劉暢, 程曉丹, 孫家安, 張少華, 張強
丹酚酸B通過調(diào)控Cx43抑制鐵死亡對心肌梗死大鼠模型的保護機制研究*
劉暢1△, 程曉丹1, 孫家安1, 張少華1, 張強2
(1鄭州大學(xué)附屬鄭州中心醫(yī)院急診科,河南 鄭州 450007;2中山大學(xué)附屬第七醫(yī)院急診科,廣東 深圳 518107)
基于鐵死亡探討丹酚酸B(Sal B)對心肌梗死(MI)大鼠模型的保護作用,并分析縫隙連接蛋白43(Cx43)在其中的作用。經(jīng)結(jié)扎左冠狀動脈法構(gòu)建MI大鼠模型,隨機分組為假手術(shù)(sham)組、MI組、Sal B組、Sal B+AAV9-GFP組、Sal B+AAV9-GFP-Cx43-siRNA組和Sal B+AAV9-GFP-Cx43-siRNA+鐵死亡抑制劑ferrostatin-1(Fer-1)組,造模2 d后給予相應(yīng)處理。4周后,HE染色和Perl blue染色分別觀察心肌形態(tài)和鐵累積;免疫熒光染色觀察Cx43在心肌中分布;透射電鏡觀察心肌超微結(jié)構(gòu);試劑盒檢測血清肌酸激酶MB(CK-MB)、心肌鈣蛋白I(cTnI)和乳酸脫氫酶(LDH)水平,以及心肌丙二醛(MDA)、活性氧(ROS)、谷胱甘肽(GSH)和鐵含量;Western blot檢測心肌p-Cx43和Cx43蛋白水平。相較于sham組,MI組心肌纖維出現(xiàn)壞死、斷裂,排列紊亂,心肌線粒體出現(xiàn)損傷,Cx43蛋白在心肌細胞側(cè)側(cè)連接處彌散分布,血清CK-MB、cTnI和LDH水平,以及心肌MDA、ROS、鐵離子含量及Perl blue陽性面積均增加(<0.05),心肌GSH、p-Cx43和Cx43水平均降低(<0.05)。Sal B治療后心肌損傷明顯緩解,心肌閏盤內(nèi)Cx43蛋白增加,血清CK-MB、cTnI和LDH水平,以及心肌MDA、ROS、鐵離子含量及Perl blue陽性面積均降低(<0.05),心肌GSH、p-Cx43和Cx43水平均升高(<0.05)。AAV9-GFP-Cx43-siRNA能減弱Sal B的上述保護作用,且這種減弱作用可被Fer-1抑制。Sal B通過上調(diào)Cx43蛋白表達及磷酸化,改善其在心肌中分布,抵抗細胞鐵死亡,從而對MI大鼠的心臟進行保護。
丹酚酸B;心肌梗死;鐵死亡;縫隙連接蛋白43
心肌梗死(myocardial infarction, MI)發(fā)生時,缺血導(dǎo)致心肌細胞死亡并造成組織損傷,是心源性猝死的危險因素[1]。MI患者心臟中存在鐵累積,且與惡性心律失常[2]、心臟炎癥[3]及不良組織重塑[4]有關(guān)。鐵死亡為非凋亡性細胞死亡類型,由鐵依賴性脂質(zhì)過氧化引起,谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPx4)的失活和脂質(zhì)過氧化物的積累是其關(guān)鍵生理特征[5]。研究顯示,鐵累積是心血管疾病和心力衰竭的關(guān)鍵病理觸發(fā)因素,鐵死亡參與心臟多種病理進展[6-7],可能是治療心臟疾病的靶點[8]??p隙連接蛋白43(connexin 43, Cx43)可與離子通道形成半通道和間隙連接,通過介導(dǎo)細胞內(nèi)和外環(huán)境中離子和小分子的交換,傳遞相鄰細胞間的信號[9]。Cx43的蛋白表達、磷酸化修飾及其在心肌中的空間分布可影響相鄰心肌細胞的電傳導(dǎo),導(dǎo)致心肌電生理異常,引起心律失常[10]。Cx43半通道還可介導(dǎo)氧化劑和抗氧化劑的交換,減少ROS在細胞內(nèi)積累,減輕細胞氧化損傷[11],然而其與鐵死亡的關(guān)系不清楚。
丹酚酸B(salvianolic acid B, Sal B)為丹參水提物中高活性成分,具有抗氧化、抗炎、抗纖維化等作用,已被作為心血管治療的潛在藥物研究多年[12]。研究發(fā)現(xiàn),Sal可提高室間隔缺損家兔心肌中Cx43蛋白表達[13],而Cx43可通過減少線粒體活性氧的產(chǎn)生,實現(xiàn)對阿霉素誘導(dǎo)心臟損傷的保護[14]。但Sal B對MI中Cx43表達、分布及鐵死亡的調(diào)控作用尚待探索。因此,本實驗建立MI大鼠模型,探討Cx43與MI損傷中鐵死亡的關(guān)系,并分析Sal B對MI損傷過程中Cx43表達、分布和鐵死亡的影響。
72只SD大鼠,SPF級,購自河南省動物中心[許可證號:SCXK(豫)2017-0001],均在溫度(23±2) ℃、濕度45%~50%、12 h光/12 h暗循環(huán)的動物房中適應(yīng)飼養(yǎng)1周后進行實驗。期間大鼠自由攝水和飲食。
注射用Sal B購自天津天士力之驕藥業(yè)公司;鐵死亡抑制劑ferrostatin-1 (Fer-1)購自MCE;AAV9-GFP和AAV9-GFP-Cx43-siRNA由上海吉瑪公司制備提供;乳酸脫氫酶(lactate dehydrogenase, LDH)試劑盒、肌酸激酶MB(creatine kinase-MB, CK-MB)試劑盒、心肌鈣蛋白I(cardiac troponin I, cTnI)試劑盒、丙二醛(malondialdehyde, MDA)試劑盒、Perl blue核固紅試劑盒和HE染色試劑購自上海生工;活性氧(reactive oxygen species, ROS)和谷胱甘肽(glutathione, GSH)試劑盒購自碧云天公司;抗GAPDH抗體、抗Cx43抗體、Alexa Fluor?594羊抗兔Ⅱ抗和鐵檢測試劑盒購自Abcam;抗p-Cx43抗體購自CST;酶標(biāo)儀購自Thermo。顯微鏡購自O(shè)lympus;電泳和轉(zhuǎn)膜裝置購自Bio-Rad;透射電子顯微鏡購自Hitachi。
3.1MI模型的建立術(shù)前12 h禁食,自由飲水。戊巴比妥鈉(40 mg/kg)麻醉后行開胸手術(shù),連接心電圖機持續(xù)監(jiān)護,參照文獻[15]剪開心包,采用7-0型縫合線結(jié)扎左冠狀動脈前降支構(gòu)建MI模型,左心室尖部心肌顏色變淡且二導(dǎo)聯(lián)心電圖ST段抬高則MI模型成功。仔細縫合傷口并消毒。假手術(shù)(sham)組剪開心包后在動脈下穿線但不結(jié)扎。
3.2動物分組及給藥術(shù)后觀察2 d,將存活大鼠隨機分為sham組、MI組、Sal B組、Sal B+AAV9-GFP組、Sal B+AAV9-GFP-Cx43-siRNA組和Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組,各12只。Sal B組給予40 mg/kg Sal B腹腔注射治療,大鼠Sal B劑量按照人臨床劑量(400 mg/60 kg)根據(jù)體表面積法換算和預(yù)實驗確定;Sal B+AAV9-GFP組尾靜脈注射100 μL AAV9-GFP(1×109PFU)后再注射40 mg/kg Sal B;Sal B+AAV9-GFP-Cx43-siRNA組尾靜脈注射100 μL AAV9-GFP-Cx43-siRNA(1×109PFU)后再注射Sal B;Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組尾靜脈注射100 μL AAV9-GFP-Cx43-siRNA(1×109PFU)后再注射Sal B和2 mg/kg Fer-1[8](Sal B和Fer-1在生理鹽水中溶解后注射);sham組和MI組同步注射生理鹽水。共注射4周,Sal B每天1次,AAV9-GFP或AAV9-GFP-Cx43-siRNA在每周的第1天注射一次。
3.3樣本采集末次給藥12 h后,處死大鼠取血待測(12只大鼠);隨后摘取心臟,取左心室梗死區(qū)組織置于-80 ℃凍存(6只大鼠),取心尖部位組織于4%多聚甲醛(3只大鼠)或1%鋨酸(3只大鼠)中固定,分別制備心肌石蠟切片和透射電鏡超薄切片。
3.4HE和Perl blue染色心肌石蠟切片脫蠟、至水后,加入HE或Perl blue試劑染色,顯微鏡下觀察心肌形態(tài)和鐵累積程度。鐵累積程度以Perl blue陽性面積占視野總面積的比例表示。
3.5免疫熒光染色心肌石蠟切片脫蠟、至水,血清封閉后,滴加Ⅰ抗(Cx43抗體,1∶200)4℃過夜,換為Alexa Fluor?594羊抗兔Ⅱ抗(1∶1 000)避光作用1 h,滴加抗熒光衰減封閉液封片,熒光顯微鏡下觀察。
3.6透射電鏡觀察透射電鏡超薄切片經(jīng)醋酸雙氧鈾和枸櫞酸鉛染色后,用透射電鏡觀察心肌細胞超微結(jié)構(gòu)。
3.7血清和心肌生化指標(biāo)測定分離血清及心肌組織勻漿液上清,采用酶標(biāo)儀聯(lián)合CK-MB、cTnI、LDH、MDA、ROS、GSH及鐵離子檢測試劑盒測定血清或心肌中各生化指標(biāo)水平。
3.8Western blot檢測采用試劑盒從3.3冷凍心肌樣品中提取總蛋白,定量后取20 μg上樣,電泳完成后轉(zhuǎn)印到PVDF膜上,將膜與5%脫脂奶粉作用1 h后,與Ⅰ抗(GAPDH、p-Cx43和Cx43抗體,1∶1 000)在4 ℃作用過夜,再與HRP羊抗兔Ⅱ抗(1∶2 000)作用1 h,最后與ECL發(fā)光液避光作用5 min。將膜放在蛋白凝膠成像儀中拍照并分析目標(biāo)條帶灰度。
使用GraphPad Prism 8.0軟件進行分析。數(shù)據(jù)用均數(shù)±標(biāo)準差(mean±SD)描述并用單因素方差分析行多組間比較,用SNK-檢驗行兩兩比較。以<0.05為差異有統(tǒng)計學(xué)意義。
相較于sham組,MI組血清CK-MB、cTnI和LDH水平升高(<0.05);相較于MI組,Sal B組和Sal B+AAV9-GFP組血清CK-MB、cTnI和LDH水平降低(<0.05);相較于Sal B組和Sal B+AAV9-GFP組,Sal B+AAV9-GFP-Cx43-siRNA組血清CK-MB、cTnI和LDH水平升高(<0.05);相較于Sal B+AAV9-GFP-Cx43-siRNA組,Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組血清CK-MB、cTnI和LDH水平降低(<0.05),見表1。
表1 6組CK-MB、cTnI和LDH水平比較
*<0.05sham group;#<0.05MI group;△<0.05Sal B group;▲<0.05Sal B+AAV9-GFP group;?<0.05Sal B+AAV9-GFP-Cx 43-siRNA group.
HE染色結(jié)果顯示,sham組心肌細胞纖維形態(tài)清晰,排列規(guī)則;MI組心肌纖維出現(xiàn)壞死、斷裂,排列紊亂;Sal B組和Sal B+AAV9-GFP組損傷較MI組減輕;Sal B+AAV9-GFP-Cx43-siRNA組較Sal B組和Sal B+AAV9-GFP組加重;Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組較Sal B+AAV9-GFP-Cx43-siRNA減輕,見圖1。
Figure 1. Morphological changes of myocardial tissues in the 6 groups (HE staining, scale bar=100 μm).
通過透射電鏡觀察到,sham組心肌細胞膜無破裂或皺縮,線粒體形態(tài)完整,嵴清晰可見;MI組心肌細胞膜皺縮或破裂,線粒體膜變厚,體積減小,嵴減少或消失;Sal B組和Sal B+AAV9-GFP組線粒體損傷較MI組減輕;Sal B+AAV9-GFP-Cx43-siRNA組較Sal B組和Sal B+AAV9-GFP組加重;Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組較Sal B+AAV9-GFP-Cx43-siRNA減輕,見圖2。
Figure 2. The ultrastructure of the myocardium in the 6 groups observed by transmission electron microscopy (scale bar=1 μm). Arrows indicate mitochondria.
相較于sham組,MI組心肌ROS、MDA及鐵離子含量增高,GSH水平降低(<0.05);相較于MI組,Sal B組和Sal B+AAV9-GFP組心肌ROS、MDA及鐵離子含量降低,GSH水平增高(<0.05);相較于Sal B組和Sal B+AAV9-GFP組,Sal B+AAV9-GFP-Cx43-siRNA組心肌ROS、MDA及鐵離子含量增高,GSH水平降低(<0.05);相較于Sal B+AAV9-GFP-Cx43-siRNA組,Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組心肌ROS、MDA及鐵離子含量降低,GSH水平增高(<0.05),見表2。
表2 6組ROS、MDA、GSH及鐵離子含量比較
*<0.05sham group;#<0.05MI group;△<0.05Sal B group;▲<0.05Sal B+AAV9-GFP group;?<0.05Sal B+AAV9-GFP-Cx 43-siRNA group.
Perl blue染色結(jié)果顯示,MI組心肌Perl blue陽性面積為(20.75±3.86)%,顯著高于sham組的(0.08±0.02)%(<0.05);Sal B組和Sal B+AAV9-GFP組心肌Perl blue陽性面積分別為(9.83±1.05)%和(10.16±1.93)%,顯著低于MI組(<0.05);Sal B+AAV9-GFP-Cx43-siRNA組心肌Perl blue陽性面積為(15.71±2.64)%顯著高于Sal B組和Sal B+AAV9-GFP組(<0.05);Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組心肌Perl blue陽性面積為(8.69±1.23)%,顯著低于Sal B+AAV9-GFP-Cx43-siRNA組(<0.05),見圖3。
Figure 3. The degree of myocardial iron deposition (Perl blue staining, scale bar=50 μm).
免疫熒光染色結(jié)果顯示,sham組Cx43蛋白主要在心肌閏盤內(nèi)細胞端端連接處呈線性分布,與心肌纖維長軸垂直;MI組Cx43蛋白則在心肌細胞側(cè)側(cè)連接處呈彌散狀散亂分布;Sal B組和Sal B+AAV9-GFP組Cx43蛋白在心肌閏盤內(nèi)分布增多且較為整齊;Sal B+AAV9-GFP-Cx43-siRNA組Cx43蛋白分布介于MI組和Sal B組之間,閏盤內(nèi)有少量表達;Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組與Sal B組較為相似,見圖4。
Figure 4. Expression and distribution of Cx43 in myocardium were stained by immunofluorescence (scale bar=20 μm).
Western blot結(jié)果顯示,相較于sham組,MI組Cx43和p-Cx43蛋白水平降低(<0.05);相較于MI組,Sal B組和Sal B+AAV9-GFP組Cx43和p-Cx43蛋白水平增高(<0.05);相較于Sal B組和Sal B+AAV9-GFP組,Sal B+AAV9-GFP-Cx43-siRNA組Cx43和p-Cx43蛋白水平降低(<0.05);相較于Sal B+AAV9-GFP-Cx43-siRNA組,Sal B+AAV9-GFP-Cx43-siRNA+Fer-1組Cx43和p-Cx43蛋白水平增高(<0.05),見圖5。
Figure 5. The protein levels of Cx43 and p-Cx43 in myocardium were detected by Western blot. Mean±SD. n=6. *P<0.05 vs sham group;#P<0.05 vs MI group;△P<0.05 vs Sal B group;▲P<0.05 vs Sal B+AAV9-GFP group;?P<0.05 vs Sal B+AAV9-GFP-Cx43-siRNA group.
Sal B抑制心肌炎癥和細胞凋亡[16]、抑制心臟纖維化[17]和減輕心肌細胞氧化應(yīng)激[18]的效果已被證實,機制涉及對PI3K/Akt通路、NF-κB通路、Nrf2通路等的調(diào)控,是其作為心血管保護藥物的基礎(chǔ)。研究顯示,Sal B可抑制心肌缺血再灌注大鼠的心肌酶釋放入血,減輕心肌氧化、鈣超載等,改善心肌結(jié)構(gòu)[19]。本研究中,MI大鼠經(jīng)Sal B治療后血清CK-MB、cTnI和LDH水平降低。心肌出現(xiàn)損傷后,細胞內(nèi)CK-MB、cTnI、LDH等酶或蛋白釋放入血,表現(xiàn)為血清水平異常[19]。這提示Sal B可保護心肌細胞結(jié)構(gòu),減少其內(nèi)含物的釋放,對MI損傷有治療作用。
鐵死亡是導(dǎo)致心肌梗死的病理因素之一[20]。通常情況下,機體內(nèi)鐵處于平衡狀態(tài),與轉(zhuǎn)鐵蛋白結(jié)合存在于循環(huán)系統(tǒng)中;當(dāng)鐵過載或平衡被打破時,超量的鐵進入細胞,通過芬頓反應(yīng)或類芬頓反應(yīng)將Fe2+轉(zhuǎn)化為Fe3+,并催化羥基自由基等ROS過度產(chǎn)生,隨后Fe3+和ROS會激活破壞細胞膜的脂氧合酶,使細胞形態(tài)發(fā)生變化,如膜破裂、線粒體體積減小、膜變厚、線粒體嵴減少甚至消失等,誘發(fā)細胞鐵死亡[21-22]。本研究在MI大鼠心肌中觀察到細胞呈典型鐵死亡形態(tài),且GSH水平降低,ROS、MDA、鐵離子含量及Perl blue陽性面積增高,而鐵沉積、氧自由基和脂質(zhì)過氧化物是鐵死亡的典型特征[21],表明鐵死亡參與MI損傷過程。既往研究顯示,Sal B可有效清除ROS過度生成和積累,改善缺血再灌注引起的心肌氧化病理損傷[19, 23]。本研究發(fā)現(xiàn),Sal B治療可明顯改善細胞形態(tài),增加MI大鼠GSH水平,降低ROS、MDA、鐵離子含量及Perl blue陽性面積,表明Sal B可減少脂質(zhì)過氧化物和鐵在心肌中累積,提示Sal B可抑制鐵死亡。
鐵死亡是依賴于鐵的脂質(zhì)過氧化性細胞死亡,鐵累積及ROS、脂質(zhì)過氧化物過度產(chǎn)生是誘導(dǎo)鐵死亡的基礎(chǔ)[22]。作為心室中最重要的跨膜蛋白,Cx43通過組成Cx半通道介導(dǎo)心肌細胞間通訊(包括Ca2+釋放、動作電位的快速傳遞等)維持心室功能[24-26]。研究顯示,Cx43表達或磷酸化程度降低是心肌缺血等損傷的標(biāo)志[27-28]。另外,在心肌梗死大鼠中觀察到Cx43去磷酸化與空間分布同步發(fā)生,影響Cx43的運輸、門控、半通道等功能[10]。本研究也在MI大鼠心肌中觀察到Cx43去磷酸化和分布的變化,表現(xiàn)為Cx43在心肌細胞側(cè)側(cè)連接處呈彌散狀散亂分布,可能是MI后心肌處于過度氧化應(yīng)激狀態(tài),阻止Cx43分布到心臟閏盤中,導(dǎo)致其側(cè)向分布;而Sal B可顯著增加MI大鼠心肌中Cx43蛋白及磷酸化水平,并恢復(fù)其在閏盤中的分布,且這一作用可被AAV9-GFP-Cx43-siRNA逆轉(zhuǎn)。Cx43磷酸化可提高縫隙連接穩(wěn)定性,還可激活ERK和Akt對缺血性損傷心肌的保護[28],提示Sal B對MI損傷的保護作用與Cx43有關(guān)。近期研究顯示,Cx半通道還可通過促進GSH向氧化損傷的細胞內(nèi)轉(zhuǎn)運及ROS等氧化因子向細胞外轉(zhuǎn)運,調(diào)節(jié)細胞存活[29-30]。本研究中,Sal B對鐵死亡的抑制作用也被AAV9-GFP-Cx43-siRNA部分逆轉(zhuǎn),且在Sal B+AAV9-GFP-Cx43-siRNA干預(yù)的基礎(chǔ)上,給予Fer-1可以恢復(fù)Sal B對鐵死亡的抵抗作用和對MI損傷的保護作用,說明Cx43在Sal B抑制MI大鼠鐵死亡中發(fā)揮作用,可能通過調(diào)節(jié)GSH和ROS的轉(zhuǎn)運實現(xiàn)[29-30]。
綜上所述,Sal B通過上調(diào)Cx43蛋白表達及磷酸化,改善其在心肌中分布,抵抗細胞鐵死亡,對MI大鼠的心臟進行保護。另外,Sal B可作用于PI3K/Akt通路、NF-κB通路和Nrf2通路[16-18],然而這些通路是否參與Cx43的調(diào)節(jié)過程并未闡明,將在下一階段開展相關(guān)研究。
[1] Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018)[J]. Circulation, 2018, 138(20):e618-e651.
[2] Cokic I, Kali A, Yang HJ, et al. Iron-sensitive cardiac magnetic resonance imaging for prediction of ventricular arrhythmia risk in patients with chronic myocardial infarction: early evidence[J]. Circ Cardiovasc Imaging, 2015, 8(8):e003642.
[3] Kali A, Cokic I, Tang R, et al. Persistent microvascular obstruction after myocardial infarction culminates in the confluence of ferric iron oxide crystals, proinflammatory burden, and adverse remodeling[J]. Circ Cardiovasc Imaging, 2016, 9(11):e004996.
[4] Moon BF, Iyer SK, Hwuang E, et al. Iron imaging in myocardial infarction reperfusion injury[J]. Nat Commun, 2020, 11(1):3273.
[5] Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2):317-331.
[6] Kobayashi M, Suhara T, Baba Y, et al. Pathological roles of iron in cardiovascular disease[J]. Curr Drug Targets, 2018, 19(9):1068-1076.
[7] Ravingerová T, Kindernay L, Barteková M, et al. The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection[J]. Int J Mol Sci, 2020, 21(21):7889.
[8] Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A, 2019, 116(7):2672-2680.
[9] Epifantseva I, Shaw RM. Intracellular trafficking pathways of Cx43 gap junction channels[J]. Biochim Biophys Acta Biomembr, 2018, 1860(1):40-47.
[10] 周密,盧青,蔣桔泉,等. 琥珀酸美托洛爾早期干預(yù)對陳舊性心肌梗死兔心臟組織縫隙連接蛋白43及其磷酸化水平的影響[J]. 中華心血管病雜志, 2017, 45(4):294-298.
Zhou M, Lu Q, Jiang JQ, et al. Impacts of early metoprolol intervention on connexin 43 and phosphorylated connexin 43 expression in rabbits with experimental myocardial infarction[J]. Chin J Cardiol, 2017, 45(4):294-298.
[11] Le HT, Sin WC, Lozinsky S, et al. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress[J]. J Biol Chem, 2014, 289(3):1345-1354.
[12] 林超,劉兆國,錢星,等. 丹酚酸B在心血管疾病中藥理作用研究進展[J]. 中國藥理學(xué)通報, 2015, 31(4):449-452.
Lin C, Liu ZG, Qian X, et al. Research progress of salvianolic acid B in cardiovascular diseases[J]. Chin Pharmacol Bull, 2015, 31(4):449-452.
[13] 潘國洪,譚秦東. 丹參酚酸注射液對室間隔缺損模型家兔血清候選蛋白標(biāo)志物FN及心房肌細胞Cx43蛋白的表達影響研究[J]. 中國生化藥物雜志, 2014, 34(9):23-26.
Pan GH, Tan QD. Effect of salvianolate injection on expressions of serum candidate protein markers FN and Cx43 protein in atrial myocytes of ventricular septal defect model rabbit[J]. Chin J Biochem Pharm, 2014, 34(9):23-26.
[14] Pecoraro M, Pala B, Marcantonio MCD, et al. Doxorubicin-induced oxidative and nitrosative stress: mitochondrial connexin 43 is at the crossroads[J]. Int J Mol Med, 2020, 46(3):1197-1209.
[15] 付衛(wèi)云,劉暖,王延柯,等. 黃芪甲苷通過調(diào)控PKD1-HDAC5-VEGF通路促進心肌梗死大鼠血管新生[J]. 中國病理生理雜志, 2018, 34(4):643-649.
Fu WY, Liu N, Wang YK, et al. Astragaloside IV promotes angiogenesis in rats with myocardial infarction via PKD1-HDAC5-VEGF pathway[J]. Chin J Pathophysiol, 2018, 34(4):643-649.
[16] Liu H, Liu W, Qiu H, et al. Salvianolic acid B protects against myocardial ischaemia-reperfusion injury in rats via inhibiting high mobility group box 1 protein expression through the PI3K/Akt signalling pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(8):1527-1539.
[17] Wang C, Luo H, Xu Y, et al. Salvianolic acid B alleviated angiotensin II induces cardiac fibrosis by suppressing NF-κB pathway[J]. Med Sci Monit, 2018, 24(1):7654-7664.
[18] Lin Z, Bao Y, Hong B, et al. Salvianolic acid B attenuated cisplatin-induced cardiac injury and oxidative stress via modulating Nrf2 signal pathway[J]. J Toxicol Sci, 2021, 46(5):199-207.
[19] Qiao Z, Xu Y. Salvianolic acid b alleviating myocardium injury in ischemia reperfusion rats[J]. Afr J Tradit Complement Altern Med, 2016, 13(4):157-161.
[20] Wang XD, Kang S. Ferroptosis in myocardial infarction: not a marker but a maker[J]. Open Biol, 2021, 11(4):200367.
[21]馬貴萍,于忠楊,卿立金,等. 加味二至丸通過抑制鐵死亡減輕高脂血癥小鼠肝臟脂質(zhì)沉積[J]. 中國病理生理雜志, 2022, 38(2):259-266.
Ma GP, Yu ZY, Qing LJ, et al. Jiawei-Erzhi pills attenuate liver lipid deposition in mice with hyperlipidemia by inhibiting ferroptosis[J]. Chin J Pathophysiol, 2022, 38(2):259-266.
[22] Conrad M, Pratt DA. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12):1137-1147.
[23] Xue L, Wu Z, Ji XP, et al. Effect and mechanism of salvianolic acid B on the myocardial ischemia-reperfusion injury in rats[J]. Asian Pac J Trop Med, 2014, 7(4):280-284.
[24] Roell W, Klein AM, Breitbach M, et al. Overexpression of Cx43 in cells of the myocardial scar: correction of post-infarct arrhythmias through heterotypic cell-cell coupling[J]. Sci Rep, 2018, 8(1):7145-7176.
[25] Ek-Vitorín JF, Pontifex TK, Burt JM. Cx43 channel gating and permeation: multiple phosphorylation-dependent roles of the carboxyl terminus[J]. Int J Mol Sci, 2018, 19(6):1659.
[26] Wang WE, Li L, Xia X, et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury[J]. Circulation, 2017, 136(9):834-848.
[27] Sabatasso S, Moretti M, Mangin P, et al. Early markers of myocardial ischemia: from the experimental model to forensic pathology cases of sudden cardiac death[J]. Int J Legal Med, 2018, 132(1):197-203.
[28] Solan JL, Márquez-Rosado L, Lampe PD. Cx43 phosphorylation-mediated effects on ERK and Akt protect against ischemia reperfusion injury and alter the stability of the stress-inducible protein NDRG1[J]. J Biol Chem, 2019, 294(31):11762-11771.
[29] Shi W, Riquelme MA, Gu S, et al. Connexin hemichannels mediate glutathione transport and protect lens fiber cells from oxidative stress[J]. J Cell Sci, 2018, 131(6):jcs212506.
[30] Tong X, Lopez W, Ramachandran J, et al. Glutathione release through connexin hemichannels: implications for chemical modification of pores permeable to large molecules[J]. J Gen Physiol, 2015, 146(3):245-254.
Salvianolic acid B inhibits ferroptosis through Cx43 in myocardial infarction rat model
LIU Chang1△, CHENG Xiao-dan1, SUN Jia-an1, ZHANG Shao-hua1, ZHANG Qiang2
(1,,450007,;2,,518107,)
To investigate the protective effect of salvianolic acid B (Sal B) on myocardial infarction (MI) rat model based on ferroptosis, and to analyze the role of connexin 43 (Cx43) in this process.The MI rat model was established by ligating the left coronary artery. The rats were randomly divided into sham group, MI group, Sal B group, Sal B+AAV9-GFP group, Sal B+AAV9-GFP-Cx43-siRNA group and Sal B+AAV9-GFP-Cx43-siRNA+ferroptosis inhibitor ferrostatin-1 (Fer-1) group, and the corresponding treatment was given 2 d after modeling. After 4 weeks, the myocardial morphological changes and iron accumulation were observed by HE staining and Perl blue staining, respectively. The distribution of Cx43 in the myocardium was observed by immunofluorescence staining. The myocardial ultrastructure was observed by transmission electron microscopy. The serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI) and lactate dehydrogenase (LDH) levels, and myocardial malondialdehyde (MDA), reactive oxygen species (ROS), glutathione (GSH), iron ion levels were detected by kits. The myocardial p-Cx43 and Cx43 protein levels were measured by Western blot.Compared with sham group, the myocardial fibers in MI group were necrotic, fractured and disarranged, and the myocardial mitochondria were damaged. The Cx43 protein was expressed in the side-to-side junction of cardiomyocytes. Serum CK-MB, cTnI and LDH levels, myocardial MDA, ROS and iron ion levels, and Perl blue positive area were all increased (<0.05), while myocardial GSH, p-Cx43 and Cx43 levels were all decreased (<0.05). Myocardial injury was significantly relieved after treatment with Sal B. The Cx43 expression was increased in myocardial intercalated discs. Serum CK-MB, cTnI and LDH, myocardial MDA, ROS and iron ion levels, and Perl blue positive area were all decreased (<0.05), while myocardial GSH, p-Cx43 and Cx43 levels were all increased (<0.05). AAV9-GFP-Cx43-siRNA attenuated the protective effects of Sal B through Fer-1.Sal B protects the hearts of MI rats by up-regulating Cx43 expression and phosphorylation, and attenuating cell ferroptosis.
Salvianolic acid B; Myocardial infarction; Ferroptosis; Connexin 43
R285.6; R363.2
A
10.3969/j.issn.1000-4718.2022.06.010
1000-4718(2022)06-1032-08
2022-01-26
2022-03-18
河南省醫(yī)學(xué)科技攻關(guān)計劃聯(lián)合共建項目(No. LHGJ20191051);河南省高等學(xué)校重點科研項目(No. 20B320024)
Tel: 13526627092; E-mail: lcstudy76@163.com
(責(zé)任編輯:盧萍,羅森)