武 旭 謝 彬 謝文會 張明敏 韓旭亮 馬晨波 鄧小康
*(中海油研究總院有限責(zé)任公司,北京100028)
?(中國海上衛(wèi)星測控部, 江蘇無錫 214400)
管道斷裂韌性通常通過小尺度試樣實驗測試確定,ASTM E-1820、BS EN ISO 15653、GB/T 21143等標(biāo)準(zhǔn)推薦采用單邊切口彎曲(single edge notch bending, SENB)試樣或緊湊拉伸(compact tension, CT)試樣測試材料的斷裂韌性,而兩種試樣的裂紋尖端約束較高,測試結(jié)果偏于保守。對于管道環(huán)向淺裂紋情況,裂紋尖端約束較小,采用SENT(single edge notch tension)試樣的測試結(jié)果與實際情況更為接近[1-4]。同時,管道焊接接頭以環(huán)向裂紋為主,因而更適合采用SENT試樣測試管道焊接接頭的斷裂韌性[5-7]。
管道焊接區(qū)域容易產(chǎn)生裂紋、未焊透、咬邊等平面缺陷以及孔洞、夾渣等體積缺陷,對管道的安全運營存在潛在威脅。為了解決此類缺陷對管道完整性的潛在影響,部分標(biāo)準(zhǔn)與規(guī)范要求焊縫金屬強度高于母材強度,即采用高匹配焊接接頭,這可以提高管道的總體強度。準(zhǔn)確測試環(huán)焊縫斷裂韌性對保障管道安全具有重要意義,而SENT試樣J積分塑性因子的準(zhǔn)確性是斷裂韌性測試的前提。
關(guān)于J積分塑性因子,國內(nèi)外學(xué)者主要進行了以下研究。文獻[8-10]提出了J積分作為表征彈塑性材料裂紋尖端應(yīng)力應(yīng)變場的新參數(shù)。文獻[11-12]利用能量釋放率提出了J積分的實驗評估方法,建立了表征含裂紋結(jié)構(gòu)的J積分?jǐn)嗔褱?zhǔn)則,該方法需要采用多個試件進行測試。為簡化測試流程,Rice等[13]又提出了J積分測試的單試件法,利用J積分塑性因子與載荷位移曲線下的面積進行計算。標(biāo)準(zhǔn)ASTM E1820規(guī)定了深裂紋SENB試樣J積分塑性因子方程,亦有學(xué)者對裂紋長寬比(a/W)小于0.45的潛裂紋SENB試件J積分塑性因子方程進行了研究[14-16]。對于SENT試樣,文獻[17-18]分別針對母材和低匹配焊縫,采用有限元分析方法,提出對應(yīng)的J積分塑性因子方程。然而,對于不含側(cè)槽以及側(cè)槽深度10%的高匹配SENT試樣,尚未有文獻介紹相關(guān)報導(dǎo)。
因此,本文針對高匹配焊接接頭,采用三維有限元分析方法,建立試件厚寬比(B/W)等于1,不含側(cè)槽與側(cè)槽深度10%的SENT試樣有限元模型,計算不同裂紋長寬比、匹配系數(shù)、焊縫寬度下的J積分塑性因子,分析裂紋長寬比、匹配系數(shù)、焊縫寬度、試件側(cè)槽對J積分塑性因子的影響,擬合高匹配SENT試樣的J積分塑性因子方程,為高匹配焊接接頭的斷裂韌性測試提供必要依據(jù)。
J積分塑性因子與加載水平無關(guān),是一個與a/W有關(guān)的函數(shù)。對于焊縫金屬在確定載荷條件下,含側(cè)槽與不含側(cè)槽SENT試樣的塑性J積分(Jpl)可以通過總的J積分與彈性J積分(Jel)進行計算,而Jel可由應(yīng)力強度因子(K)確定[18]
式中,E和ν分別代表彈性模量和泊松比。其中,應(yīng)力強度因子
式中,P為載荷,B和BN分別為試件的厚度與有效厚度,F(xiàn)(a/W)為與裂紋長寬比有關(guān)的多項式函數(shù)。
由數(shù)值計算所得J積分與彈性J積分可得到
載荷–位移曲線下塑性區(qū)面積(Apl)計算式為
式中,A為載荷–位移曲線下的總面積,Ael為載荷–位移曲線下彈性區(qū)面積,C0為加載柔度。
基于載荷線位移的J積分塑性因子()和基于裂紋嘴張開位移的J積分塑性因子()計算公式[18]分別為
式中,b為韌帶長度,和分別為基于載荷線位移和基于裂紋嘴張開位移的載荷–位移曲線下塑性區(qū)面積,和分別為標(biāo)準(zhǔn)化塑性區(qū)面積和標(biāo)準(zhǔn)化塑性J積分。
采用三維有限元分析方法,建立高匹配SENT試樣有限元模型,分析焊縫寬度、匹配系數(shù)、試件側(cè)槽對J積分塑性因子的影響。試件寬度W為20 mm,厚度B為20 mm,即試件厚寬比B/W為1,夾持端距H離為200 mm,即H= 10W。裂紋長寬比a/W分別取0.2~0.7(增量為0.1),焊縫寬度比2h/W分別取0.5,0.75,1,即焊縫寬度h分別為5,7.5,10 mm,匹配系數(shù)My分別取1.1,1.2,1.3,1.4。模型分為側(cè)槽深度10%B與不考慮側(cè)槽兩種,側(cè)槽采用“V”形切口,切口角度為45°。
由于對稱性,采用C3D8R單元建立1/4有限元模型,對稱處施加約束,在試件端部施加位移載荷。圖1為a/W= 0.5,2h/W= 0.5時含側(cè)槽SENT試樣有限元模型。其中側(cè)槽沿坐標(biāo)軸Z向網(wǎng)格劃分為5層,有效厚度沿坐標(biāo)軸Z向網(wǎng)格劃分為10層。為了捕捉試件裂紋前沿較高的應(yīng)力、應(yīng)變梯度,試件網(wǎng)格沿坐標(biāo)軸Z向從側(cè)槽前沿至對稱面和自由表面逐漸增大。為優(yōu)化裂紋尖端網(wǎng)格,采用2.5 μm圓弧劃分裂尖單元,該網(wǎng)格可以較為準(zhǔn)確地計算裂紋尖端應(yīng)力、應(yīng)變場。
圖1 含側(cè)槽SENT試樣有限元模型Fig. 1 Finite element model of SENT specimen with side groove
材料模型采用Ramberg–Osgood本構(gòu)關(guān)系進行描述,母材與焊縫材料的真應(yīng)力應(yīng)變關(guān)系可表征為[7]
式中,σY為屈服強度,E為彈性模量,α為硬化系數(shù),n為硬化指數(shù)。
為評估匹配系數(shù)對高匹配SENT試樣J積分塑性因子的影響,σY= 410 MPa,n= 10,E=200 GPa,ν= 0.3。碳素鋼的屈服強度通常隨硬化指數(shù)的增加而增大,焊縫的硬化指數(shù)根據(jù)典型管道鋼的屈服強度和硬化指數(shù)之間的關(guān)系進行估算,得到材料相關(guān)性能參數(shù),見表1。
表1 SENT試件材料特性Table 1 Material properties of SENT specimen
由于J積分與積分路徑無關(guān),同一平面內(nèi)提取裂紋尖端19個環(huán)形路徑J積分,J積分偏差不大于4.3%。厚度方向上,除自由表面外,將各層J積分取平均值用于塑性因子計算。模擬過程中采用位移載荷進行控制,在試件端面施加位移載荷,分2000個加載步,采用完全Newton–Raphson迭代法求解非線性方程組。每個高匹配SENT試樣可以獲得2000組載荷線位移、裂紋嘴張開位移以及J積分?jǐn)?shù)據(jù),按式(1)~式(6)計算J積分塑性因子。
圖2為含側(cè)槽高匹配SENT試樣在a/W=0.6,My= 1.1,2h/W= 0.5時的塑性J積分和載荷位移曲線塑性區(qū)面積的對應(yīng)關(guān)系。對于固定尺寸的高匹配SENT試樣,曲線的斜率即為J積分塑性因子??芍獙τ诟咂ヅ銼ENT試樣,在初始階段隨載荷增加逐漸下降,隨著載荷的持續(xù)增加逐漸趨于常數(shù)。在整個加載范圍內(nèi)均保持恒定,表明與載荷大小無關(guān)。因此,選取J積分塑性因子處于線性部分的相關(guān)數(shù)據(jù)進行計算。不同幾何結(jié)構(gòu)、匹配系數(shù)下的高匹配SENT試樣J積分塑性因子計算結(jié)果見表2??芍?,試件B/W相同的情況下,含側(cè)槽SENT試樣的,明顯高于不含側(cè)槽試件。因此,建議在SENT試樣斷裂韌性測試中,根據(jù)試件側(cè)槽情況選擇對應(yīng)J積分塑性因子方程,以提高測試精度。
圖2 含側(cè)槽焊縫SENT的 ? 示意圖Fig. 2 Schematic diagram of ? of SENT with side groove
為了評估焊縫寬度對高匹配SENT試樣J積分塑性因子的影響,模擬了三種不同焊縫寬度SENT試樣,即h= 5,7.5,10 mm。當(dāng)B/W=1,My=1.1時,不同焊縫寬度下,不含側(cè)槽SENT試樣的和結(jié)果見圖3??芍獙τ诟咂ヅ銼ENT試樣,在所選定的3種焊縫寬度下,焊縫寬度對J積分塑性因子的影響相對較小,焊縫寬度的相關(guān)性可以忽略。對于側(cè)槽深度10%B的含側(cè)槽SENT試樣,焊縫寬度對J積分塑性因子的影響與不含側(cè)槽SENT試樣類似,均可忽略。
圖3 不含側(cè)槽試件焊縫寬度對J積分塑性因子的影響Fig. 3 Effect of weld width on J-integral plasticity factor of specimen without side groove
在研究匹配系數(shù)以及側(cè)槽對J積分塑性因子的影響時,為了忽略焊縫寬度對J積分塑性因子的微小影響,相同試件厚寬比、匹配系數(shù)下,取不同焊縫寬度的J積分塑性因子下限值用于匹配系數(shù)以及側(cè)槽的研究分析。由下限值來確定J積分阻力曲線,可以得到相對保守的結(jié)果,確保管道的安全性。
采用三種焊縫寬度(h= 5,7.5,10 mm)的下限值研究匹配系數(shù)對高匹配SENT試樣J積分塑性因子的影響,圖4表示不含側(cè)槽SENT試樣匹配系數(shù)對和的影響。對于不含側(cè)槽SENT試樣,和隨匹配系數(shù)的增加而減小,而當(dāng)a/W=0.3時,對匹配系數(shù)相對不敏感。而由表2可知,對于側(cè)槽深度為10%B的SENT試樣,當(dāng)0.2≤a/W≤0.4時,對匹配系數(shù)不敏感,其余情況下和均隨匹配系數(shù)的增加而減小。
圖4 不含側(cè)槽試件匹配系數(shù)對J積分塑性因子的影響Fig. 4 Effect of matching coefficient on J-integral plasticity factor of specimen without side groove
表2 高匹配SENT試樣J積分塑性因子計算結(jié)果Table 2 Results of J-integral plasticity factor of over-matched SENT specimens
為了便于不含側(cè)槽與側(cè)槽深度10%B的高匹配SENT試樣斷裂韌性測試,采用多項式擬合J積分塑性因子方程。對于高匹配SENT試樣,J積分塑性因子是與裂紋長寬比和匹配系數(shù)有關(guān)的函數(shù),采用四階多項式進行擬合,即
式中,αi為與匹配系數(shù)有關(guān)的函數(shù),mij為擬合系數(shù)。和的擬合系數(shù)分別見表3和表4,該式的有效范圍為:0.2≤a/W≤0.7,1.1≤My≤1.4。
表3 擬合方程系數(shù)Table 3 The coefficient of fitting equation of
表3 擬合方程系數(shù)Table 3 The coefficient of fitting equation of
Specimens without side groove Specimens with side groove of 10%B i = 0 i = 1 i = 2 i = 3 i = 4 i = 0 i = 1 i = 2 i = 3 i = 4 j = 0 –202.99 2 010.1 –6 712.74 9 381.93 –4 739.78 –509.98 4 720.92 –13 944.58 16 477.67 –6 742.73 j = 1 470.81 –4 617.41 15 321.4 –21 258.7 10 664.4 1 203.41 –11 090.20 32 547.88 –38 051.16 15 318.76 j = 2 –362.23 3 523.89 –11 578.2 15 892.97 –7 891.61 –944.68 8 675.05 –25 263.75 29 168.45 –11 519.43 j = 3 91.86 –886.9 2 883.07 –3 908.86 1 917.17 246.15 –2 253.51 6 512.66 –7 422.57 2 871.05
表4 擬合方程系數(shù)Table 4 The coefficient of fitting equation of
表4 擬合方程系數(shù)Table 4 The coefficient of fitting equation of
Specimens without side groove Specimens with side groove of 10%B i = 0 i = 1 i = 2 i = 3 i = 4 i = 0 i = 1 i = 2 i = 3 i = 4 j = 0 –90.74 818.08 –2 103.14 1 684.51 –108.60 186.00 –2 212.23 9 164.00 –15 669.03 9 353.13 j = 1 217.44 –1 920.57 4 827.33 –3 607.79 –30.37 –480.42 5 719.96 –23 549.13 40 044.10 –23 808.50 j = 2 –170.62 1 490.45 –3 649.46 2 488.90 279.68 413.50 –4 903.29 20 075.79 –33 970.96 20 124.30 j = 3 43.85 –378.19 894.09 –528.90 –155.56 –118.50 1 398.60 –5 693.85 9 585.35 –5 656.29
(1)本文基于三維有限元數(shù)值分析,研究不同裂紋長寬比(a/W= 0.2~0.7,增量0.1)、焊縫寬度(h= 5,7.5,10 mm)和匹配系數(shù)(My=1.1~1.4,增量0.1)下不含側(cè)槽與側(cè)槽深度10%B高匹配SENT試樣的J積分塑性因子,通過擬合方法提出對應(yīng)的J積分塑性因子方程,適用于管道高匹配焊接接頭的斷裂韌性測試,可提高測試的準(zhǔn)確性。
(2)對于不含側(cè)槽SENT試樣,ηpLlLD在裂紋長寬比a/W= 0.3時對匹配系數(shù)不敏感,其余情況隨匹配系數(shù)的增加而減小。對于側(cè)槽深度10%B的SENT試樣,ηpLlLD在a/W≤ 0.4時對匹配系數(shù)不敏感,其余情況隨匹配系數(shù)的增加而減小。ηpClMOD隨匹配系數(shù)的增加而減小。
(3)對于高匹配SENT試樣,在不同匹配系數(shù)下,焊縫寬度對SENT試樣的J積分塑性因子影響較小,可以忽略。相同情況下,側(cè)槽深度10%B的高匹配SENT試樣J積分塑性因子明顯高于不含側(cè)槽SENT試件,測試時應(yīng)根據(jù)試件側(cè)槽情況選擇對應(yīng)的J積分塑性因子方程。