• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy Set-Membership Filtering for Discrete-Time Nonlinear Systems

    2022-06-25 01:17:50JingyangMaoXiangyuMengandDeruiDing
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Jingyang Mao, Xiangyu Meng, and Derui Ding,

    Abstract—In this article, the problem of state estimation is addressed for discrete-time nonlinear systems subject to additive unknown-but-bounded noises by using fuzzy set-membership filtering. First, an improved T-S fuzzy model is introduced to achieve highly accurate approximation via an affine model under each fuzzy rule. Then, compared to traditional prediction-based ones, two types of fuzzy set-membership filters are proposed to effectively improve filtering performance, where the structure of both filters consists of two parts: prediction and filtering. Under the locally Lipschitz continuous condition of membership functions, unknown membership values in the estimation error system can be treated as multiplicative noises with respect to the estimation error. Real-time recursive algorithms are given to find the minimal ellipsoid containing the true state. Finally, the proposed optimization approaches are validated via numerical simulations of a one-dimensional and a three-dimensional discrete-time nonlinear systems.

    I. INTRODUCTION

    MANY applications involve nonlinear systems and unwanted noises. The noise arises from inputs of the system and outputs derived with the aid of a noisy sensor.Filtering is necessary to obtain information about some quantities that are essentially internal to the system. As a result, an extensive body of theory relating to filter design has grown, such as the famous Kalman filter and its extensions[1]-[4], the H∞filter [5]-[7], and several others [8]-[10].Kalman filter is a minimum variance estimator, and theH∞filter minimizes the worst-case estimation error. The system noise, including process noise and measurement noise, is normally assumed to be statistically known in the Kalman filtering framework. Nevertheless, the bound of noises can be obtained in many practical applications, such as radar, voltage control [11], system guidance and navigation, and target tracking and attacking. This leads to set-membership filtering[12]-[14]. The idea of set-membership filtering is to give an ellipsoid centered at the state estimate containing the true state, and the size of the ellipsoidal set is subsequently minimized. A reliable localization problem was discussed in[15] for autonomous mobile robots in an unstructured environment. The need of statistical information of the noise was relaxed and linearization errors were taken into account by the proposed set-membership filter. Set-membership filtering was recently implemented in radar applications in[16] to estimate the position of an octorotor. Note that a great many applications involve linear systems, as it spurs linear set-membership filtering. However, most applications involve nonlinear systems. By comparison, nonlinear set-membership filter design is very hard, if not impossible, in many instances.For this reason, there has been a lack of attention for nonlinear set-membership filters. An attempt is made in this article to design fuzzy set-membership filter algorithms for nonlinear systems.

    Due to its high-precision modeling and low-complexity computation, we first use a Takagi-Sugeno (T-S) fuzzy model to approximate the nonlinear system. T-S fuzzy modeling is based on a fuzzy partition of the state space, known as IFTHEN rules. Under each fuzzy rule, a basis system is formed.The fuzzy model is given by the aggregation of the basis systems, that is, a convex combination of the basis systems weighted by membership functions. The commonly used basis systems are linear systems [17]-[26]. However, nonlinear systems in general are hard to be approximated with high accuracy by using only the combination of linear systems. To increase the accuracy of the T-S fuzzy model, we use affine basis systems. Based on the obtained T-S fuzzy model, two fuzzy set-membership filters are constructed to find minimal ellipsoids centered at the estimated states that contain the true states. Previous works addressed the problem of setmembership filtering usingprediction-type observers [19],[27], that is,ykandx?kare used to estimatexk+1. Our constructed filter is comprised of both prediction and filtering.The prediction step will be executed usingx?k, the fuzzy model and the knowledge of the process noise; the filtering step involves updating the predicted value ofxk+1with measuresyk+1. Furthermore, we exploit properties of membership functions, which is critical to address the stability problem of the estimation error system. However, set-membership filtering problems in the literature usually do not include the stability analysis, as we do in this article. The problem of finding a minimal ellipsoid which contains the true system state is eventually transformed into linear objective minimization with linear matrix inequality (LMI) constraints.

    The main contributions of this article are summarized as follows.

    1) Under each fuzzy subspace, we utilize an affine model to achieve a more accurate approximation compared with linear models when the same fuzzy rules are applied. A complete procedure for identifying the T-S fuzzy model is given.

    2) Two fuzzy set-membership filters, namely, FSMF1 and FSMF2, are proposed, where the structure of both filters consists of prediction and filtering. Compared with theprediction-type observers, the proposed filters can further reduce the state estimation error by using the most recent measurements.

    3) Both the proposed filters are capable of stabilizing the estimation error system and attenuating noises, while filters in most previous studies focus on noise attenuation only. In addition, the design of FSMF2 takes full advantage of the locally Lipschitz continuous condition of the membership function, which has not been explored in previous studies. The simulation example shows a case that FSMF2 completely rejects the measurement noise for a stable nonlinear system.

    The remainder of this article is structured as follows. First,the fuzzy set-membership estimation problem is formulated in Section II where the T-S fuzzy model is discussed and two fuzzy set-membership filters are designed to cater to different scenarios. Then, the filter designs are discussed to ensure that the true state is contained in an ellipsoidal set centered at the estimated state in Section III. In Section IV, a onedimensional nonlinear system and a vertical mass-spring system are given to evaluate the estimation performance of the proposed two filters. Our conclusions and discussions of future research are included in Section V. The proofs of lemmas are given in Appendices.

    II. PROBLEM FORMULATION AND FILTER DESIGN

    A. Nonlinear Plant

    B. Fuzzy Model and Fuzzy Filter

    Fig. 1. Finite-dimensional nonlinear systems serving as basic signal model.

    Fig. 2. Fuzzy filter under filter rule i.

    Fig. 3. Fuzzy filtering fusion.

    Fig. 4. Fuzzy prediction.

    Fig. 5. Fuzzy filtering.

    C. Objective

    III. MAIN RESULTS

    A. Preliminaries

    B. Design of FSMF1

    Define the estimation error under fuzzy ruleias

    C. Design of FSMF2

    IV. SIMULATION

    In this section, two nonlinear systems are given to show how the proposed two filters work and to prove the validity.

    A. One-dimensional Nonlinear System

    Fig. 6. System states and their estimates without noises.

    Fig. 7. Bounds of xk and yk when ρ =1 and R =0.09.

    Fig. 8. Pk and e Tk P-k 1ek when ρ =1 and R =0.09.

    Fig. 9. Bounds of xk and yk when ρ =1 and R =100.

    Fig. 10. P k and e Tk P-k 1ek when ρ =1 and R =100.

    B. Vertical Mass-Spring System

    Fig. 11. System states and their estimates of the vertical spring-mass system.

    In summary, both filters can be implemented online based on real-time data except the T-S fuzzy modeling, which is

    Fig. 12. tr( Pk) and e Tk P-k 1ek of the vertical spring-mass system.

    V. CONCLUSIONS AND FUTURE RESEARCH

    In this article, the state estimation problem was studied for discrete-time nonlinear systems subject to unknown-butbounded noises. An improved T-S fuzzy model was introduced to achieve highly accurate approximation. Two fuzzy set-membership filters, namely, FSMF1 and FSMF2,were proposed that consider both the prediction and the filtering. Some features of the membership functions were utilized in the filter design so that the stability of the estimation error system can be ensured. Computational procedures were given for finding the minimal ellipsoid. Both filters can run online recursively to provide the state estimate.The methods were validated in simulation. FSMF2 showed the ability to stabilize the estimation error system and reject measurement noises.

    The estimation performance is very sensitive to the parameters in the fuzzy model. Finding a satisfactory filter becomes challenging when the number of fuzzy rules increases. This is especially true when the state of the nonlinear system does not converge to zero. Possible directions for future work are the co-design of the fuzzy model and the fuzzy filter and to employ nonnegative polynomials to obtain a less conservative version of Lemma 2.In addition, we plan to extend our results to networked control systems by taking into account event-triggered communication, packet loss, etc.

    APPENDIX A PROOF OF LEMMA 1

    which is the same as (21).

    av在线老鸭窝| 两个人视频免费观看高清| 欧美高清成人免费视频www| 亚洲成a人片在线一区二区| 国产精品久久久久久av不卡| 国产精品久久久久久精品电影| 午夜福利高清视频| 波多野结衣巨乳人妻| 如何舔出高潮| 黄色视频,在线免费观看| 身体一侧抽搐| 国产日韩欧美在线精品| 午夜福利视频1000在线观看| 亚洲av.av天堂| av福利片在线观看| 成人美女网站在线观看视频| 热99re8久久精品国产| 久久精品综合一区二区三区| 国产伦在线观看视频一区| 欧美成人一区二区免费高清观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91久久精品国产一区二区三区| 国产高潮美女av| 精品99又大又爽又粗少妇毛片| 99久久无色码亚洲精品果冻| 精品久久久久久久久av| 亚洲欧美日韩无卡精品| 亚洲性久久影院| 九九爱精品视频在线观看| 天天躁日日操中文字幕| 黑人高潮一二区| 午夜精品国产一区二区电影 | www.色视频.com| av福利片在线观看| 日韩大尺度精品在线看网址| 一进一出抽搐动态| 欧美日韩乱码在线| 黑人高潮一二区| 久久精品久久久久久噜噜老黄 | 大又大粗又爽又黄少妇毛片口| 国产人妻一区二区三区在| 亚洲欧美日韩卡通动漫| 亚洲精品色激情综合| 日韩一本色道免费dvd| 久久精品国产亚洲av涩爱 | 亚洲在久久综合| 精品久久久久久久久久久久久| 国产麻豆成人av免费视频| 一个人观看的视频www高清免费观看| 九九久久精品国产亚洲av麻豆| 国产成人精品久久久久久| 日韩国内少妇激情av| 国产综合懂色| 女人被狂操c到高潮| 精品无人区乱码1区二区| 麻豆成人午夜福利视频| 99久久无色码亚洲精品果冻| 国产成人福利小说| 搡女人真爽免费视频火全软件| 三级男女做爰猛烈吃奶摸视频| 午夜免费男女啪啪视频观看| 蜜桃久久精品国产亚洲av| 日本欧美国产在线视频| 一区二区三区免费毛片| 美女xxoo啪啪120秒动态图| 国产精品无大码| 三级国产精品欧美在线观看| 亚洲av成人精品一区久久| 蜜桃亚洲精品一区二区三区| 可以在线观看的亚洲视频| 天天躁日日操中文字幕| 欧美zozozo另类| 欧美精品国产亚洲| 色噜噜av男人的天堂激情| 伊人久久精品亚洲午夜| 99热精品在线国产| 亚洲第一电影网av| 99久国产av精品| 欧美丝袜亚洲另类| 一区二区三区四区激情视频 | 色综合亚洲欧美另类图片| 一区二区三区高清视频在线| 黄色日韩在线| 精品久久久久久久人妻蜜臀av| 可以在线观看毛片的网站| 国产色爽女视频免费观看| 国产久久久一区二区三区| 日本撒尿小便嘘嘘汇集6| 99在线视频只有这里精品首页| а√天堂www在线а√下载| 黑人高潮一二区| 欧美日韩在线观看h| 成人毛片a级毛片在线播放| 国产午夜精品一二区理论片| 性欧美人与动物交配| videossex国产| 亚洲av一区综合| 99热网站在线观看| 亚洲精品乱码久久久久久按摩| 波多野结衣巨乳人妻| 国产亚洲av片在线观看秒播厂 | 特级一级黄色大片| 午夜精品一区二区三区免费看| 九九热线精品视视频播放| 黑人高潮一二区| 在线观看一区二区三区| 亚洲成人精品中文字幕电影| 午夜福利在线观看免费完整高清在 | 国产精品不卡视频一区二区| 国产亚洲5aaaaa淫片| 婷婷亚洲欧美| 成人欧美大片| 亚洲在线自拍视频| 老女人水多毛片| 一级av片app| 国产美女午夜福利| 好男人视频免费观看在线| 99热只有精品国产| 草草在线视频免费看| 熟女电影av网| 欧美高清成人免费视频www| 国产大屁股一区二区在线视频| 亚洲精品456在线播放app| 亚洲成a人片在线一区二区| 特大巨黑吊av在线直播| 尤物成人国产欧美一区二区三区| 成人一区二区视频在线观看| 一个人看视频在线观看www免费| 在线观看免费视频日本深夜| 伦理电影大哥的女人| 成人永久免费在线观看视频| 成人亚洲精品av一区二区| 狂野欧美白嫩少妇大欣赏| 最近手机中文字幕大全| 舔av片在线| 色哟哟·www| 又粗又硬又长又爽又黄的视频 | 成人毛片60女人毛片免费| 婷婷亚洲欧美| 亚洲经典国产精华液单| 日韩欧美国产在线观看| 欧美另类亚洲清纯唯美| 别揉我奶头 嗯啊视频| 老司机福利观看| 欧美成人精品欧美一级黄| 午夜精品国产一区二区电影 | 国产精品美女特级片免费视频播放器| 人妻少妇偷人精品九色| 中文字幕精品亚洲无线码一区| 在现免费观看毛片| av在线播放精品| 午夜福利在线观看吧| av在线天堂中文字幕| 久久精品夜夜夜夜夜久久蜜豆| ponron亚洲| 国产精品乱码一区二三区的特点| 免费一级毛片在线播放高清视频| 欧美一级a爱片免费观看看| 成人性生交大片免费视频hd| 久久久色成人| 午夜免费激情av| av在线播放精品| 国产精品女同一区二区软件| 九九热线精品视视频播放| 中文字幕熟女人妻在线| 乱人视频在线观看| 久久精品综合一区二区三区| 国产视频首页在线观看| 免费电影在线观看免费观看| 久久久久久久久久黄片| 91麻豆精品激情在线观看国产| 国产私拍福利视频在线观看| 美女黄网站色视频| 91久久精品国产一区二区三区| 欧美性感艳星| 亚洲五月天丁香| 春色校园在线视频观看| 麻豆乱淫一区二区| 国产v大片淫在线免费观看| 精品久久久久久成人av| 尤物成人国产欧美一区二区三区| 日韩欧美国产在线观看| 可以在线观看毛片的网站| 级片在线观看| 在线国产一区二区在线| 国产精品乱码一区二三区的特点| 不卡一级毛片| 亚洲经典国产精华液单| av.在线天堂| av福利片在线观看| 日本黄大片高清| .国产精品久久| 成人三级黄色视频| 国产美女午夜福利| 久久久欧美国产精品| 久久久国产成人精品二区| 九九爱精品视频在线观看| 美女被艹到高潮喷水动态| 午夜福利成人在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 老司机福利观看| 亚洲人成网站在线观看播放| 人妻制服诱惑在线中文字幕| 蜜臀久久99精品久久宅男| 国产成人精品婷婷| av卡一久久| 免费看日本二区| 看黄色毛片网站| 国产精品综合久久久久久久免费| 三级经典国产精品| av国产免费在线观看| 天堂√8在线中文| 亚洲精品久久国产高清桃花| 国产精品久久久久久久久免| 免费观看人在逋| 国产 一区精品| 亚洲精品国产成人久久av| 一本一本综合久久| 欧美色欧美亚洲另类二区| 亚洲在线观看片| 国语自产精品视频在线第100页| 久久热精品热| av在线天堂中文字幕| 最近2019中文字幕mv第一页| 中文字幕人妻熟人妻熟丝袜美| kizo精华| 99久久久亚洲精品蜜臀av| 国产精品国产三级国产av玫瑰| 最近视频中文字幕2019在线8| 麻豆精品久久久久久蜜桃| 成人一区二区视频在线观看| 国产黄片美女视频| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久| 69av精品久久久久久| 特大巨黑吊av在线直播| 97超碰精品成人国产| 国产伦在线观看视频一区| 亚洲中文字幕日韩| 国产精品av视频在线免费观看| 亚洲熟妇中文字幕五十中出| 99久国产av精品国产电影| 麻豆一二三区av精品| 国产成人精品久久久久久| 亚洲自拍偷在线| 成年女人永久免费观看视频| 一边摸一边抽搐一进一小说| 国产真实乱freesex| 久久久色成人| 日韩欧美国产在线观看| 天堂影院成人在线观看| 赤兔流量卡办理| 亚洲一区二区三区色噜噜| 搡女人真爽免费视频火全软件| av免费观看日本| ponron亚洲| 26uuu在线亚洲综合色| av在线播放精品| 国产人妻一区二区三区在| 久久精品国产亚洲av天美| 亚洲人成网站在线观看播放| 国产高清不卡午夜福利| 国内揄拍国产精品人妻在线| 久久精品影院6| 男人的好看免费观看在线视频| 一级av片app| 国产激情偷乱视频一区二区| 九九在线视频观看精品| 亚洲成人精品中文字幕电影| 校园人妻丝袜中文字幕| 久久久精品大字幕| 2022亚洲国产成人精品| 久久久久九九精品影院| 少妇高潮的动态图| 国产精品三级大全| 亚洲av电影不卡..在线观看| 国产精品综合久久久久久久免费| 日韩亚洲欧美综合| 国产伦一二天堂av在线观看| 天堂√8在线中文| 国内久久婷婷六月综合欲色啪| 12—13女人毛片做爰片一| 综合色丁香网| 国产伦理片在线播放av一区 | 深夜a级毛片| 熟女人妻精品中文字幕| 欧美不卡视频在线免费观看| 舔av片在线| 国产乱人偷精品视频| 国产午夜精品久久久久久一区二区三区| 最近中文字幕高清免费大全6| 又黄又爽又刺激的免费视频.| 久久欧美精品欧美久久欧美| 色哟哟·www| 99久国产av精品| 国产极品精品免费视频能看的| 狠狠狠狠99中文字幕| 观看免费一级毛片| 亚洲成人精品中文字幕电影| 在线免费十八禁| av福利片在线观看| 黄色视频,在线免费观看| 亚洲人成网站在线播| 日韩一本色道免费dvd| 好男人视频免费观看在线| 一个人看视频在线观看www免费| 色吧在线观看| 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 国产精品久久久久久精品电影小说 | 日本欧美国产在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧洲日产国产| 高清毛片免费看| 欧美一区二区精品小视频在线| 男人的好看免费观看在线视频| 国产午夜精品论理片| 精品午夜福利在线看| 婷婷色av中文字幕| 国语自产精品视频在线第100页| 久久综合国产亚洲精品| 天堂网av新在线| 亚洲欧美精品专区久久| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 久久精品影院6| 麻豆国产av国片精品| 成人欧美大片| 只有这里有精品99| 国产黄片视频在线免费观看| 国产美女午夜福利| 国内久久婷婷六月综合欲色啪| 国产在线男女| 此物有八面人人有两片| 国产一区亚洲一区在线观看| 99riav亚洲国产免费| 女的被弄到高潮叫床怎么办| 不卡视频在线观看欧美| 亚洲美女视频黄频| av女优亚洲男人天堂| 成年av动漫网址| 免费无遮挡裸体视频| 欧美日本亚洲视频在线播放| 3wmmmm亚洲av在线观看| 18禁在线无遮挡免费观看视频| 亚洲成a人片在线一区二区| 午夜免费男女啪啪视频观看| 只有这里有精品99| 国产高清视频在线观看网站| 中文字幕熟女人妻在线| 成人午夜高清在线视频| 狂野欧美白嫩少妇大欣赏| 女的被弄到高潮叫床怎么办| 亚洲三级黄色毛片| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 能在线免费看毛片的网站| 看片在线看免费视频| 日韩欧美 国产精品| 国产av不卡久久| 国产精品一区www在线观看| 在线免费十八禁| 久久久久国产网址| 国产成人91sexporn| 亚洲av免费高清在线观看| 啦啦啦韩国在线观看视频| 国产私拍福利视频在线观看| 老司机福利观看| 91aial.com中文字幕在线观看| 99在线视频只有这里精品首页| 欧美人与善性xxx| 久久热精品热| 嫩草影院入口| 尾随美女入室| 精品不卡国产一区二区三区| 亚洲三级黄色毛片| 老司机影院成人| 青春草国产在线视频 | 变态另类丝袜制服| 我要搜黄色片| 久久国内精品自在自线图片| 婷婷色av中文字幕| 尤物成人国产欧美一区二区三区| 国产av在哪里看| 青青草视频在线视频观看| 91精品国产九色| 91狼人影院| 国产极品精品免费视频能看的| 久久中文看片网| 在线观看午夜福利视频| 老司机福利观看| 黄色日韩在线| 亚洲精品粉嫩美女一区| 99久国产av精品国产电影| av黄色大香蕉| 国产爱豆传媒在线观看| 精品久久久久久久久av| 亚洲四区av| 不卡视频在线观看欧美| 97人妻精品一区二区三区麻豆| 久久久久久国产a免费观看| 国产片特级美女逼逼视频| 赤兔流量卡办理| 日韩欧美精品v在线| 两个人视频免费观看高清| av黄色大香蕉| 一区二区三区高清视频在线| 丰满乱子伦码专区| 91精品国产九色| 一级黄色大片毛片| 黑人高潮一二区| 最近2019中文字幕mv第一页| 国产免费男女视频| 美女国产视频在线观看| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 色噜噜av男人的天堂激情| 插阴视频在线观看视频| 免费人成在线观看视频色| 欧美又色又爽又黄视频| 亚洲自拍偷在线| 人人妻人人澡欧美一区二区| 精品免费久久久久久久清纯| 国产高清三级在线| 国产精品一区二区在线观看99 | 一区二区三区高清视频在线| a级毛片a级免费在线| 人妻少妇偷人精品九色| 不卡视频在线观看欧美| 九九久久精品国产亚洲av麻豆| 老司机影院成人| 精品少妇黑人巨大在线播放 | 色综合亚洲欧美另类图片| 99久久精品国产国产毛片| 国产在线男女| 亚州av有码| 免费看av在线观看网站| 伦理电影大哥的女人| АⅤ资源中文在线天堂| 欧美极品一区二区三区四区| 干丝袜人妻中文字幕| 深爱激情五月婷婷| 国产乱人偷精品视频| 精品人妻视频免费看| 国产v大片淫在线免费观看| 自拍偷自拍亚洲精品老妇| 一级av片app| 村上凉子中文字幕在线| 亚洲美女搞黄在线观看| 国产不卡一卡二| 亚洲国产精品成人久久小说 | 尾随美女入室| 男人舔奶头视频| 免费大片18禁| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 国产高清有码在线观看视频| 国产精品永久免费网站| 国内少妇人妻偷人精品xxx网站| 久久久精品94久久精品| 日本一二三区视频观看| 欧美高清性xxxxhd video| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品成人久久久久久| av卡一久久| 极品教师在线视频| av在线蜜桃| 精品久久久久久久久av| 午夜爱爱视频在线播放| 看黄色毛片网站| 99久久久亚洲精品蜜臀av| 久久精品影院6| 最近2019中文字幕mv第一页| 精品国内亚洲2022精品成人| 久久精品国产亚洲av香蕉五月| 成人av在线播放网站| 伦精品一区二区三区| 草草在线视频免费看| 婷婷色av中文字幕| 不卡一级毛片| 国产黄片视频在线免费观看| 干丝袜人妻中文字幕| 成年女人看的毛片在线观看| 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 久久婷婷人人爽人人干人人爱| 一边摸一边抽搐一进一小说| 看十八女毛片水多多多| 欧美性猛交黑人性爽| 久久人妻av系列| 美女黄网站色视频| 欧美3d第一页| 色哟哟哟哟哟哟| 夜夜爽天天搞| 国内久久婷婷六月综合欲色啪| 永久网站在线| 国产黄片视频在线免费观看| 国产激情偷乱视频一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲av一区综合| 成人综合一区亚洲| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 女同久久另类99精品国产91| or卡值多少钱| 中文字幕久久专区| 国产伦精品一区二区三区视频9| 麻豆乱淫一区二区| 欧美不卡视频在线免费观看| 久久久精品欧美日韩精品| 久久久欧美国产精品| 日韩欧美一区二区三区在线观看| 别揉我奶头 嗯啊视频| 亚洲成人精品中文字幕电影| 国产精华一区二区三区| 久久久久久久久久成人| 免费看美女性在线毛片视频| 中文字幕久久专区| 亚洲内射少妇av| 国产在线男女| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲第一区二区三区不卡| a级毛片a级免费在线| av在线老鸭窝| 日韩三级伦理在线观看| 国产精品蜜桃在线观看 | 国内揄拍国产精品人妻在线| 日本撒尿小便嘘嘘汇集6| 黄片无遮挡物在线观看| 精品日产1卡2卡| 免费不卡的大黄色大毛片视频在线观看 | 久久国产乱子免费精品| 男人的好看免费观看在线视频| 中文亚洲av片在线观看爽| 插阴视频在线观看视频| 白带黄色成豆腐渣| 18禁在线无遮挡免费观看视频| 一个人看视频在线观看www免费| 美女xxoo啪啪120秒动态图| 女同久久另类99精品国产91| 99在线视频只有这里精品首页| 99久久久亚洲精品蜜臀av| 国产精品蜜桃在线观看 | 男女边吃奶边做爰视频| 国产伦一二天堂av在线观看| 六月丁香七月| 身体一侧抽搐| 中文字幕免费在线视频6| 菩萨蛮人人尽说江南好唐韦庄 | 老女人水多毛片| 国产亚洲91精品色在线| 99久久精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 欧美性猛交╳xxx乱大交人| 一个人看视频在线观看www免费| 男女视频在线观看网站免费| 男的添女的下面高潮视频| 国产精品一二三区在线看| 少妇丰满av| 99久久精品一区二区三区| 免费看美女性在线毛片视频| 亚洲国产精品合色在线| 能在线免费观看的黄片| 亚洲成人精品中文字幕电影| 午夜精品国产一区二区电影 | 九色成人免费人妻av| 亚洲精华国产精华液的使用体验 | av福利片在线观看| 99久国产av精品国产电影| 精品久久久久久久久亚洲| 午夜久久久久精精品| 国产av不卡久久| 国语自产精品视频在线第100页| 亚洲四区av| 久久久午夜欧美精品| 老师上课跳d突然被开到最大视频| АⅤ资源中文在线天堂| 亚洲性久久影院| 老司机影院成人| 国产午夜福利久久久久久| 美女内射精品一级片tv| 男女啪啪激烈高潮av片| 在线免费十八禁| 国产伦精品一区二区三区视频9| 黄色欧美视频在线观看| 99国产精品一区二区蜜桃av| 精品熟女少妇av免费看| 简卡轻食公司| 菩萨蛮人人尽说江南好唐韦庄 | 青春草视频在线免费观看| 色综合站精品国产| 小说图片视频综合网站| 欧美色视频一区免费| 久久这里只有精品中国| 久久精品国产鲁丝片午夜精品| 国产午夜福利久久久久久| 中出人妻视频一区二区| 免费不卡的大黄色大毛片视频在线观看 | av在线天堂中文字幕| 国产成人精品久久久久久| 99久国产av精品| 亚洲精品色激情综合| 国产精品国产高清国产av| 好男人在线观看高清免费视频| avwww免费| 精品久久久久久久久久免费视频| 欧美zozozo另类| 免费看光身美女| 欧美xxxx性猛交bbbb| 久久中文看片网| 午夜视频国产福利| 成年女人永久免费观看视频| www.av在线官网国产| 国产亚洲av嫩草精品影院| 亚洲精品日韩av片在线观看|