• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrogen Storage Capabilities of the Low-Lying Ca2B4Clusters

    2022-07-12 07:40:16TANGYuPengZHAOYanFeiYANGHaiYingLINan

    TANG Yu-PengZHAO Yan-FeiYANG Hai-YingLI Nan

    (1Department of Applied chemistry,Yuncheng University,Yuncheng,Shanxi 044000,China)(2Science Experiment Center,Yuncheng University,Yuncheng,Shanxi 044000,China)(3State Key Laboratory of Explosion Science and Technology,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China)

    Abstract:The structural feature and electronic property of Ca2B4,as well as its potential for hydrogen storage,have been studied using density functional theory.The first,second,and fourth low-lying isomers Ca2B401,Ca2B402,and Ca2B404 have high stabilities in thermodynamics and can adsorb 12,12,and 10 H2molecules with respective H2 gravimetric uptake capacity of 16.3%,16.3%,and 14.0%,which far exceeds the target(5.5%)proposed by the US department of energy(DOE).The average absorption energies per H2molecule are in the range of 0.58-4.21 eV for Ca2B401(H2)12,0.54-3.69 eV for Ca2B402(H2)12,and 0.10-0.12 eV for Ca2B404(H2)10.Born-Oppenheimer molecular dynamic(BOMD)simulations indicate Ca2B401 and Ca2B402 are promising candidates for adsorbing hydrogen,but Ca2B404 is not.The results of hydrogen adsorption energies with Gibbs free energy correction indicate that 12 H2 molecules on Ca2B401 and Ca2B402 are energetically favorable with a wide range of temperatures at 101 325 Pa.

    Keywords:hydrogen storage;density functional theory;absorption;molecular dynamic;Gibbs free energy

    Hydrogen is considered to be a sustainable and eco-friendly energy carrier because of its abundance,easy synthesis,and high heat thermal capacity on the earth[1-2].However,the wide-scale use of hydrogen fuel hinges on our ability to find safe and cost-effective hydrogen storage materials.The ideal hydrogen storage materials should meet the stringent requirements:high gravimetric and volumetric density,fast kinetics,and thermodynamics that allow reversible hydrogen adsorption and desorption in H2molecular form to take place under ambient conditions[3-6].According to the guidelines set by the US Department of Energy(DOE),a minimum requirement for a system to be a potential hydrogen storage candidate is that it should possess a minimum H2gravimetric uptake capacity of 5.5% and delivery under 1 200 kPa pressure in the operating ambient temperature range of 233 to 333 K[7].

    Traditionally,the storage materialsbind the hydrogen atoms primarily through three different processes[1,6].In chemisorption,the H2molecules dissociate into individual atoms,migrate into the storage material,and are strongly bonded with the binding energy in the range of 2-4 eV like chemical hydrides[8-9],in which the strong interaction makes it difficult to release H2during application.On the other hand,like the pure carbon-based nanostructures,the H2is bonded weakly via physisorption and remains in its molecular form with the binding energy in the range of few meV[10].However,the major drawbacks in physisorption are that the adsorption must be carried out at a very low temperature and high gas pressure.Recently,more attempts have been made to design and develop new hydrogen storage materials based on the third form of adsorption,which is intermediate between physisorption and chemisorption with the binding energy of 0.1-0.8 eV and considered to be essential for the faster adsorption and desorption kinetics for vehicular application.It includes metal-decorated nanomaterials[11-18],transition metal-acetylene/ethylene[19-28],and transition metal clusters[29-33].For example,Sun et al.[14]predicted the hydrogen storage capacities of the Li12C60cluster in which each Li atom could adsorb a maximum of 5 H2molecules leading to a gravimetric density(w/w)of 13%.Durgun et al.[23]theoretically indicated Ti2-C2H4could adsorb a maximum of 10 H2molecules with the average binding energy of 0.45 eV.Du et al.[29]recently predicted that the carbon motif CTi72+could bind 20 H2molecules at most,which resulted in a gravimetric density of 19%.

    Compared with carbon-based materials,metaldecorate boron clusters have also been considered a promising candidate for hydrogen storage[34-42].For example,B6Li8was predicted to be an excellent hydrogen storage media with gravimetric density likely reaching up to a theoretical limit of 24%[35].Du et al.[39]have investigated the hydrogen storage capacity of the Saturn-like charge-transfer complex Li4B40,in which each Li atom could bind 6 H2molecules at most resulting in the gravimetric density of 10.4%.Just like the alkali metal decorated materials,boron clusters doped by transition metals have become a research hotspot[43-47].Very recently,the highly stable Sc2B42+cluster was investigated as a promising candidate for hydrogen storage material,which corresponded to a hydrogen uptake of 17.49% and average binding energy of 0.42 eV[46].As we know,the transition metal Sc is expensive and charge neutrality should be a consideration in the engineering of practical materials for hydrogen storage.On the other hand,we have called attention to the isoelectronic relationship of a Ca atom to a Sc+ion.Moreover,calcium has been suggested to functionalize the nanomaterials as hydrogen storage materials because of its relatively small cohesive energy and moderate interaction with H2molecules[15-16,40-41,48].For example,the inverse sandwich Ca2B8was found to be a promising hydrogen storage material that showed moderate adsorption energy and high gravimetric density(10.6%)for H2[48].

    Therefore,in the current work,we choose Ca2B4as the theoretical research model to investigate the corresponding geometrical configuration and electronic structures,and further probe into the hydrogen storage abilities of the low-lying isomers.

    1 Computational methods

    The 1 000 initial structures of Ca2B4were generated by a stochastic search method embedded in the Molclus program[49],and the resulting structures were optimized in the singlet state and triplet state at the PBE0/6-311+G(d)level[50-53],respectively.The PBE0 functional is an effective tool in studies of the metaldoped boron clusters[54-55].The vibrational frequencies of all the local minima were confirmed at the same level to guarantee that the structures optimized are true minima on the potential energy surface.To obtain the reasonable adsorption energy of H2molecules on Ca2B4clusters,the molecular structures of the isolated and H2-adsorbed Ca2B4were further fully optimized without any symmetry constraints using the ωB97XD functional[56]in conjunctions with 6-311+G(d,p)basis set.The ωB97XD functional with the long-range interactions has been proven to be an authentic method for predicting non-covalent interactions[29,39,42-43].The basis set superposition errors(BSSE)[57]were corrected using the full counterpoise method for all the H2-adsorbed Ca2B4structures.To evaluate the reversibility of storage of H2molecules,the successive adsorption energy(ΔEs)and the average absorption energy per H2molecule(ΔEa)were calculated at ωB97XD/6-311+G(d,p)level according to the following formulas:

    WhereEXstands for the total energy of X(X=Ca2B4,H2,Ca2B4(H2)n-1,Ca2B4(H2)n).Notably,the spontaneous adsorption of H2can occur if the ΔEsis positive,and the negative ΔEsmeans the successive adsorption is difficult.

    The H2gravimetric density of Ca2B4was calculated using the following equation:

    Gravimetric density=MH2/(MH2+MCa2B4)×100% (3)WhereMH2represents the mass of the total number of H2molecules adsorbed andMCa2B4represents the mass of the host Ca2B4.

    Besides,Born-Oppenheimer molecular dynamics(BOMD)simulations at the temperatures of 77 and 300 K were performed for the relaxed structures of selected species Ca2B401(H2)12,Ca2B402(H2)12,and Ca2B404(H2)10at the ωB97XD/6-31+G(d,p)level.

    All the geometry optimization and property calculation were performed using the Gaussian 09 package.

    2 Result and discussion

    2.1 Geometrical and electronic structure of Ca2B4

    2.1.1 Geometrical structure of Ca2B4

    A total of 16 low-lying isomers for Ca2B4were identified via extensive structural searches.To ensure the energetics,all optimized isomers were benchmarked using single-point CCSD(T)[58]calculations.Fig.1 represents the structures and relative energies of each isomer at the CCSD(T)/6-311+G(d)//PBE0/6-311+G(d)level.Ca2B401 is the most stable structure,which is only 0.035,0.078,and 0.089 eV less in energy than the top three competitors(Ca2B402,Ca2B403,and Ca2B404),respectively.On the other hand,although Ca2B402 and Ca2B403 have the same geometries,Ca2B402 with a singlet state is more stable than the triplet Ca2B403.Therefore,the geometrical configurations,electronic properties,and the hydrogen storage abilities for the first,second,and fourth low-lying isomers Ca2B401,Ca2B402,and Ca2B404 were researched.The calculated key bond lengths of the bare and H2adsorbed compounds Ca2B401,Ca2B402,and Ca2B404 at ωB97XD/6-311+G(d,p)level are listed in Table 1.Notably,Ca2B401(H2)12and Ca2B402(H2)12have the same geometries.Comparing the isolated Ca2B4isomers,the corresponding B—B and B—Ca bonds in Ca2B402(H2)12and Ca2B404(H2)10are not considerable change,which indicates the structures of Ca2B4are not distorted with adsorption of a maximum of H2molecules.Moreover,the smallest vibrational frequency(Table 1)of the bare isomers is predicted to be 98,115,and 130 cm-1,which are sufficiently large to meet a stability criterion suggested by Hoffmann et al.[59].In addition,the energy gap(ΔEHL)between the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)was also calculated to analyze the stabilities of Ca2B401,Ca2B402,and Ca2B404 due to a large ΔEHLcan reflect the high stabilities of compounds.The ΔEHLof Ca2B401,Ca2B402,and Ca2B404 are 4.02,4.16,and 4.88 eV,respectively,indicating the three clusters have high stabilities.To further study the thermodynamic stabilities,BOMD simulations were carried out for 5 ps at 300 K.As shown in Fig.2,the relative potential energies for Ca2B401,Ca2B402,and Ca2B404 in the simulated time show slight oscillations,suggesting their high stabilities at room temperature.To gain clear geometries,the extracted snapshots of Ca2B401,Ca2B402,and Ca2B404 at different simulation times(50,2 500,and 5 000 fs)are also depicted in Fig.2.

    Fig.1 Optimized low-lying isomeric structures of Ca2B4at PBE0/6-311+G(d)level

    Fig.2 Variations of potential energy vs simulation time at 300 K for Ca2B401,Ca2B402,and Ca2B404

    Table 1 B—B/Ca bond distances(nm)and the lowest vibrational frequency ωL(cm-1)of the isolated and multiple H2adsorbed compounds at ωB97XD/6-311+G(d,p)level

    2.1.2 Electronic structure of Ca2B4

    To analyze the electronic structure and the effect of H2molecules adsorbed,the Mulliken charge for Ca2B4isomer has been calculated at ωB97XD/6-311G(d,p)level.As shown in Fig.3,in Ca2B401,the boron and calcium atoms carry about-0.183e,-0.651e,-0.181e,-0.092e,0.554e,and 0.555e,respectively.For Ca2B402,the four boron atoms(B1-B4)have-0.283e,-0.314e,-0.586e,and-0.314e,respectively.Two calcium atoms(Ca5-Ca6)have 0.749e and 0.749e,respectively.In Ca2B404,the boron and calcium atoms carry about-0.234e,-0.234e,-0.646e,-0.646e,0.880e,and 0.880e,respectively.The strong charges transfer from calcium atoms to boron atoms when these compounds are formed.Therefore,partially charged Ca ion and B4 may produce a local electrostatic field that can polarize H2molecules and then bind them via the polarization mechanism.To further illustrate the above concept,the contour plots of the molecular electrostatic potential(ESP)of Ca2B401,Ca2B402,and Ca2B404 isomers were also obtained by Multiwfn[60].As illustrated in Fig.4,the calcium and boron atoms have a positive and negative potential,respectively.The map ofESPdiffusion accords with the Mulliken charge analysis,indicating the H2molecules should be preferentially ad-sorbed on calcium atoms.

    Fig.3 Mulliken charge of Ca2B401,Ca2B402,and Ca2B404 at the ωB97XD/6-311G(d,p)level

    Fig.4 ESPmaps of Ca2B401,Ca2B402,and Ca2B404 at the ωB97XD/6-311G(d,p)level

    2.2 H2adsorption behavior of Ca2B4

    2.2.1 H2adsorption behavior of Ca2B401

    We next studied the sequential hydrogenation of Ca2B401.Based on the above analysis,the Ca atom is the most active atom in all sites during the process of H2adsorption.Considering the symmetry of the isomers Ca2B401,a number of H2molecules were successively placed around every Ca atom,and the structures were optimized without any symmetry constraints at the ωB97XD level of theory,respectively.The optimized structures of the isomer Ca2B401 with adsorbed multiple H2molecules at the ωB97XD level of theory are depicted in Fig.S1 (Supporting information).The selected relaxed configurations Ca2B401(H2)12is depicted in Fig.5.

    Fig.5 Optimized geometries of Ca2B401(H2)12,Ca2B402(H2)12,and Ca2B404(H2)10at the ωB97XD/6-311+G(d,p)level

    Ca2B401 can at most adsorb 12 H2molecules and the gravimetric density of stored hydrogen is 16.3%,which is about 3.3 times larger than the criteria of 5.5% proposed by DOE[7].As listed in Table 2,the bond lengths of the adsorbed molecular form H2in Ca2B401(H2)12are 0.075 nm,which is elongated compared to the bond length(0.074 nm)of isolated H2at the same calculated level.Notably,the binding of the first molecule to Ca2B401 isomer has five different characteristics(Fig.S1).Among them,the H2molecule interacts dissociatively with two B atoms and the resulting borohydride structure is the ground-state(1a),which is 0.35,0.37,0.46,and 4.21 eV lower in energy than 1b,1c,1d,and 1e,respectively.It is for this reason that we have concentrated an adding successive H2molecules to the ground-state structure.Next,the adsorption of the second H2molecule to Ca2B401(H2)1(1a)has two different characteristics.Here,hydrogen binds molecularly to one of the Ca atoms and the resulting isomer(Fig.S1,2b)is 0.72 eV higher in energy than the ground-state structure(2a)in which the second H2molecule dissociates with two H atoms bridging between two Ca atoms.As listed in Table 3,the successive binding energies of the ground states of Ca2B401(H2)1and Ca2B401(H2)2are 4.21 and 1.67 eV respectively,indicating the binding of the first two molecules belongs to the chemisorption process.It is only when the third H2molecule is added to 2a that the binding becomes molecular,with successive energy of 0.11 eV.The H2molecules from the fourth to the twelfth also bind to the Ca atoms in nearly molecular form.The binding energies of each successive H2molecule are in the range of 0.11-0.12 eV as one proceeds from Ca2B401(H2)3to Ca2B401(H2)12.To confirm the adsorption of H2molecules to Ca2B401 is reversible or not,the ΔEaof Ca2B401(H2)n(n=1-12)are also illustrated in Table 3.Ca2B401 adsorbs 1-12 H2molecules with the ΔEaof 4.21 to 0.58 eV.It can be found that some ΔEavalues are too large and exceed the energy criteria(0.1-0.8 eV)of the reversible hydrogen storage.Because the strong chemical bonds between the dissociation of the first two H2molecules and B/Ca atoms improve the ΔEaof compounds.However,more remarkably,the average adsorptions energy of Ca2B401(H2)12is 0.58 eV,which is ideal for reversible hydrogen storage at near ambient conditions.

    Table 2 Ca—H and corresponding H—H distances(nm)of Ca2B401(H2)12/Ca2B402(H2)12and Ca2B404(H2)10at ωB97XD/6-311+G(d,p)level

    Table 3 Calculated ΔEsand ΔEawith BSSE correction and without zero-point energy correction at ωB97XD/6-311+G(d,p)level

    2.2.2 H2adsorption behavior of Ca2B402

    The optimized structures of H2-adsorbed Ca2B402 are depicted in Fig.S2.Notably,the binding of the first molecule to Ca2B401 isomer has three different characteristics(Fig.S2)and the ground-state structure of Ca2B402(H2)1(1a′)is exactly the same as Ca2B401(H2)1(1a).As illustrated in Table 3,the successive binding energies of the ground state Ca2B401(H2)1(1a′)is 3.69 eV,indicating the binding of the first molecule belongs to the chemisorption process.It is when the second H2molecule is added to 1a′that the H2adsorbed structures Ca2B402 are exactly the same as the corresponding H2adsorbed structures Ca2B401.The ΔEaof Ca2B402(H2)n(n=1-12)are also listed in Table 3.Ca2B402 adsorbs 1-12 H2molecules with the ΔEaof 3.69 to 0.54 eV.The ΔEaof Ca2B402(H2)12is 0.54 eV,which is ideal for reversible hydrogen storage at near ambient conditions.

    2.2.3 H2adsorption behavior of Ca2B404

    The optimized structures of H2-adsorbed Ca2B404 are depicted in Fig.S2.Ca2B404 can successively adsorb 10 H2molecules in total,from one to five H2molecules on each Ca atom.The selected relaxed configuration Ca2B404(H2)10is depicted in Fig.5.The Ca—H distances and the corresponding H—H bond lengths are listed in Table 2.The Ca—H distances are in a range of 0.235-0.267 nm,and the corresponding H—H bond lengths are elongated to 0.076-0.077 nm.As shown in Table 3,the ΔEsvalues are in a range of 0.10-0.14 eV for H2-adsorbed Ca2B404.The positive energy values of ΔEsindicate that 10 H2molecules can be effectively adsorbed on Ca2B404.Besides,the ΔEaof Ca2B404(H2)n(n=1-10)are in a range of 0.10 to 0.12 eV which meets the criteria(0.1-0.8 eV)of reversible hydrogen storage.For Ca2B404(H2)10,the gravimetric density of stored hydrogen is 14.0%.The result surpasses the target for hydrogen uptake capacity specified by DOE.

    2.3 Reversibility of H2molecules on Ca2B401,Ca2B402,and Ca2B404

    To test the hydrogen release for Ca2B401(H2)12,Ca2B402(H2)12,and Ca2B404(H2)10at ambient conditions,we performed the BOMD simulations at the ωB97XD/6-31+G(d,p)level.The BOMD simulations were carried out with a time of scale of 800 fs with a trajectory step size of 0.5 fs at the temperatures of 77 and 298 K.Fig.6 shows the potential energies as functions of time,and the extracted snapshots at different simulation times(50,100,200,300,400,and 500 fs)are depicted in Fig.S3-S6.For Ca2B401(H2)12/Ca2B402(H2)12,10 H2molecules far from Ca sites have begun to run away from the host Ca2B401 cluster within 100 fs,and the H2molecules desorb faster at the higher temperatures.On the other hand,at the end of simulations of 77 and 298 K,only the first two H2molecules are still adsorbed in atom form,whereas the other ten H2in the molecular form completely escape from Ca2B401,corresponding to a release ratio of 83.3%,which is excellent agreement with the discussed adsorption mechanism above.Interestingly,Ca2B401(H2)2structure shows a high dynamic stability at 77 and 298 K,being in line with the values of ΔEaand ΔEs.Moreover,it can be found from the snapshots of Fig.S3 and S4 that the host clusters Ca2B401 and Ca2B402 are not significantly deformed during the dynamic simulation processes.Therefore,we can conclude that the clusters Ca2B401 and Ca2B402 are appropriate candidates for reversible hydrogen storage.For Ca2B404(H2)10,at the processes of simulations of 77 and 298 K,although most of the H2adsorbed can also completely escape from Ca2B404,the host cluster Ca2B404 is significantly deformed.Thus,Ca2B404 is not an appropriate candidate for reversible hydrogen storage.

    Fig.6 Potential energy trajectories of(a)Ca2B401(H2)12/Ca2B402(H2)12and(b)Ca2B404(H2)10complexes at the temperatures of 77 and 298 K

    2.4 Gibbs free energy corrected adsorption energies(ΔEG)

    To confirm the adsorptions of Ca2B401(H2)12and Ca2B402(H2)12are favorable or not at different temperatures,the ΔEGwas calculated at different temperatures and 101 325 Pa.The formula isare the calculated Gibbs free energies of the bare cluster Ca2B4,H2molecule,and Ca2B4(H2)12,respectively.The positive ΔEGvalue reflects that the adsorption of multiple H2molecules on Ca2B4is energetically favorable at the corresponding condition.As shown in Fig.7,the ΔEGof Ca2B401(H2)12and Ca2B402(H2)12are still positive at 400 K at 101 325 Pa.It indicates that both Ca2B401(H2)12and Ca2B402(H2)12have fairly wide temperature ranges on which we can tune the thermodynamically favorable hydrogen adsorption just near room temperature at 101 325 Pa.

    Fig.7 Temperature dependence of ΔEGvalues for Ca2B401(H2)12and Ca2B402(H2)12at ωB97XD/6-311+G(d,p)level

    3 Conclusions

    In this work,the structures,stabilities,and hydrogen storage behavior of Ca2B4have been researched using density functional theory.According to the calculations,the first,second,and fourth low-lying isomers Ca2B401,Ca2B402,and Ca2B404 have high stabilities in thermodynamics at 300 K.For Ca2B401 and Ca2B402,the resulting H2adsorbed structures are the same and up to 12 H2molecules can be bound.Ca2B404 can adsorb 10 H2molecules at most.The systems can have a maximum gravimetric density of 16.3% and 14.0% for Ca2B401(H2)12/Ca2B402(H2)12and Ca2B404(H2)12,respectively,which satisfy the target specified by US DOE.The ΔEaof 0.58-4.21 eV for Ca2B401(H2)12,0.54-3.69 eV for Ca2B402(H2)12,and 0.10-0.12 eV for Ca2B404(H2)10are in the range of the physisorption and chemisorption energy.The results of BOMD simulations indicate Ca2B401 and Ca2B402 can be promising candidates for adsorbing dihydrogen,but Ca2B404 is not.Moreover,the temperature-dependent Gibbs free energy corrected adsorption energies indicate Ca2B401 and Ca2B402 are suitable for storage H2with a wide range of temperatures at 101 325 Pa.

    Supporting information is available at http://www.wjhxxb.cn

    夫妻午夜视频| av国产精品久久久久影院| 老司机影院毛片| 精品人妻1区二区| 国产高清视频在线播放一区| 精品少妇久久久久久888优播| 老司机午夜福利在线观看视频| 成年人黄色毛片网站| 香蕉丝袜av| 丁香欧美五月| 国产真人三级小视频在线观看| 国产在线观看jvid| 日韩 欧美 亚洲 中文字幕| 少妇被粗大的猛进出69影院| 国产成人欧美| 水蜜桃什么品种好| 亚洲国产精品合色在线| 日韩免费高清中文字幕av| 咕卡用的链子| 天天躁日日躁夜夜躁夜夜| 大片电影免费在线观看免费| 国产亚洲欧美98| 老鸭窝网址在线观看| 69av精品久久久久久| 精品国产乱码久久久久久男人| 国产精品九九99| 日本黄色日本黄色录像| 久热这里只有精品99| 18禁国产床啪视频网站| 日韩欧美三级三区| 亚洲男人天堂网一区| 99精品欧美一区二区三区四区| 十八禁网站免费在线| 亚洲第一青青草原| 91精品三级在线观看| 日韩欧美三级三区| 国产精品九九99| 亚洲性夜色夜夜综合| 99在线人妻在线中文字幕 | 一夜夜www| 男女之事视频高清在线观看| 女人久久www免费人成看片| 久久国产精品大桥未久av| 51午夜福利影视在线观看| 亚洲黑人精品在线| 久久精品成人免费网站| 欧美精品一区二区免费开放| 一区二区三区精品91| 免费看十八禁软件| 别揉我奶头~嗯~啊~动态视频| 别揉我奶头~嗯~啊~动态视频| 日本撒尿小便嘘嘘汇集6| 在线av久久热| 精品午夜福利视频在线观看一区| 久久久国产成人精品二区 | 免费不卡黄色视频| 精品午夜福利视频在线观看一区| 成年女人毛片免费观看观看9 | 久久人人爽av亚洲精品天堂| 午夜免费鲁丝| 黑人操中国人逼视频| 成年人午夜在线观看视频| 女同久久另类99精品国产91| 久久婷婷成人综合色麻豆| 99国产极品粉嫩在线观看| 巨乳人妻的诱惑在线观看| 在线观看免费视频网站a站| 亚洲第一av免费看| 国产又色又爽无遮挡免费看| 久久精品国产亚洲av香蕉五月 | 人妻久久中文字幕网| 日韩欧美在线二视频 | 国产精品国产av在线观看| 欧美黄色片欧美黄色片| 国产欧美日韩精品亚洲av| 黑丝袜美女国产一区| 男女免费视频国产| av网站免费在线观看视频| 十八禁人妻一区二区| 后天国语完整版免费观看| 在线观看免费午夜福利视频| 免费在线观看亚洲国产| 性少妇av在线| 18禁裸乳无遮挡动漫免费视频| 国内久久婷婷六月综合欲色啪| 欧洲精品卡2卡3卡4卡5卡区| 自拍欧美九色日韩亚洲蝌蚪91| 成熟少妇高潮喷水视频| 最近最新中文字幕大全电影3 | 色婷婷av一区二区三区视频| 成人三级做爰电影| 久久午夜综合久久蜜桃| 国产激情欧美一区二区| 成人精品一区二区免费| 国产在视频线精品| 一级黄色大片毛片| 12—13女人毛片做爰片一| 亚洲全国av大片| 在线视频色国产色| 国产精品免费一区二区三区在线 | 91国产中文字幕| 黄色片一级片一级黄色片| 久久精品国产99精品国产亚洲性色 | 高清毛片免费观看视频网站 | 午夜福利免费观看在线| 亚洲av第一区精品v没综合| 久久精品91无色码中文字幕| 国产色视频综合| 99久久精品国产亚洲精品| 精品欧美一区二区三区在线| www.精华液| 国产aⅴ精品一区二区三区波| xxxhd国产人妻xxx| 日韩免费高清中文字幕av| av免费在线观看网站| 一进一出抽搐gif免费好疼 | 午夜福利欧美成人| 亚洲,欧美精品.| 国产欧美亚洲国产| 亚洲九九香蕉| 一级片免费观看大全| 午夜精品久久久久久毛片777| 老司机午夜十八禁免费视频| 老司机午夜福利在线观看视频| 丰满迷人的少妇在线观看| 50天的宝宝边吃奶边哭怎么回事| 在线av久久热| 成人三级做爰电影| 大码成人一级视频| 国产日韩一区二区三区精品不卡| 亚洲午夜理论影院| 一二三四在线观看免费中文在| 纯流量卡能插随身wifi吗| 久久久国产欧美日韩av| a级片在线免费高清观看视频| 国产精品.久久久| 亚洲黑人精品在线| 欧美人与性动交α欧美精品济南到| 亚洲成国产人片在线观看| 法律面前人人平等表现在哪些方面| 黄色a级毛片大全视频| 欧美乱码精品一区二区三区| 在线观看66精品国产| 天天躁夜夜躁狠狠躁躁| 日韩欧美一区视频在线观看| 国产精品久久久人人做人人爽| 美女高潮喷水抽搐中文字幕| 国产av精品麻豆| 亚洲一区二区三区欧美精品| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区在线观看成人免费| 18禁国产床啪视频网站| 18在线观看网站| 一级片'在线观看视频| 成人永久免费在线观看视频| 黄色 视频免费看| 国产精品二区激情视频| 欧美亚洲 丝袜 人妻 在线| 电影成人av| 嫁个100分男人电影在线观看| www.精华液| 热99国产精品久久久久久7| 日本欧美视频一区| 亚洲av第一区精品v没综合| 亚洲精品乱久久久久久| 曰老女人黄片| 日韩精品免费视频一区二区三区| 欧美日本中文国产一区发布| 成年人黄色毛片网站| 搡老乐熟女国产| 精品久久久精品久久久| 国产深夜福利视频在线观看| 亚洲精品久久成人aⅴ小说| 狠狠婷婷综合久久久久久88av| 久99久视频精品免费| 国产1区2区3区精品| 亚洲欧美激情在线| 国产蜜桃级精品一区二区三区 | 一级毛片精品| 久久婷婷成人综合色麻豆| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 国产av又大| 成熟少妇高潮喷水视频| 中文字幕精品免费在线观看视频| 日韩免费av在线播放| 国产在线观看jvid| 亚洲精品国产精品久久久不卡| 精品福利永久在线观看| 欧美日韩视频精品一区| 中文字幕最新亚洲高清| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区三区在线| 少妇被粗大的猛进出69影院| 久久久久久久久久久久大奶| 亚洲国产中文字幕在线视频| 老司机在亚洲福利影院| 国产精品香港三级国产av潘金莲| 99国产精品一区二区蜜桃av | 999久久久国产精品视频| 天堂动漫精品| 又大又爽又粗| √禁漫天堂资源中文www| 色老头精品视频在线观看| 成年动漫av网址| 亚洲国产欧美一区二区综合| 女人精品久久久久毛片| 日日夜夜操网爽| 国产一区二区三区视频了| 国产精品久久久人人做人人爽| 精品国产一区二区三区久久久樱花| 日韩人妻精品一区2区三区| 两性夫妻黄色片| 无人区码免费观看不卡| 两人在一起打扑克的视频| 法律面前人人平等表现在哪些方面| 欧美最黄视频在线播放免费 | 欧美色视频一区免费| 成熟少妇高潮喷水视频| 国产1区2区3区精品| 老司机在亚洲福利影院| 国产精品久久久av美女十八| 国产精品久久久人人做人人爽| 在线天堂中文资源库| 一级片免费观看大全| 欧美人与性动交α欧美精品济南到| 久久久国产成人精品二区 | 国产亚洲精品一区二区www | 美女 人体艺术 gogo| 色播在线永久视频| 日本五十路高清| 国内毛片毛片毛片毛片毛片| 日韩一卡2卡3卡4卡2021年| 9191精品国产免费久久| 天天影视国产精品| 在线看a的网站| 人妻久久中文字幕网| 欧美国产精品va在线观看不卡| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区黑人| 18禁裸乳无遮挡动漫免费视频| av电影中文网址| 午夜影院日韩av| 18禁美女被吸乳视频| 久久久精品国产亚洲av高清涩受| 欧美国产精品一级二级三级| 亚洲一区中文字幕在线| 亚洲国产精品sss在线观看 | 中文字幕制服av| 久久香蕉国产精品| 亚洲熟女精品中文字幕| 国产精品免费大片| 国产精品乱码一区二三区的特点 | 91麻豆av在线| 中文字幕精品免费在线观看视频| 午夜免费成人在线视频| 久99久视频精品免费| 日本一区二区免费在线视频| 淫妇啪啪啪对白视频| 侵犯人妻中文字幕一二三四区| 国产精品久久久av美女十八| 俄罗斯特黄特色一大片| 久久香蕉激情| 精品国产乱子伦一区二区三区| 丰满饥渴人妻一区二区三| 日韩欧美一区视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲av日韩在线播放| 国产精华一区二区三区| 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女 | 国产99久久九九免费精品| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 一级毛片高清免费大全| 纯流量卡能插随身wifi吗| av有码第一页| aaaaa片日本免费| 成人影院久久| 国产成+人综合+亚洲专区| 亚洲精品成人av观看孕妇| 自线自在国产av| 精品国产一区二区三区四区第35| 男人舔女人的私密视频| 村上凉子中文字幕在线| 久久亚洲精品不卡| 日本黄色日本黄色录像| 免费人成视频x8x8入口观看| 午夜精品在线福利| 人妻久久中文字幕网| 热99国产精品久久久久久7| www.自偷自拍.com| 国产一卡二卡三卡精品| 亚洲精品自拍成人| 久久久国产一区二区| 国产亚洲av高清不卡| 国产一区二区三区综合在线观看| 久久午夜亚洲精品久久| 国产日韩一区二区三区精品不卡| 水蜜桃什么品种好| 91麻豆精品激情在线观看国产 | 久99久视频精品免费| 亚洲午夜理论影院| 婷婷精品国产亚洲av在线 | 国产日韩一区二区三区精品不卡| a级毛片黄视频| 91麻豆精品激情在线观看国产 | 久久久久久久精品吃奶| 高清av免费在线| 亚洲午夜精品一区,二区,三区| 国产精品香港三级国产av潘金莲| 国产成人精品在线电影| 嫁个100分男人电影在线观看| 91大片在线观看| 中文亚洲av片在线观看爽 | 99久久精品国产亚洲精品| 伦理电影免费视频| 亚洲国产欧美网| 亚洲精品中文字幕在线视频| 午夜福利一区二区在线看| 啪啪无遮挡十八禁网站| 成人三级做爰电影| 在线十欧美十亚洲十日本专区| 极品少妇高潮喷水抽搐| 日本黄色日本黄色录像| 亚洲五月婷婷丁香| www.熟女人妻精品国产| 又黄又爽又免费观看的视频| 久久久久久人人人人人| 成年人免费黄色播放视频| 久久午夜亚洲精品久久| 9色porny在线观看| 中文亚洲av片在线观看爽 | 狂野欧美激情性xxxx| 一本大道久久a久久精品| 午夜免费成人在线视频| 免费人成视频x8x8入口观看| 91老司机精品| 男人舔女人的私密视频| 午夜福利免费观看在线| 久久草成人影院| 午夜激情av网站| 亚洲久久久国产精品| 中文欧美无线码| 丰满人妻熟妇乱又伦精品不卡| av不卡在线播放| 亚洲av成人不卡在线观看播放网| 国产午夜精品久久久久久| 如日韩欧美国产精品一区二区三区| 黑人欧美特级aaaaaa片| 国产99白浆流出| 深夜精品福利| 国产精华一区二区三区| 国产片内射在线| 丝袜在线中文字幕| 国产精品九九99| 久久香蕉激情| 精品国内亚洲2022精品成人 | 久久精品国产亚洲av香蕉五月 | 变态另类成人亚洲欧美熟女 | 欧美日韩亚洲国产一区二区在线观看 | 熟女少妇亚洲综合色aaa.| 欧美精品啪啪一区二区三区| 99re在线观看精品视频| 亚洲精品中文字幕一二三四区| 欧美另类亚洲清纯唯美| 欧美成人午夜精品| 免费高清在线观看日韩| 精品午夜福利视频在线观看一区| 色老头精品视频在线观看| 两个人免费观看高清视频| 视频在线观看一区二区三区| 成人国语在线视频| 在线观看免费高清a一片| 三上悠亚av全集在线观看| 99re6热这里在线精品视频| 成人手机av| 欧美大码av| 建设人人有责人人尽责人人享有的| 亚洲第一青青草原| 男人操女人黄网站| 日日摸夜夜添夜夜添小说| 亚洲av成人不卡在线观看播放网| 天天添夜夜摸| 午夜精品久久久久久毛片777| 国产日韩一区二区三区精品不卡| 欧美成人午夜精品| 精品乱码久久久久久99久播| 无人区码免费观看不卡| 黑人操中国人逼视频| 天天躁狠狠躁夜夜躁狠狠躁| 电影成人av| 国产在线精品亚洲第一网站| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩精品久久久久久密| 国产亚洲欧美98| 99国产精品一区二区三区| 一区福利在线观看| a级毛片在线看网站| 国产精品一区二区免费欧美| 欧美 日韩 精品 国产| av有码第一页| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品古装| 黄频高清免费视频| 成熟少妇高潮喷水视频| 黑人操中国人逼视频| 国产在线观看jvid| 1024视频免费在线观看| 一级毛片精品| 亚洲午夜理论影院| 国产野战对白在线观看| 美女高潮到喷水免费观看| 在线观看午夜福利视频| 亚洲色图综合在线观看| 国产成人系列免费观看| 久久久久国内视频| 男男h啪啪无遮挡| 午夜福利视频在线观看免费| 日本a在线网址| 99精品在免费线老司机午夜| 免费少妇av软件| 久久午夜亚洲精品久久| 欧美日韩国产mv在线观看视频| 国产在线观看jvid| 最近最新免费中文字幕在线| 亚洲在线自拍视频| 成人av一区二区三区在线看| 91成年电影在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 久久久久精品人妻al黑| x7x7x7水蜜桃| 日韩中文字幕欧美一区二区| 69精品国产乱码久久久| 精品一区二区三区av网在线观看| 老熟妇乱子伦视频在线观看| 99国产精品免费福利视频| 99热网站在线观看| 精品国产亚洲在线| 欧美激情高清一区二区三区| 精品久久久久久久久久免费视频 | 中文欧美无线码| 欧美久久黑人一区二区| 日韩免费av在线播放| 日韩人妻精品一区2区三区| 中文字幕av电影在线播放| 村上凉子中文字幕在线| 免费观看a级毛片全部| 好看av亚洲va欧美ⅴa在| 高清视频免费观看一区二区| 亚洲欧美激情综合另类| 麻豆成人av在线观看| 国产亚洲精品久久久久5区| 成人影院久久| 男女午夜视频在线观看| 亚洲五月婷婷丁香| 怎么达到女性高潮| 另类亚洲欧美激情| 欧美日韩亚洲国产一区二区在线观看 | av国产精品久久久久影院| 十八禁高潮呻吟视频| 久久亚洲真实| 人人妻人人添人人爽欧美一区卜| 久久久国产欧美日韩av| 国产精华一区二区三区| 91九色精品人成在线观看| 中文字幕人妻丝袜一区二区| 中出人妻视频一区二区| 婷婷精品国产亚洲av在线 | 老司机深夜福利视频在线观看| 精品国产一区二区三区四区第35| 久9热在线精品视频| 丝袜美足系列| 宅男免费午夜| 性少妇av在线| 女同久久另类99精品国产91| 岛国毛片在线播放| 国产精品亚洲av一区麻豆| 手机成人av网站| 天天添夜夜摸| 午夜免费鲁丝| 精品一区二区三卡| 精品一区二区三区四区五区乱码| 天天躁夜夜躁狠狠躁躁| 欧美人与性动交α欧美精品济南到| 欧美国产精品va在线观看不卡| 国产一区二区三区综合在线观看| 国产精品亚洲av一区麻豆| 国产男靠女视频免费网站| 国产色视频综合| 曰老女人黄片| 午夜福利在线免费观看网站| 女性生殖器流出的白浆| 亚洲avbb在线观看| 精品亚洲成a人片在线观看| 久久精品成人免费网站| 色婷婷久久久亚洲欧美| 一个人免费在线观看的高清视频| 热re99久久国产66热| 美女高潮喷水抽搐中文字幕| 国产成人欧美在线观看 | 亚洲av日韩精品久久久久久密| 国产日韩一区二区三区精品不卡| 国产一区有黄有色的免费视频| 在线观看日韩欧美| 侵犯人妻中文字幕一二三四区| 捣出白浆h1v1| 免费av中文字幕在线| 亚洲国产精品sss在线观看 | 午夜福利欧美成人| 成人黄色视频免费在线看| 99国产精品一区二区三区| 国产免费现黄频在线看| 国产精品永久免费网站| 国产精品影院久久| 欧美乱妇无乱码| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一二三| 自拍欧美九色日韩亚洲蝌蚪91| 午夜视频精品福利| 一级片免费观看大全| 日日夜夜操网爽| 国产av一区二区精品久久| 可以免费在线观看a视频的电影网站| 国产精品99久久99久久久不卡| 日韩熟女老妇一区二区性免费视频| av天堂久久9| 在线观看一区二区三区激情| x7x7x7水蜜桃| 少妇粗大呻吟视频| 又大又爽又粗| 激情在线观看视频在线高清 | 中文字幕最新亚洲高清| 在线观看一区二区三区激情| 免费在线观看黄色视频的| 国产精品98久久久久久宅男小说| 一夜夜www| 久久精品亚洲精品国产色婷小说| 久久久久久久午夜电影 | 最新美女视频免费是黄的| 少妇被粗大的猛进出69影院| 亚洲成a人片在线一区二区| 老熟妇仑乱视频hdxx| 成年人黄色毛片网站| 麻豆乱淫一区二区| 精品福利永久在线观看| 一边摸一边抽搐一进一出视频| 久久国产精品大桥未久av| av电影中文网址| 一夜夜www| 一本大道久久a久久精品| 国产精品.久久久| 一级毛片女人18水好多| 亚洲视频免费观看视频| 男女高潮啪啪啪动态图| 精品国产一区二区三区四区第35| 日韩一卡2卡3卡4卡2021年| 精品电影一区二区在线| 一区二区三区精品91| 午夜激情av网站| 在线看a的网站| 成年版毛片免费区| av网站免费在线观看视频| 老司机亚洲免费影院| 极品教师在线免费播放| 国产亚洲精品一区二区www | 久久国产精品人妻蜜桃| 午夜福利,免费看| 久久 成人 亚洲| 亚洲精品美女久久av网站| 久久午夜综合久久蜜桃| 人妻 亚洲 视频| av网站在线播放免费| 一区二区日韩欧美中文字幕| 欧美另类亚洲清纯唯美| 天天影视国产精品| 欧美丝袜亚洲另类 | 一级毛片女人18水好多| 国产欧美日韩精品亚洲av| 人妻丰满熟妇av一区二区三区 | 91av网站免费观看| 天天躁日日躁夜夜躁夜夜| 91成年电影在线观看| 亚洲成人手机| 露出奶头的视频| 国产精品电影一区二区三区 | 高清av免费在线| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 亚洲少妇的诱惑av| 国产极品粉嫩免费观看在线| 女人被躁到高潮嗷嗷叫费观| 欧美成狂野欧美在线观看| 国产亚洲一区二区精品| 国产成人影院久久av| 又紧又爽又黄一区二区| 欧美在线一区亚洲| 又黄又爽又免费观看的视频| 久久99一区二区三区| 超碰成人久久| 18禁美女被吸乳视频| 不卡av一区二区三区| 天堂中文最新版在线下载| 久久精品亚洲精品国产色婷小说| 久久中文字幕一级| 美国免费a级毛片| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 俄罗斯特黄特色一大片| av电影中文网址| 狠狠婷婷综合久久久久久88av| 亚洲专区字幕在线| 午夜亚洲福利在线播放|