高潮福利片在线看| 国产精品久久久久成人av| 女的被弄到高潮叫床怎么办| 高清在线视频一区二区三区| av视频免费观看在线观看| 国产精品一区二区在线观看99| 亚洲精品视频女| 亚洲欧洲国产日韩| 在线观看免费日韩欧美大片| av片东京热男人的天堂| av网站在线播放免费| 看免费av毛片| 国产一区二区 视频在线| 综合色丁香网| av不卡在线播放| 亚洲成人一二三区av| 国产亚洲精品第一综合不卡| 亚洲精华国产精华液的使用体验| 十八禁网站网址无遮挡| 久久久国产欧美日韩av| 欧美黄色片欧美黄色片| 欧美日韩综合久久久久久| av在线观看视频网站免费| 熟女少妇亚洲综合色aaa.| 午夜老司机福利剧场| 又粗又硬又长又爽又黄的视频| 制服诱惑二区| 国产精品国产三级专区第一集| 可以免费在线观看a视频的电影网站 | 自线自在国产av| 精品人妻熟女毛片av久久网站| 国产精品无大码| 国产一区二区 视频在线| 亚洲国产欧美在线一区| 777米奇影视久久| xxxhd国产人妻xxx| 亚洲国产毛片av蜜桃av| 亚洲三级黄色毛片| 中文字幕色久视频| 欧美成人精品欧美一级黄| 18禁动态无遮挡网站| 日本免费在线观看一区| 欧美国产精品一级二级三级| 日韩中文字幕欧美一区二区 | 夫妻性生交免费视频一级片| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美| 国产精品 国内视频| 亚洲 欧美一区二区三区| 熟妇人妻不卡中文字幕| 成人毛片a级毛片在线播放| 午夜久久久在线观看| 精品卡一卡二卡四卡免费| 国产精品麻豆人妻色哟哟久久| 91精品三级在线观看| 日本-黄色视频高清免费观看| 一本大道久久a久久精品| a 毛片基地| 九草在线视频观看| 国产精品秋霞免费鲁丝片| 亚洲国产成人一精品久久久| 国产探花极品一区二区| 中国三级夫妇交换| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 日本av手机在线免费观看| kizo精华| 精品国产一区二区久久| 久久 成人 亚洲| 男人爽女人下面视频在线观看| 午夜福利,免费看| 亚洲欧美成人综合另类久久久| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 国产一区二区激情短视频 | 搡女人真爽免费视频火全软件| 搡老乐熟女国产| 天堂俺去俺来也www色官网| 久久久欧美国产精品| 蜜桃国产av成人99| 亚洲精品成人av观看孕妇| 少妇的逼水好多| 国产午夜精品一二区理论片| 在线看a的网站| 国产一区二区在线观看av| 午夜91福利影院| 亚洲精品一区蜜桃| 亚洲中文av在线| 一区在线观看完整版| 在线观看国产h片| 一边摸一边做爽爽视频免费| 国产成人精品一,二区| 成人亚洲欧美一区二区av| 免费人妻精品一区二区三区视频| 国产黄频视频在线观看| 丰满乱子伦码专区| 王馨瑶露胸无遮挡在线观看| 三上悠亚av全集在线观看| 美女中出高潮动态图| 国产在线免费精品| 最近中文字幕2019免费版| 欧美最新免费一区二区三区| 边亲边吃奶的免费视频| 欧美另类一区| 咕卡用的链子| 在线观看www视频免费| 午夜福利一区二区在线看| 国产熟女午夜一区二区三区| 人妻人人澡人人爽人人| 国产毛片在线视频| 最近最新中文字幕免费大全7| 午夜久久久在线观看| 久久狼人影院| 最新中文字幕久久久久| 99久国产av精品国产电影| 999久久久国产精品视频| 久久99精品国语久久久| 春色校园在线视频观看| 亚洲成国产人片在线观看| 日本猛色少妇xxxxx猛交久久| 激情视频va一区二区三区| 色网站视频免费| 色哟哟·www| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美精品综合一区二区三区 | 久久av网站| 久久久精品国产亚洲av高清涩受| 97精品久久久久久久久久精品| 亚洲精品美女久久久久99蜜臀 | www日本在线高清视频| 蜜桃在线观看..| 99热国产这里只有精品6| 一级毛片我不卡| 精品少妇一区二区三区视频日本电影 | 日本黄色日本黄色录像| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| 亚洲第一青青草原| 2018国产大陆天天弄谢| 乱人伦中国视频| 蜜桃在线观看..| 国产麻豆69| 日韩 亚洲 欧美在线| 91精品三级在线观看| 精品久久久久久电影网| 黑人欧美特级aaaaaa片| 国产色婷婷99| 日韩伦理黄色片| 亚洲精品成人av观看孕妇| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 午夜福利影视在线免费观看| 国产淫语在线视频| 精品一区二区三区四区五区乱码 | 夫妻性生交免费视频一级片| 亚洲成色77777| 2022亚洲国产成人精品| 欧美精品一区二区大全| 你懂的网址亚洲精品在线观看| 亚洲国产av影院在线观看| av不卡在线播放| 亚洲三级黄色毛片| 精品国产乱码久久久久久男人| 国产欧美日韩一区二区三区在线| 黄色怎么调成土黄色| 免费日韩欧美在线观看| 在线观看一区二区三区激情| 成人亚洲欧美一区二区av| 国产精品三级大全| 欧美精品亚洲一区二区| 999精品在线视频| www.自偷自拍.com| 少妇 在线观看| 热99久久久久精品小说推荐| 女人久久www免费人成看片| 精品国产一区二区久久| 亚洲欧洲日产国产| 午夜福利影视在线免费观看| 两个人免费观看高清视频| 91国产中文字幕| xxxhd国产人妻xxx| 啦啦啦视频在线资源免费观看| 欧美日韩视频高清一区二区三区二| www.自偷自拍.com| 新久久久久国产一级毛片| 国产精品 国内视频| 婷婷色综合www| 熟女av电影| 久久ye,这里只有精品| 久久久久久久亚洲中文字幕| 成人国产av品久久久| 18在线观看网站| 亚洲精品国产av成人精品| 日韩一区二区三区影片| 日韩精品有码人妻一区| 精品少妇内射三级| 国产福利在线免费观看视频| 在线观看免费高清a一片| 香蕉丝袜av| 久久 成人 亚洲| 美女国产高潮福利片在线看| 国产av码专区亚洲av| 精品少妇久久久久久888优播| 乱人伦中国视频| 男女免费视频国产| av国产久精品久网站免费入址| 老汉色av国产亚洲站长工具| 2022亚洲国产成人精品| 另类精品久久| 成人亚洲欧美一区二区av| 9色porny在线观看| 国产色婷婷99| 一本色道久久久久久精品综合| 午夜福利乱码中文字幕| 国产男女内射视频| av不卡在线播放| 亚洲av国产av综合av卡| 一级黄片播放器| 久久这里有精品视频免费| 欧美日韩一级在线毛片| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜制服| 久久久久久久精品精品| 免费在线观看完整版高清| 性少妇av在线| 综合色丁香网| 丝袜脚勾引网站| 亚洲美女黄色视频免费看| 久久国内精品自在自线图片| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产专区5o| 国产av码专区亚洲av| 精品久久久精品久久久| 亚洲经典国产精华液单| 在线观看免费高清a一片| 在线天堂中文资源库| 日本vs欧美在线观看视频| 午夜福利一区二区在线看| 亚洲精品国产一区二区精华液| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 精品视频人人做人人爽| 国产97色在线日韩免费| 成年女人在线观看亚洲视频| 精品午夜福利在线看| 一级黄片播放器| 国产毛片在线视频| 午夜免费鲁丝| 亚洲精品国产av蜜桃| 大片电影免费在线观看免费| 九九爱精品视频在线观看| 制服诱惑二区| 天天躁日日躁夜夜躁夜夜| 精品国产乱码久久久久久男人| 好男人视频免费观看在线| 国产男女超爽视频在线观看| 久久精品夜色国产| 一级片免费观看大全| 亚洲精品久久午夜乱码| 九草在线视频观看| 欧美日韩av久久| 高清黄色对白视频在线免费看| 丝袜在线中文字幕| 欧美日韩视频精品一区| 超碰97精品在线观看| 亚洲人成电影观看| 国产精品一二三区在线看| 纵有疾风起免费观看全集完整版| 曰老女人黄片| 精品福利永久在线观看| 另类亚洲欧美激情| 亚洲一区二区三区欧美精品| 久久久久国产精品人妻一区二区| 欧美xxⅹ黑人| 黄色怎么调成土黄色| 久久久久国产网址| 日本午夜av视频| 美女国产高潮福利片在线看| 美女脱内裤让男人舔精品视频| 午夜老司机福利剧场| 国产精品av久久久久免费| 亚洲国产最新在线播放| 精品国产一区二区三区四区第35| 一区二区三区精品91| 丰满少妇做爰视频| 午夜福利在线观看免费完整高清在| 免费av中文字幕在线| 熟女少妇亚洲综合色aaa.| 午夜影院在线不卡| 一区二区三区四区激情视频| 欧美xxⅹ黑人| 一本大道久久a久久精品| 国产精品无大码| 日韩 亚洲 欧美在线| 男女啪啪激烈高潮av片| 免费日韩欧美在线观看| 国产女主播在线喷水免费视频网站| 99久久精品国产国产毛片| 国产成人精品久久二区二区91 | 成年av动漫网址| 国产 一区精品| 一区福利在线观看| 国产极品粉嫩免费观看在线| 嫩草影院入口| 国产免费现黄频在线看| av网站在线播放免费| 超碰97精品在线观看| 久久久久精品久久久久真实原创| 久久精品国产亚洲av天美| 最近最新中文字幕大全免费视频 | 欧美亚洲日本最大视频资源| 欧美日韩一区二区视频在线观看视频在线| 中国国产av一级| 亚洲成人一二三区av| 亚洲久久久国产精品| 看非洲黑人一级黄片| videossex国产| 热re99久久精品国产66热6| 成人午夜精彩视频在线观看| 国产熟女午夜一区二区三区| 亚洲av免费高清在线观看| 中文乱码字字幕精品一区二区三区| 宅男免费午夜| 日韩一卡2卡3卡4卡2021年| 婷婷色av中文字幕| 欧美精品人与动牲交sv欧美| 国产免费一区二区三区四区乱码| 97在线人人人人妻| 一区在线观看完整版| 亚洲国产欧美在线一区| 欧美日韩国产mv在线观看视频| 亚洲国产精品999| 中文字幕色久视频| 乱人伦中国视频| 捣出白浆h1v1| 亚洲美女视频黄频| 99热全是精品| 蜜桃国产av成人99| 看免费成人av毛片| 国产成人免费无遮挡视频| 一级毛片黄色毛片免费观看视频| 我要看黄色一级片免费的| 女人久久www免费人成看片| 国产人伦9x9x在线观看 | 午夜福利在线免费观看网站|