• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model Controlled Prediction: A Reciprocal Alternative of Model Predictive Control

    2022-06-25 01:18:32ShenLiYangLiuandXiaoboQu
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Shen Li, Yang Liu, and Xiaobo Qu,

    Dear editor,

    This letter presents a reciprocal alternative to model predictive control (MPC), called model controlled prediction. More specifically,in order to integrate dynamic control signals into the transportation prediction models, a new fundamental theory of machine learning based prediction models is proposed. The model can not only learn potential patterns from historical data, but also make optimal predictions based on dynamic external control signals. The model can be used in two typical scenarios: 1) For low real-time control signals (e.g., subway timetable), we use a transfer learning method,so that the prediction models obtained from training data under the old control strategy can be predicted accurately under the new control strategy. 2) For dynamic control signals with high real-time(e.g., online ride-hailing dispatching instructions), we establish a simulation environment, design a control algorithm based on reinforcement learning (RL), and then let the model learn the mapping relationship among dynamic control signals, data, and output in the simulation environment. The experimental results show that the reasonable modeling of control signals can significantly improve the performance of the traffic prediction model.

    Unprecedented urbanization has led to the expansion of urban size and density. In order to meet the challenges of mobility and sustainability, more accurate transportation prediction (e.g., passenger flow prediction in public transport systems, spatio-temporal supplydemand prediction in ride-hailing services) is essential to guide the design, planning, operations, and control of urban transportation systems.

    Numerous transportation prediction methods based on artificial intelligence (AI) techniques have emerged, such as long short-term memory network (LSTM) [1], convolution neural network (CNN) [2]and graph convolution neural network (GCN) [3]. Unfortunately,most intelligent transportation systems (ITS) are affected by external control signals (e.g., intersection signal timing, metro timetables,online ride-hailing dispatching instructions), while existing traffic prediction methods only mine potential patterns from historical data without introducing control to form a closed loop. Prediction models based on historical data tend to fail or perform poorly as external control signals change.

    In order to resolve this critical issue, substantial efforts are conducted to consolidate control and prediction, which are inextricably connected. Therefore, the well-known model predictive control has developed vigorously in enhancing the performance of optimal control, and it has also been applied in numerous traffic control problems [4], but it can not deal with other aspects of transport problems including operations, design, and planning. In the field of ITS, considering the influence of external control signals, the reciprocal alternative of model predictive control has more important and extensive value and has the potential to be applied to all aspects of ITS research.

    Related work: Transport engineering is increasingly interdisciplinary with automatic control, AI, and many other emerging areas of information science which form the core of new ITS technology [5].Traffic control and prediction are two important pillars of ITS research.

    A representative example in the field of traffic control is intersection signal control, which aims to minimize vehicle travel time by coordinating vehicle movements at road intersections. Since signalized intersection is the bottleneck of urban traffic, effective signal control will reduce traffic congestion [4]. Another example is the railway timetabling control, which has proved to be an NP-Hard problem [6]. Its offline optimization objectives include train travel time [7], total energy consumption [8], transfer waiting time [9], etc.The existing research mainly focuses on mathematical programming [10]. So far, most real-world traffic control strategies are based on offline data optimization, while online rolling optimization has not been implemented. This is due to the complexity and scale of real-world traffic problems, making it difficult to meet the real-time requirements using mathematical programming or heuristic methods.RL has the potential to address this challenge, and few studies have attempted to solve complex large-scale dynamic optimization problems in the ITS field, such as traffic signal control [11] and online ride-hailing fleet management control [12].

    Since the emergence of AI and the development of data collection techniques, the application of AI in transportation prediction has affected all aspects of ITS [13]. For example, accurate passenger flow prediction not only helps passengers make better decisions by adjusting their travel routes and departure times, but also helps transit operators optimize train timetables and save operating costs [14].Spatio-temporal data prediction is another core issue, accurately predicting future spatio-temporal supply and demand can help improve traffic conditions, fleet organization, utilization rate, and social welfare. A large number of spatio-temporal data prediction methods based on artificial intelligence techniques have been proposed and applied. Existing state-of-art research is to transform the traffic prediction problem into a regression problem in machine learning.However, these typical traffic prediction problems are affected by the above control signals, but so far, none of these algorithms consider dynamic external control signals. Therefore, it is necessary to develop a new fundamental theory of AI-driven prediction model considering dynamic control.

    The fundamental theory of model controlled prediction: As mentioned in the related work, there is no research on integrating dynamic control signals into traffic prediction models. In order to fill the research gap, we will solve three basic scientific research questions.

    Q1: Why is Model Predictive Control not applicable to many ITS studies?

    Q2: What are the flaws of existing traffic prediction methods compared with model predictive control?

    Q3: How can we deal with the flaws in Q2?

    Fig. 1 is the illustration of model predictive control. Through Fig. 1,we can analyze and answer Q1 systematically.

    The main reasons limiting the application of model predictive control in ITS are:

    1) The measurement step in ITS has not been completely solved. It is a challenging task to obtain the travel data of millions of residents in a megacity. In the era of big data and high resolution, the ITS field has only solved very preliminary data acquisition problems. For example, in the bus system, swipe cards in most cities only record the pick-up station, missing the drop-off station. As a result, the measurement step has not yet been completely solved.

    Fig. 1. Illustration of model predictive control.

    2) The computational cost of implementing online rolling optimization in ITS is high. Most ITS studies are large-scale and complex (such as optimizing the timetable of the entire city subway line), which are computationally expensive. As a result, these problems are usually optimized offline, and they are difficult to optimize online on a rolling basis.

    3) As discussed earlier, ITS systems have numerous applications not only in control, but also in operating, designing, and planning.Compared with transportation prediction, model predictive control has not been able to fully satisfy the diverse requirements of ITS systems, which further limits its wide implementation in ITS.

    Fig. 2. Illustration of the modeling process of the existing data-driven traffic prediction model.

    For Q2, it should be noted that in the existing data-driven traffic prediction models, only data (e.g., dividing training set/test set, data preprocessing, feature engineering), models, and tasks are considered in the modeling process (as shown in Fig. 2), without proper consideration and reflection of the system and optimization.Referring to the illustration of model predictive control, we complete Fig. 2 by adding components such as system and optimization. To distinguish from Figs. 1 and 2, the structure in Fig. 3 is called “control-prediction”. Note that Fig. 3 is a presentation of existing method in the form of model predictive control illustration,where the existing method is flawed. In Fig. 3, although the datadriven model can implicitly learn weak information about external control signals from a large amount of historical data, it is far from sufficient because of the model’s fragility and the inability to respond quickly when external signals change if the model fails to explicitly learn external signals.

    Fig. 3. Illustration of “control-prediction” structure in ITS.

    The focus of this paper is on explicitly learning external control signals, and below we briefly analyze the impact of external signals on existing data-driven methods.

    The control strategy in Fig. 3 is a time sequence composed of several control signals.

    Fig. 4. Flowchart of the zero-shot transfer learner.

    The essence of model transfer is to predict another system using the experience learned from the previous system. However, the online car-hailing dispatching algorithm may issue dozens of dispatching instructions per second, which will lead to dynamic changes of the system. Therefore, for these high real-time dynamic control signals, the model transfer approach is not suitable. To address this challenge, we establish a simulation environment, design a control algorithm based on RL, and subsequently let the model learn mapping relationships among dynamic control signals, data,and output in the developed simulation environment. The details of the solution in this situation will be elaborated in Scenario 2.

    Fig. 4 shows the flowchart of the zero-shot transfer learner. Based on the developed zero-shot model, the traffic information can be predicted accurately when the control strategy is unknown.

    Scenario 2: This scenario deals with high real-time control signals in ITS, which will change in real-time with the change of the system.For example, dozens of online car-hailing dispatching instructions are issued every second. To address this challenge, we establish a simulation environment, design control algorithms based on RL, and then let the model learn the mapping relationships among dynamic control signals, data, and output in the simulation environment, for improving the accuracy of spatio-temporal prediction.

    In fact, in general RL, the agent only inputs the current state of the simulator without considering the influence of previous control action on prediction. Whereas in traffic problems, previous control actions can also have a significant impact on prediction results.

    For example, the driver’s execution of the dispatching instruction issued by the online car-hailing platform will have a direct impact on the future supply and demand, resulting in a dramatic decrease in the performance of the prediction model. Therefore, we design a RL model with a “recurrent” structure. The term “recurrent” means that the output of the model depends not only on the current computation but also on previous computations, which is similar to recurrent neural networks (RNN) [18].

    Fig. 5. Illustration of one input unit and one recurrent hidden unit.

    In our method (as shown in Fig. 6), the output of the agent depends not only on the current state of the simulator, but also on the previous control actions. We consider the influence of dynamic control signals on the output in the form of “recurrent”.

    Fig. 6. Illustration of an RL model with “recurrent” structure.

    Experiments: Taking the classical passenger flow prediction problem as an example, we conducted a preliminary experiment to verify the hypothesis of this letter, i.e., whether control signals (e.g.,metro timetable) will play a key role in traffic prediction. The data were collected from the Nanjing metro system, including travel records of weekdays from March 18 to April 30 and from August 1 to November 9, 2016. A dataset containing 103 days of records was obtained by denoising, in which the last 33 days of data are the test set, while the rest of the samples were used as the training set. In this case study, the length of the time slice is set to 10 minutes, which means our task is to predict the number of card swipes in the next ten minutes.

    We use four evaluation metrics, namely, symmetric mean absolute percent error (SMAPE), root mean square error (RMSE), mean absolute error (MAE), and mean relative error (MRE), to evaluate the performance of the model separately.

    The proposed model controlled prediction method is compared with the autoregressive integrated moving average (ARIMA) model and the LSTM model. The parametersp(AR term),d(difference order), andq(MA term) of the ARIMA model are set to 7, 1, and 1 respectively. In the LSTM model, we use the information from the previous four time slices to predict the passenger flow in the next time slice, stacking three LSTM layers to enable the model to learn higher-level temporal representation.

    In the model controlled prediction model, based on the LSTM model, we further encode the metro arrival information (i.e., metro timetable) withini-th time slice as a 10-dimensional feature vector.Multiple fully connected layers are used to learn the relationship

    Table 1.Comparison of Different Models (Transfer Station)

    Table 2.Comparison of Different Models (Regular Station)

    Table 3.Comparison of Different Models (Regular Station With Low Passenger Flow)

    Conclusions: The accurate transportation prediction is the foundation for all aspects of ITS, including control, operations,design, and planning. However, most prediction models in ITS do not consider the influence of external control signals (e.g., subway timetables), which compromise the performance, applicability, and transferability of these models. So far, only model predictive control has integrated predictions with external control signals. However,these models are only used for control and not for other aspects of ITS. This research is the first attempt to deal with the most fundamental issue of traffic prediction, considering external control signals, and provide a foundation for ITS applications at all levels.Although the model is developed for ITS, the fundamental theory developed will be sufficiently general to be applicable to other disciplines and systems, provided that the predictions are heavily influenced by external control signals.

    In the short term, the research provides a theoretical basis for consolidating predictions and external control signals, thus promoting the scientific development in this area. The theory can also be used in many key use cases, such as the early warning of sudden passenger flow in public transport systems, and the supplydemand balancing in ride-hailing services. In the long run, this research will be even more important in the coming era of connected,automated, and electric vehicles, where the transportation systems,communication systems, and electricity grid are coupled together.This research provides a possible solution for the interactions among different sub-systems in the future urban transportation systems.

    Acknowledgments: This study is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk?odowska-Curie(101025896).

    国产视频首页在线观看| a级毛色黄片| 亚洲国产精品久久男人天堂| 亚洲在久久综合| 久久久久久九九精品二区国产| 欧美bdsm另类| 一级毛片久久久久久久久女| 欧美3d第一页| 日韩在线高清观看一区二区三区| 日韩av不卡免费在线播放| 国产欧美另类精品又又久久亚洲欧美| 一个人观看的视频www高清免费观看| 欧美激情国产日韩精品一区| 日韩欧美在线乱码| 日韩人妻高清精品专区| 淫秽高清视频在线观看| 亚洲国产色片| 男女那种视频在线观看| 久久久久久久久久久免费av| www.色视频.com| av视频在线观看入口| 国产视频内射| 国产午夜精品论理片| 国产乱人视频| 中文字幕熟女人妻在线| 国产69精品久久久久777片| 欧美变态另类bdsm刘玥| 亚洲av中文av极速乱| 变态另类丝袜制服| 亚洲成人久久爱视频| 夜夜爽夜夜爽视频| 欧美三级亚洲精品| 久久人人爽人人爽人人片va| 国产精品一区www在线观看| 国产精品麻豆人妻色哟哟久久 | 欧美最新免费一区二区三区| 免费av毛片视频| 国产免费视频播放在线视频 | 久久精品国产亚洲av涩爱| 午夜福利在线在线| 在线观看美女被高潮喷水网站| 秋霞在线观看毛片| 麻豆成人av视频| 亚洲欧美精品专区久久| 免费观看性生交大片5| 国产亚洲一区二区精品| 天天一区二区日本电影三级| 国产一区二区在线观看日韩| 18禁在线无遮挡免费观看视频| 欧美成人午夜免费资源| 插逼视频在线观看| 少妇的逼好多水| 人妻少妇偷人精品九色| 国产精品人妻久久久久久| 2022亚洲国产成人精品| 一级毛片久久久久久久久女| 高清毛片免费看| 精品酒店卫生间| 亚洲欧美成人综合另类久久久 | 国产免费福利视频在线观看| 国产亚洲最大av| 亚洲成人久久爱视频| 麻豆一二三区av精品| 纵有疾风起免费观看全集完整版 | 亚洲av一区综合| 日韩一区二区三区影片| 久久久久国产网址| 美女国产视频在线观看| 亚洲成人久久爱视频| 亚洲人成网站在线观看播放| 91av网一区二区| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| 白带黄色成豆腐渣| 国产成年人精品一区二区| 99久久精品国产国产毛片| 亚洲天堂国产精品一区在线| 亚洲中文字幕日韩| 国产精品日韩av在线免费观看| 精品人妻熟女av久视频| 亚洲在久久综合| 欧美bdsm另类| 国产亚洲精品久久久com| 黄色欧美视频在线观看| 亚洲av中文av极速乱| 欧美性感艳星| 九九爱精品视频在线观看| 国产高清不卡午夜福利| 黑人高潮一二区| 一本一本综合久久| 久久亚洲国产成人精品v| 自拍偷自拍亚洲精品老妇| 欧美性感艳星| 午夜久久久久精精品| 全区人妻精品视频| 男女国产视频网站| 欧美成人免费av一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲一级一片aⅴ在线观看| 国产精华一区二区三区| 国产淫语在线视频| 亚洲欧美精品专区久久| 精品久久国产蜜桃| 欧美成人一区二区免费高清观看| 天堂av国产一区二区熟女人妻| 国产乱人视频| 亚洲国产精品成人综合色| 午夜久久久久精精品| 国内精品美女久久久久久| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 三级经典国产精品| 久久久久久久午夜电影| 老司机福利观看| 一个人看的www免费观看视频| 免费电影在线观看免费观看| 99热这里只有是精品在线观看| 天天一区二区日本电影三级| 国产精品一及| 免费在线观看成人毛片| 不卡视频在线观看欧美| 精品久久久久久电影网 | 村上凉子中文字幕在线| 国产成人a∨麻豆精品| 又爽又黄a免费视频| 国产av码专区亚洲av| 只有这里有精品99| 听说在线观看完整版免费高清| a级毛片免费高清观看在线播放| 综合色av麻豆| 国产乱来视频区| 国产一区有黄有色的免费视频 | 国产麻豆成人av免费视频| 欧美变态另类bdsm刘玥| 精品久久久久久电影网 | 亚洲精品久久久久久婷婷小说 | 中文字幕av在线有码专区| 国产女主播在线喷水免费视频网站 | 亚洲精品乱码久久久久久按摩| 精品酒店卫生间| 婷婷色综合大香蕉| 亚洲va在线va天堂va国产| 日韩视频在线欧美| 日本免费一区二区三区高清不卡| 国产一区二区在线观看日韩| 日韩三级伦理在线观看| 一级毛片电影观看 | 日本黄色视频三级网站网址| 99九九线精品视频在线观看视频| 久久人妻av系列| 欧美精品一区二区大全| 亚洲av一区综合| 日本三级黄在线观看| 国产精品1区2区在线观看.| 最近最新中文字幕免费大全7| 在现免费观看毛片| 日韩,欧美,国产一区二区三区 | 麻豆一二三区av精品| 91aial.com中文字幕在线观看| 毛片一级片免费看久久久久| 国产在线男女| 国产精品久久久久久精品电影| 久久久国产成人免费| 亚洲成av人片在线播放无| www日本黄色视频网| 能在线免费看毛片的网站| 欧美97在线视频| av在线观看视频网站免费| 六月丁香七月| 91精品一卡2卡3卡4卡| 亚洲欧美成人综合另类久久久 | 欧美日韩在线观看h| 97热精品久久久久久| 大又大粗又爽又黄少妇毛片口| 村上凉子中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 成人午夜精彩视频在线观看| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 国产探花极品一区二区| 亚洲av男天堂| 晚上一个人看的免费电影| 夫妻性生交免费视频一级片| 综合色丁香网| 美女被艹到高潮喷水动态| 欧美日韩在线观看h| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验| 国产精品一及| 99久国产av精品| 国产午夜福利久久久久久| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线播| 边亲边吃奶的免费视频| av卡一久久| 天堂av国产一区二区熟女人妻| 欧美bdsm另类| 麻豆乱淫一区二区| 国产熟女欧美一区二区| 美女xxoo啪啪120秒动态图| 直男gayav资源| 日本免费一区二区三区高清不卡| 精品久久久久久久末码| 亚洲成av人片在线播放无| 亚洲欧美成人综合另类久久久 | 哪个播放器可以免费观看大片| 一级毛片我不卡| 免费一级毛片在线播放高清视频| 久久久成人免费电影| 精品人妻熟女av久视频| 亚洲成色77777| АⅤ资源中文在线天堂| 级片在线观看| 哪个播放器可以免费观看大片| 男人和女人高潮做爰伦理| 国产亚洲精品av在线| 久久精品国产自在天天线| 日韩欧美 国产精品| 观看免费一级毛片| 亚洲,欧美,日韩| 亚洲真实伦在线观看| 婷婷色综合大香蕉| 99久国产av精品国产电影| 国产激情偷乱视频一区二区| 2022亚洲国产成人精品| 搡老妇女老女人老熟妇| 成年av动漫网址| 欧美+日韩+精品| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 久久久精品94久久精品| 日本一二三区视频观看| 特大巨黑吊av在线直播| 伦精品一区二区三区| 22中文网久久字幕| 国产精品一区二区三区四区久久| 91在线精品国自产拍蜜月| videos熟女内射| 又粗又爽又猛毛片免费看| 中国国产av一级| 中文字幕亚洲精品专区| 精品熟女少妇av免费看| 97在线视频观看| 国产69精品久久久久777片| 网址你懂的国产日韩在线| 亚洲国产欧洲综合997久久,| 精品人妻熟女av久视频| 亚洲成av人片在线播放无| 免费观看a级毛片全部| 中国国产av一级| 一本一本综合久久| 午夜精品国产一区二区电影 | 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费看美女性在线毛片视频| 成人午夜精彩视频在线观看| 国产av不卡久久| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| 高清视频免费观看一区二区 | 国产精华一区二区三区| 尾随美女入室| 久久久久久久午夜电影| 精品久久久噜噜| 亚洲欧美精品专区久久| 最近的中文字幕免费完整| 三级男女做爰猛烈吃奶摸视频| 中国国产av一级| 欧美97在线视频| 久久精品夜夜夜夜夜久久蜜豆| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 久久午夜福利片| 麻豆成人av视频| 国产国拍精品亚洲av在线观看| 国产精品永久免费网站| 国产不卡一卡二| 少妇人妻精品综合一区二区| 九草在线视频观看| 免费看美女性在线毛片视频| 啦啦啦观看免费观看视频高清| 亚洲精品成人久久久久久| 水蜜桃什么品种好| 成人毛片60女人毛片免费| 性插视频无遮挡在线免费观看| 亚洲欧美成人精品一区二区| 男女边吃奶边做爰视频| 啦啦啦韩国在线观看视频| 精品久久久久久电影网 | 国产精品久久久久久精品电影| 日本黄色片子视频| 永久免费av网站大全| 一二三四中文在线观看免费高清| 久久鲁丝午夜福利片| 色哟哟·www| 国产在线一区二区三区精 | 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 男女边吃奶边做爰视频| 十八禁国产超污无遮挡网站| 日韩大片免费观看网站 | 日本与韩国留学比较| 男人和女人高潮做爰伦理| 亚洲成色77777| 一级二级三级毛片免费看| 免费人成在线观看视频色| 精品国产三级普通话版| 欧美高清性xxxxhd video| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 久久久久国产网址| 久久99热这里只频精品6学生 | 床上黄色一级片| 国产乱人偷精品视频| 黄片无遮挡物在线观看| 女人被狂操c到高潮| 国产乱人视频| 99在线视频只有这里精品首页| 全区人妻精品视频| 久久午夜福利片| 久久久久久久久久成人| 久久综合国产亚洲精品| 中文资源天堂在线| 国产亚洲午夜精品一区二区久久 | 亚洲av不卡在线观看| av.在线天堂| 成人国产麻豆网| 亚洲欧美日韩高清专用| 少妇熟女aⅴ在线视频| 26uuu在线亚洲综合色| 国产中年淑女户外野战色| 亚洲欧美精品自产自拍| 2021少妇久久久久久久久久久| 看十八女毛片水多多多| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 狠狠狠狠99中文字幕| 免费av观看视频| 长腿黑丝高跟| 99热精品在线国产| 中文精品一卡2卡3卡4更新| 国产在线一区二区三区精 | 建设人人有责人人尽责人人享有的 | 亚洲18禁久久av| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 亚洲av免费高清在线观看| 国产白丝娇喘喷水9色精品| 女人十人毛片免费观看3o分钟| 欧美日本视频| 丰满乱子伦码专区| 久久久国产成人精品二区| 精品不卡国产一区二区三区| 最新中文字幕久久久久| 久久久国产成人免费| 久久精品91蜜桃| 亚洲欧美清纯卡通| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看| 国产老妇女一区| 能在线免费看毛片的网站| www.av在线官网国产| 免费大片18禁| 国产探花极品一区二区| 大话2 男鬼变身卡| 精品午夜福利在线看| 欧美最新免费一区二区三区| 久久久久久久午夜电影| 少妇裸体淫交视频免费看高清| 欧美成人免费av一区二区三区| av在线亚洲专区| 国产精品人妻久久久影院| 免费黄网站久久成人精品| 91aial.com中文字幕在线观看| 99久久无色码亚洲精品果冻| 亚洲四区av| 水蜜桃什么品种好| 干丝袜人妻中文字幕| 欧美成人精品欧美一级黄| 晚上一个人看的免费电影| 国产精品一二三区在线看| 18禁动态无遮挡网站| 久久精品人妻少妇| 午夜精品在线福利| 人体艺术视频欧美日本| 国产精华一区二区三区| 在线观看66精品国产| 女人十人毛片免费观看3o分钟| 国产成人一区二区在线| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 精品久久久久久电影网 | 日韩av在线大香蕉| 九草在线视频观看| 欧美性感艳星| 伦精品一区二区三区| 一级二级三级毛片免费看| 国产午夜精品一二区理论片| 变态另类丝袜制服| 青春草视频在线免费观看| 中文精品一卡2卡3卡4更新| av黄色大香蕉| 最近最新中文字幕免费大全7| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区在线观看日韩| 欧美另类亚洲清纯唯美| 精品国产三级普通话版| 国产精品久久电影中文字幕| 免费av毛片视频| av线在线观看网站| 婷婷六月久久综合丁香| 午夜久久久久精精品| 日韩制服骚丝袜av| 中文字幕人妻熟人妻熟丝袜美| 亚洲av男天堂| 啦啦啦观看免费观看视频高清| 在线免费观看的www视频| 丝袜喷水一区| 国产男人的电影天堂91| 天堂av国产一区二区熟女人妻| 国产亚洲91精品色在线| 亚洲人成网站在线观看播放| 18禁在线播放成人免费| 亚洲性久久影院| 偷拍熟女少妇极品色| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 亚洲性久久影院| 精品免费久久久久久久清纯| 岛国毛片在线播放| 日韩高清综合在线| 国产av码专区亚洲av| 欧美xxxx黑人xx丫x性爽| 少妇熟女aⅴ在线视频| 国产免费视频播放在线视频 | 成人三级黄色视频| 嘟嘟电影网在线观看| 亚洲成人精品中文字幕电影| 亚洲欧美精品综合久久99| 欧美日韩精品成人综合77777| 成人鲁丝片一二三区免费| 汤姆久久久久久久影院中文字幕 | 91精品国产九色| 亚洲国产精品sss在线观看| 麻豆精品久久久久久蜜桃| 欧美日韩在线观看h| 蜜桃亚洲精品一区二区三区| 3wmmmm亚洲av在线观看| 午夜久久久久精精品| 国产高清视频在线观看网站| 午夜精品一区二区三区免费看| 蜜臀久久99精品久久宅男| 好男人视频免费观看在线| 夫妻性生交免费视频一级片| 亚洲va在线va天堂va国产| 人体艺术视频欧美日本| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 亚洲国产精品成人久久小说| 久久精品人妻少妇| 青春草国产在线视频| 深夜a级毛片| 三级毛片av免费| 午夜福利在线观看免费完整高清在| 天天躁日日操中文字幕| 在线a可以看的网站| 欧美激情在线99| 小蜜桃在线观看免费完整版高清| 男女国产视频网站| 精品少妇黑人巨大在线播放 | 插逼视频在线观看| 国产老妇伦熟女老妇高清| 亚洲av中文av极速乱| 亚洲一区高清亚洲精品| 国产精品av视频在线免费观看| av黄色大香蕉| 精品久久国产蜜桃| 熟妇人妻久久中文字幕3abv| 天天躁日日操中文字幕| 永久免费av网站大全| 51国产日韩欧美| 亚洲成人精品中文字幕电影| 国产久久久一区二区三区| 亚洲精品色激情综合| 可以在线观看毛片的网站| av在线天堂中文字幕| 精品酒店卫生间| 午夜福利视频1000在线观看| 精品人妻偷拍中文字幕| 蜜桃亚洲精品一区二区三区| 久久久成人免费电影| 久久久久久久亚洲中文字幕| 国产视频首页在线观看| 亚洲欧美日韩东京热| 亚洲高清免费不卡视频| 边亲边吃奶的免费视频| 建设人人有责人人尽责人人享有的 | 村上凉子中文字幕在线| 精品99又大又爽又粗少妇毛片| 亚洲综合色惰| 18+在线观看网站| 69人妻影院| 三级男女做爰猛烈吃奶摸视频| 国产老妇伦熟女老妇高清| 亚洲真实伦在线观看| 18禁动态无遮挡网站| 五月玫瑰六月丁香| 国产午夜精品论理片| 女人十人毛片免费观看3o分钟| 免费观看在线日韩| 秋霞在线观看毛片| 午夜a级毛片| 精品久久久噜噜| 亚洲最大成人av| 国内精品一区二区在线观看| 2021少妇久久久久久久久久久| 男女啪啪激烈高潮av片| 亚洲av不卡在线观看| 日韩欧美三级三区| 午夜视频国产福利| 岛国在线免费视频观看| 亚洲中文字幕日韩| 非洲黑人性xxxx精品又粗又长| 欧美bdsm另类| 国产色爽女视频免费观看| 色哟哟·www| 久久鲁丝午夜福利片| 插阴视频在线观看视频| 人妻夜夜爽99麻豆av| 如何舔出高潮| 国产伦精品一区二区三区视频9| 中文字幕人妻熟人妻熟丝袜美| 97在线视频观看| 亚洲国产精品合色在线| 久久午夜福利片| 国产爱豆传媒在线观看| 午夜精品国产一区二区电影 | 国产av码专区亚洲av| 国产成人aa在线观看| 午夜福利在线在线| 特大巨黑吊av在线直播| 黑人高潮一二区| 国产午夜精品论理片| 一区二区三区乱码不卡18| 日韩av不卡免费在线播放| 亚洲国产精品久久男人天堂| 亚洲熟妇中文字幕五十中出| 亚洲国产精品合色在线| 一本一本综合久久| 亚洲欧美精品专区久久| 久久人妻av系列| 国产高清国产精品国产三级 | 久久久久久大精品| 黄色一级大片看看| 简卡轻食公司| www日本黄色视频网| 联通29元200g的流量卡| 一个人免费在线观看电影| 身体一侧抽搐| 国产v大片淫在线免费观看| 久久久久久久久久黄片| 亚洲欧美日韩东京热| 简卡轻食公司| 免费播放大片免费观看视频在线观看 | 美女脱内裤让男人舔精品视频| 国产中年淑女户外野战色| 婷婷六月久久综合丁香| 人人妻人人看人人澡| videossex国产| 亚洲精品亚洲一区二区| 国产av一区在线观看免费| 久久精品综合一区二区三区| 国产黄片美女视频| 韩国av在线不卡| 色综合亚洲欧美另类图片| 亚洲无线观看免费| 午夜免费激情av| 亚洲自拍偷在线| 亚洲在线自拍视频| 91在线精品国自产拍蜜月| 大话2 男鬼变身卡| 99热这里只有精品一区| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线观看99 | 午夜福利成人在线免费观看| 亚洲av成人av| 少妇熟女aⅴ在线视频| 在线免费十八禁| 婷婷六月久久综合丁香| 亚洲精华国产精华液的使用体验| av国产久精品久网站免费入址| 男女啪啪激烈高潮av片| 99久久成人亚洲精品观看| 少妇裸体淫交视频免费看高清| 国产免费福利视频在线观看| 欧美极品一区二区三区四区| 国产男人的电影天堂91| 国产精品国产高清国产av| 最近的中文字幕免费完整| 婷婷六月久久综合丁香| 久久亚洲国产成人精品v| 午夜福利视频1000在线观看| 哪个播放器可以免费观看大片| 成人综合一区亚洲| 一区二区三区四区激情视频| 国产女主播在线喷水免费视频网站 | 成人二区视频| 中文精品一卡2卡3卡4更新| 精品酒店卫生间| 久99久视频精品免费| 热99在线观看视频| 亚洲国产日韩欧美精品在线观看| 精品免费久久久久久久清纯|