• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Scalable Adaptive Approach to Multi-Vehicle Formation Control with Obstacle Avoidance

    2022-06-25 01:17:44XiaohuaGeQingLongHanJunWangandXianMingZhang
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Xiaohua Ge,, Qing-Long Han,, Jun Wang,, and Xian-Ming Zhang,

    Abstract—This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems (MVSs) in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology, subject to simultaneous unknown heterogeneous nonlinearities and external disturbances. The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology. Toward this goal, a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance. Furthermore, a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed. It is proved that, with the proposed protocol, the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed. Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.

    I. INTRODUCTION

    MULTI-vehicle systems (MVSs) have found their widespread applications in both military and civilian areas, such as formation flying, target tracking, surface combat operations, border patrol and surveillance, intelligent transportation, coastal environmental monitoring and mapping. A key feature of such MVSs lies in that multiple autonomous vehicles, which can be extensively deployed on the ground, in the air, at sea, and underwater, cooperate with each other through some networked medium so as to fulfill a variety of coordinated control tasks. Among various research hotspots on MVSs, formation control that aims to steer a fleet of autonomous vehicles, via collaborative and distributed information processing, into forming a specific geometric pattern in terms of their states (e.g., position, heading) has attracted intensive attention; see, e.g., the recent surveys[1]-[4], and the references therein.

    Depending on whether there is any leader, the existing results on formation control of MVSs and general multi-agent systems (MASs) can be roughly classified into three types:formation producing[5]-[10], where there is no leader involved;formation tracking[11]-[19], where is only one leader, either virtual or real, guiding a team of formable follower vehicles; andformation-containment[20]-[23],where a team of follower vehicles is to navigate into a convex hull formed by another team of formable leader vehicles.Several approaches are reported to analyze the MVS formation behaviors and design various formation control strategies [1]-[4].

    The completion and performance of coordinated control tasks for MVSs are significantly affected by nonlinearities,and their effects become particularly adverse for small vehicles due to their low inertia and small size. For example,the navigation and control of unmanned aerial vehicles can be substantially affected by uncontrolled nonlinearities including wind gusts and gravity gradients. In addition, autonomous surface and underwater vehicles usually suffer from environmental influences induced by turbulent ocean waves and currents. In this sense, some existing formation control strategies dedicated to known or linear dynamical vehicle/agent models (e.g., [5]-[8], [10], [11], [13], [16]) may no longer be applicable. Therefore, the first challenge for nonlinear MVS formation control is to deal with the unknown nonlinearities in vehicle dynamics. On the other hand,practical formation maneuvers of a team of mobile vehicles are often implemented in some unknown and obstacle-laden environments without anya priorimap knowledge. In such a scenario, there is a strong need for a safety guarantee of collision avoidance for the vehicles in some cluttered environments while maintaining task completion of the formable vehicle team. More specifically, an effective obstacle avoidance strategy is essential to be embedded in the desired formation control protocols and algorithms. However,how to realize the intrinsic collision-free formation control of MVSs in an obstacle-laden setting remains a challenge due to its complexity in analysis and design procedures [14].

    Neural networks (NNs) have been well exploited for modeling complex dynamic systems due to their great potential for identifying the unknown nonlinearities and/or uncertainties in system dynamics. For example, robust distributed adaptive NN controllers are designed for cooperative tracking control of higher-order nonlinear MASs with a nonautonomous dynamic leader [24]. Distributed NN synchronization controllers are proposed for solving the leader-follower synchronization problem of uncertain nonlinear dynamical MASs [25]. Event-based distributed cooperative NN learning control strategies are presented for different nonlinear MASs [26], [27]. Based on adaptive NN and prescribed performance control, the problem of distributed cooperative compound tracking of a platoon of vehicles of nonlinear third-order dynamics is resolved in finite time [28]. For a class of nonlinear MASs in a nonstrict feedback form, a finite-time adaptive NN fault-tolerant control method is developed to tackle actuator faults, unknown symmetric output dead zones and control coefficients [29]. An adaptive NN leader-following tracking method is proposed for a class of fractional-order MASs with unknown matched uncertainties [30].

    In order to ensure the safe mission completion of MASs,several obstacle and collision avoidance methods are available in the literature. For example, building on the concept of barrier certificates, a control barrier function-based method[31], [32] is adopted to preserve collision-free formation behaviors in MASs. Nevertheless, each agent typically relies on a formally designed nominal controller together with a tailored collision avoidance controller to make agents swap behaviors between formation maneuvers and collision avoidance navigation. Viewing the collision avoidance conditions as some design constraints, a model predictive control method [33], [34] is also employed to accomplish collision-free formation control. However, such a method may lead to some high-dimensional nonconvex and nonlinear optimization problems that are difficult to solve. On the other hand, an artificial potential field (APF) method [35] is intensively explored in the multi-vehicle (robotics) control literature. The rationale behind such a method is that an obstacle is treated as a high-potential point and a suitable repulsive potential is constructed for keeping each vehicle away from the obstacle. During a maneuver, each vehicle follows the gradient of the potential and is repelled by obstacles once it moves into a predefined range around obstacles. For example, the APF method andH∞analysis are combined to cope with the formation tracking and obstacle avoidance of a class of stochastic second-order MASs [14].Based on virtual and behavioral structures, the formation control of a team of mobile robots is studied [36], where rotational potential field is applied for obstacle avoidance of robot swarming and regular polygon formations. For linear and deterministic second-order MASs, a potential functionbased formation tracking algorithm is proposed [37] to deal with communication constraints among agents, and a timevarying formation tracking control protocol based on an improved distance- and velocity-dependent potential function[38] is developed to ensure collision avoidance among agents.Interested readers are referred to the survey [39] for more results on collision avoidance. To the best of the authors’knowledge, for MVSs with unknown nonlinearities and uncertainties, how to develop an effective formation control approach to both desired formation tracking and assured obstacle avoidance in obstacle-laden environments has not been adequately addressed hitherto, which motivates this study.

    In this paper, we address the adaptive and collision-free formation tracking issue of MVSs maneuvered in an unknown and cluttered setting. In contrast to some existing formation control frameworks which assume that vehicle (or agent)dynamics are either free of any nonlinearity or perturbation, or are subject to nonlinearity and disturbance with explicitly known bounds, a general framework of time-varying formation tracking control is established to account for simultaneous unknown heterogeneous nonlinearities and external disturbances in every follower vehicle dynamics and also unknown nonzero control input in the leader. The novelty of this paper lies in the development of a scalable adaptive formation control approach to MVSs over a directed interaction topology, which achieves simultaneous formation tracking and obstacle avoidance guarantees under unknown nonlinearities and disturbances as well as obstacles, while not relying on global information of the interaction topology of the MVS.

    The main contributions of this paper are twofold. 1)A scalable adaptive formation tracking control protocolis developed such that each individual vehicle only needs the information of its underlying neighbors and itself to compute its protocol parameters. Note that the challenge of the protocol design is to guarantee that both the formation tracking control protocol and the NN parameter tuning laws adopt merely local information available at each vehicle, and do not depend on the global topology information. It makes a distinctive difference between this work and some existing formation control laws, where their formation control protocols necessitate certain global knowledge of either nonzero eigenvalue in the Laplacian or eigenvectors related to the Laplacian, and thus may not be practically implementable by every vehicle (or agent); and 2)An efficient collision avoidance mechanismis delicately embedded into the desired distributed formation control protocol in such a way as to achieve guaranteed formation maneuver safety in obstacleladen environments. Furthermore, a design algorithm is provided to detail the main steps for the design of the desired scalable adaptive formation tracking control laws, through which the protocol gain and adaptive parameters as well as the repulsive force for collision avoidance can be determined. It is proved that all controlled variables are uniformly ultimately bounded and obstacle avoidance is guaranteed for every vehicle in formation maneuvering.

    The remainder of the paper is organized as follows.Preliminaries are provided in Section II. The formulation of the main problem is given in Section III. The main results with a detailed design algorithm and rigorous stability analysis on the resulting closed-loop MVS are stated in Section IV.Simulation results are discussed in Section V. Concluding remarks are made in Section VI.

    II. PRELIMINARIES

    A. Notations

    B. Graph Theory Fundamentals

    III. PROBLEM FORMULATION

    A. Vehicle Dynamics

    B. Vehicle Formation Geometry

    Fig. 1. Three illustrative examples of four vehicles moving in the X Y plane in various formations: (a) a parallelogram formation; (b) a straight line formation; and (c) a point formation (consensus).

    C. Obstacle Avoidance Function

    encounter bulky obstacles during formation maneuvering,making the entire vehicle team quite difficult, if not impossible, to pass by. To model a bulky obstacle properly, it is natural to assume that a bulky obstacle can be suitably approximated with some convex polyhedra. As a result, one can further take some critical sample points on the boundary of the polyhedra to approximate the bulky obstacle. In practice, this can be accomplished by using suitable cameras,sonars, or laser range finders on vehicles, to provide effective identification of the boundary surface of the polyhedra together with some signal and image processing techniques.Then, the obstacle avoidance functions can be derived from the surface integrals on boundary of the obstacle. Generally,more samples on the boundary of the polyhedra surely make the modeling of the bulky obstacle more explicit and accurate.Thus, the desired obstacle avoidance performance becomes apparent.

    D. The Problem to Be Addressed

    obstacles during formation maneuvers.

    IV. MAIN RESULTS

    In this section, we first specify the desired scalable adaptive formation tracking control protocol. We then present an algorithm for determining the gain parameters and NN parameter tuning rules for the desired control protocol.Finally, we derive the resulting closed-loop formation tracking error dynamics and perform a rigorous stability analysis by proving that all the closed-loop signals remain uniformly ultimately bounded and the desired formation tracking objective can be achieved with assured obstacle avoidance.

    A. Scalable Adaptive Formation Tracking Control Protocol

    B. Design Algorithm

    C. Stability Analysis

    Remark 9:The importance of the proposed scalable adaptive formation tracking control design approach is fourfold.(i)The developed Algorithm 1 for realizing distributed adaptive formation tracking control can adequately accommodate the unknown nonlinearity and external disturbance in follower dynamics as well as the unknown nonzero control input in the leader dynamics in a unified framework. This is contrast to some existing formation control approaches [5]-[8], [10], [11], [13], [16], [17] which assume that the vehicle (or agent) dynamics are free of any nonlinearity or external perturbation.(ii)Although the bounding conditions are exposed in Assumptions 2-4, it is clearly shown in Algorithm 1 that the bounds of the unknown disturbancewi, the unknown nonzero leader control inputu0,the signals and matrices φi,εi,Wiin NNs, and the obstacle avoidance functions ψisare not required to be knowna priorifor the design of desired distributed adaptive formation tracking protocols. It represents a clear difference from some existing results such as [12], [14] where the design criteria or algorithms necessitate the information of relevant bounds.(iii)Further to the discussion in Remark 4, the proposed design algorithm can be tailored to deal with several important cooperative control issues in MVSs/MASs, such as bounded(practical) leaderless consensus, leader-following consensus,and target enclosing and pursuing.(iv)In contrast to some existing formation (tracking) control approaches which require some global knowledge of either the nonzero eigenvalues in the Laplacian [10], [11], [16] or the eigenvectors related to the Laplacian (or matrix H ) [14], [37],the proposed adaptive formation tracking protocol (11) for each vehiclei, however, relies on only the information of itself and its underlying neighbors, and thus enjoys a scalability property. Moreover, the distributed formation tracking problem herein is pursued under a directed interaction topology, which is more difficult than that under a undirected topology [5], [7], [11], [38].

    V. ILLUSTRATIVE EXAMPLES

    In this section, two illustrative examples are provided to demonstrate the effectiveness and merits of the proposed scalable adaptive formation control approach with guaranteed collision avoidance.

    A. Multi-Vehicle Formation Tracking in An Obstacle-Laden 2D Plane

    Fig. 2. Communication topology of six followers and the virtual leader 0.

    Fig. 3. Formation tracking behaviors of the controlled vehicle fleet in an obstacle-laden environment: (a) The six follower vehicles eventually follow the virtual leader’s motion trajectory with the desired hexagon pattern subject to small formation tracking errors, while successfully avoiding collision with the obstacles during the formation maneuver; (b) The velocities viX(t) of the six follower vehicles in the X plane achieve bounded consensus on that of the virtual leader; (c) The velocities viY(t) of the six follower vehicles in theY plane achieve bounded consensus on that of the virtual leader; (d) Bounded control input uiX(t) in the X plane; (e) Bounded control input uiY(t) in theY plane; and (f) Adaptive coupling gains αi(t) is convergent to some steady values in finite time, i ∈V.

    We then evaluate the MVS formation tracking and obstacle avoidance performance by resorting to the proposed Algorithm 1. Fig. 3 (a)-(c) illustrates that all six follower vehicles smoothly bypass all obstacles without colliding with any of them, while still being capable of successfully tracking the virtual leader with the desired hexagon formation.Moreover, Fig. 3 (d)-(f) depicts that the bounded closed-loop signals, including the control inputsuiXanduiYas well as the convergent adaptive coupling gains αi. Fig. 4 illustrates six snapshots of the resultant vehicle formation at different times.Fig. 5 depicts the nonlinearityfiand its approximationf?ifor every vehicle, wherein the nonlinear functionsfiin six follower vehicles are well estimated by the RBF NN.

    Fig. 4. Snapshots of the vehicle formation at different times of t=0 s,t=20 s, t =48 s, t =56 s, t =64 s, and t =80 s.

    Fig. 5. NN approximation f?i(·)=[ f?i1 (·), f?i2(·)]T of the nonlinear fi(·)=[fi1 (·),fi2 (·)]T for each follower vehicle, i ∈V.

    In summary, the above simulation results adequately demonstrate that the proposed scalable adaptive formation tracking control approach can not only steer a fleet of follower vehicles to follow the desired virtual leader but also guarantee the obstacle avoidance during formation maneuvers in complex obstacle-laden environments.

    B. Collision-Free Vehicle Platooning in A Longitudinal Plane

    Fig. 6. Platooning and collision avoidance performance under the desired constant spacing ( si-1,i=6 m) in the presence of external disturbance input wi(t) and leader control input u0(t): (a) Inter-vehicle distancessi(t)=pi-1(t)-pi(t) between each platoon member i and its direct predecessor i-1, i ∈V,without the collision avoidance function ψ i,i-1(di,i-1(t)); (b) Vehicle velocities vi(t), i ∈V~ , without the collision avoidance function ψ i,i-1(di,i-1(t)); (c) Intervehicle distance si(t)=pi-1(t)-pi(t), i ∈V, in the presence of ψi,i-1(di,i-1(t)); (b) Vehicle velocities vi(t), i ∈V~, in the presence of ψi,i-1(di,i-1(t)); (e) Repulsive force uoi a(t), i ∈V, for collision avoidance; and(f) Adaptive coupling gains α i(t), i ∈V in the presence of ψ i,i-1(di,i-1(t)).

    Fig. 7. Snapshots of the simulated platoon driving maneuver under the desired constant spacing (6 m) without the collision avoidance function ψ i,i-1(di,i-1(t)),where potential collisions occur among followers 4 ,5, and 6 given that s 6(t)=0.4 m and s5(t)=1.0 m at time t =16 s.

    Fig. 8. Snapshots of the simulated platoon driving maneuver under the desired constant spacing (6 m) with the collision avoidance function ψi,i-1(di,i-1(t)),where the spacings among followers 4 ,5, and 6 at time t =16 s are enlarged to s 6=2.7 m and s5=2.6 m.

    VI. CONCLUSIONS

    The distributed adaptive formation tracking control is tackled for MVSs operating in unknown and cluttered environments. RBF NNs are used to model the unknown nonlinear dynamics of vehicles. Furthermore, repulsive potentials are introduced for vehicles to achieve collision avoidance with obstacles in the workspace. To accomplish the formation tracking task with promised obstacle avoidance, a scalable distributed adaptive formation tracking control protocol is developed without the need for any global information on the directed topology. It is theoretically proved that all signals of the resulting closed-loop dynamics are uniformly ultimately bounded. The efficacy of the proposed MVS formation control protocol and design algorithm is substantiated with the simulation results on some challenging formation maneuvers.

    Notice that the proposed distributed adaptive formation tracking control approach necessitates continual data communication among interacting vehicles. This may be inapplicable in a resource-constrained communication setting.Event-triggered control has yet received intensive research interests in recent years due to its prominent advantages in maintaining desired system performance and satisfactory communication efficiency; see, e.g., the recent surveys[45]-[47]. To the best of the authors’ knowledge, it remains challenging to develop a novel event-triggered scalable adaptive formation control approach which promises both satisfactory communication efficiency and collision-free formation control performance for MVSs. This constitutes one of our future works. It would be also interesting to provide secure scalable distributed adaptive control solutions that ensure successful completion of safety-critical formation maneuvering tasks in the presence of adversarial cyber attacks.

    亚洲人成网站高清观看| 色av中文字幕| 亚洲在线自拍视频| 动漫黄色视频在线观看| 美女大奶头视频| 久久久久久大精品| 女警被强在线播放| 高潮久久久久久久久久久不卡| 国产黄片美女视频| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站 | 男女视频在线观看网站免费| 色视频www国产| 啦啦啦观看免费观看视频高清| 精品福利观看| 亚洲国产精品999在线| 综合色av麻豆| 很黄的视频免费| 啦啦啦观看免费观看视频高清| 午夜两性在线视频| eeuss影院久久| 琪琪午夜伦伦电影理论片6080| 欧美成狂野欧美在线观看| 精品日产1卡2卡| 欧美高清成人免费视频www| 久久久久久人人人人人| 色综合站精品国产| 精品一区二区三区视频在线 | 波野结衣二区三区在线 | 亚洲va日本ⅴa欧美va伊人久久| 人妻久久中文字幕网| 亚洲第一电影网av| 波多野结衣巨乳人妻| 看黄色毛片网站| av黄色大香蕉| 三级毛片av免费| 亚洲av一区综合| 国产成人影院久久av| 亚洲人成电影免费在线| x7x7x7水蜜桃| 欧美中文综合在线视频| 国产欧美日韩精品一区二区| 岛国在线观看网站| 国产亚洲精品久久久久久毛片| 大型黄色视频在线免费观看| 一级a爱片免费观看的视频| 久久婷婷人人爽人人干人人爱| 叶爱在线成人免费视频播放| xxxwww97欧美| 特级一级黄色大片| 国产成人系列免费观看| 69av精品久久久久久| 国产精品久久久久久久久免 | 国产精品98久久久久久宅男小说| 亚洲激情在线av| www.www免费av| 精品久久久久久久久久久久久| 黄色日韩在线| 91麻豆精品激情在线观看国产| 欧美xxxx黑人xx丫x性爽| 欧美中文综合在线视频| 亚洲中文字幕日韩| 国产av不卡久久| 精品一区二区三区视频在线 | 两个人视频免费观看高清| 国产成人欧美在线观看| 久久久久国产精品人妻aⅴ院| 搡老岳熟女国产| а√天堂www在线а√下载| 欧美中文日本在线观看视频| 欧美日韩精品网址| 宅男免费午夜| 午夜精品久久久久久毛片777| 精品国内亚洲2022精品成人| 欧美又色又爽又黄视频| 深爱激情五月婷婷| 中出人妻视频一区二区| 又紧又爽又黄一区二区| 波多野结衣高清作品| 给我免费播放毛片高清在线观看| 看片在线看免费视频| 久久久久久人人人人人| 国产精品av视频在线免费观看| 97超视频在线观看视频| 99久久久亚洲精品蜜臀av| 我的老师免费观看完整版| 亚洲,欧美精品.| 欧美色视频一区免费| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 极品教师在线免费播放| 国产精品亚洲av一区麻豆| 亚洲最大成人中文| 高清日韩中文字幕在线| 操出白浆在线播放| 国产精品乱码一区二三区的特点| 国产主播在线观看一区二区| 禁无遮挡网站| 18+在线观看网站| 亚洲真实伦在线观看| 香蕉丝袜av| 久久久国产成人免费| 黄片大片在线免费观看| 国语自产精品视频在线第100页| 天堂网av新在线| 久久国产精品人妻蜜桃| 午夜免费男女啪啪视频观看 | 国产午夜福利久久久久久| 亚洲精品日韩av片在线观看 | 欧美一级a爱片免费观看看| 中文字幕高清在线视频| 色综合婷婷激情| 亚洲欧美日韩东京热| 亚洲中文字幕日韩| 国产精品亚洲一级av第二区| 国产三级黄色录像| 九九久久精品国产亚洲av麻豆| 色噜噜av男人的天堂激情| 国产一区二区激情短视频| 国产精华一区二区三区| 国产在视频线在精品| 韩国av一区二区三区四区| 婷婷精品国产亚洲av在线| 啦啦啦免费观看视频1| 露出奶头的视频| 黄片大片在线免费观看| 精品99又大又爽又粗少妇毛片 | 亚洲av熟女| 桃色一区二区三区在线观看| 99精品在免费线老司机午夜| 波野结衣二区三区在线 | 欧美成人一区二区免费高清观看| 桃色一区二区三区在线观看| 国产伦精品一区二区三区四那| 在线观看免费视频日本深夜| 欧美bdsm另类| 最近视频中文字幕2019在线8| 美女cb高潮喷水在线观看| 欧美另类亚洲清纯唯美| 国产精品国产高清国产av| 欧美激情久久久久久爽电影| 亚洲真实伦在线观看| 90打野战视频偷拍视频| 久9热在线精品视频| 国产又黄又爽又无遮挡在线| 久久久国产成人精品二区| 国产亚洲av嫩草精品影院| 午夜福利视频1000在线观看| 免费在线观看成人毛片| 国内精品久久久久精免费| 欧美日韩精品网址| 人人妻人人澡欧美一区二区| 99在线人妻在线中文字幕| 日韩欧美精品免费久久 | 九色国产91popny在线| 免费无遮挡裸体视频| 丁香欧美五月| 久久精品综合一区二区三区| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱 | 国产成人影院久久av| 天堂av国产一区二区熟女人妻| 最好的美女福利视频网| 桃红色精品国产亚洲av| 在线国产一区二区在线| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| 欧美中文日本在线观看视频| 欧美中文综合在线视频| 可以在线观看毛片的网站| 三级男女做爰猛烈吃奶摸视频| 中文字幕av成人在线电影| 久久久久久久久久黄片| 亚洲av日韩精品久久久久久密| 国产精华一区二区三区| 国产久久久一区二区三区| 中文字幕久久专区| 国产毛片a区久久久久| 午夜福利18| 18禁在线播放成人免费| 亚洲成人久久爱视频| 黑人欧美特级aaaaaa片| 日本熟妇午夜| 一区二区三区高清视频在线| 国产国拍精品亚洲av在线观看 | 啦啦啦观看免费观看视频高清| 动漫黄色视频在线观看| 色吧在线观看| 日韩高清综合在线| 亚洲av不卡在线观看| 韩国av一区二区三区四区| 国产野战对白在线观看| 久久久久久久精品吃奶| 特大巨黑吊av在线直播| 国产亚洲精品一区二区www| 99久久九九国产精品国产免费| 国产高潮美女av| 成人三级黄色视频| 九九热线精品视视频播放| 黄片大片在线免费观看| 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av| 色噜噜av男人的天堂激情| 欧美在线一区亚洲| 老司机福利观看| 好看av亚洲va欧美ⅴa在| 人人妻人人澡欧美一区二区| 欧美性猛交╳xxx乱大交人| 在线观看日韩欧美| 麻豆一二三区av精品| 亚洲一区二区三区色噜噜| 亚洲美女黄片视频| 99在线人妻在线中文字幕| 久久久久国内视频| 久久草成人影院| 午夜免费男女啪啪视频观看 | 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区精品| 黄色丝袜av网址大全| 成人精品一区二区免费| 国产视频一区二区在线看| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 久久久久国内视频| bbb黄色大片| 国产精品乱码一区二三区的特点| 美女免费视频网站| 一区二区三区高清视频在线| 一区二区三区高清视频在线| 国产av在哪里看| 国产欧美日韩精品亚洲av| 青草久久国产| 欧美3d第一页| 无限看片的www在线观看| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 欧美一级毛片孕妇| 久久久久久九九精品二区国产| 亚洲黑人精品在线| 欧美日本视频| 国产av不卡久久| 国产成人啪精品午夜网站| 男人舔奶头视频| a在线观看视频网站| 国产亚洲精品一区二区www| 五月玫瑰六月丁香| 天堂影院成人在线观看| 日本 av在线| 少妇人妻精品综合一区二区 | 亚洲色图av天堂| 天天添夜夜摸| 国产欧美日韩精品一区二区| 欧美黄色片欧美黄色片| 黄色丝袜av网址大全| 午夜福利18| 一级作爱视频免费观看| 麻豆成人av在线观看| 亚洲av电影在线进入| 中文在线观看免费www的网站| 欧美+亚洲+日韩+国产| 一本久久中文字幕| 一个人看视频在线观看www免费 | 亚洲专区国产一区二区| 18禁在线播放成人免费| 看片在线看免费视频| 丰满人妻一区二区三区视频av | 最好的美女福利视频网| 99热6这里只有精品| 中文亚洲av片在线观看爽| 国产伦人伦偷精品视频| 在线播放无遮挡| 亚洲精品色激情综合| 成熟少妇高潮喷水视频| 精品久久久久久,| 可以在线观看的亚洲视频| 一级黄色大片毛片| 精品久久久久久久末码| 免费无遮挡裸体视频| 深爱激情五月婷婷| 韩国av一区二区三区四区| 长腿黑丝高跟| 怎么达到女性高潮| 五月玫瑰六月丁香| 日本一本二区三区精品| 丰满的人妻完整版| 欧美中文综合在线视频| 亚洲国产精品sss在线观看| 一进一出抽搐动态| 国产一级毛片七仙女欲春2| 最近最新免费中文字幕在线| 国产黄片美女视频| 国产精品 国内视频| 中文资源天堂在线| 最近视频中文字幕2019在线8| 免费人成在线观看视频色| 国产精品久久久久久精品电影| 婷婷丁香在线五月| 3wmmmm亚洲av在线观看| 色综合欧美亚洲国产小说| 国产三级在线视频| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 国产一区二区激情短视频| 少妇人妻精品综合一区二区 | 一级毛片高清免费大全| 欧美日韩综合久久久久久 | 黄色丝袜av网址大全| 每晚都被弄得嗷嗷叫到高潮| 国产精品日韩av在线免费观看| e午夜精品久久久久久久| 欧美日韩精品网址| 国产国拍精品亚洲av在线观看 | 成年版毛片免费区| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡| 国内精品一区二区在线观看| 久久久久久久久大av| 性欧美人与动物交配| 一进一出抽搐gif免费好疼| 亚洲成av人片免费观看| 亚洲国产高清在线一区二区三| 色精品久久人妻99蜜桃| 国产精品1区2区在线观看.| 岛国在线免费视频观看| 在线十欧美十亚洲十日本专区| 99国产综合亚洲精品| 国产欧美日韩精品一区二区| 国产一区二区激情短视频| 国内精品久久久久精免费| 美女黄网站色视频| 最近最新中文字幕大全电影3| 久久精品国产亚洲av香蕉五月| 亚洲av不卡在线观看| 午夜福利在线在线| 日日干狠狠操夜夜爽| 欧美大码av| 亚洲人成网站在线播放欧美日韩| 女人高潮潮喷娇喘18禁视频| 深爱激情五月婷婷| 亚洲成a人片在线一区二区| 三级男女做爰猛烈吃奶摸视频| 床上黄色一级片| 一级黄片播放器| 又紧又爽又黄一区二区| a级毛片a级免费在线| 成人18禁在线播放| 亚洲精品亚洲一区二区| 天天躁日日操中文字幕| 国产欧美日韩精品一区二区| eeuss影院久久| 欧美日韩一级在线毛片| 国产黄片美女视频| 久久精品综合一区二区三区| 欧美中文综合在线视频| 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 欧美日韩精品网址| 日韩欧美精品免费久久 | 精品国产美女av久久久久小说| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 亚洲人成网站在线播| 少妇人妻一区二区三区视频| 欧美极品一区二区三区四区| 色噜噜av男人的天堂激情| 久久草成人影院| 亚洲成人中文字幕在线播放| 老司机福利观看| 美女大奶头视频| 亚洲第一欧美日韩一区二区三区| 18禁黄网站禁片免费观看直播| 99久国产av精品| eeuss影院久久| 精品日产1卡2卡| 午夜福利欧美成人| 国产av一区在线观看免费| www.色视频.com| 国产高清videossex| 色综合亚洲欧美另类图片| 亚洲精品乱码久久久v下载方式 | 人人妻人人看人人澡| 一个人免费在线观看的高清视频| 成人欧美大片| 亚洲av日韩精品久久久久久密| 久久久久久久久中文| 天天添夜夜摸| www日本在线高清视频| 欧美在线一区亚洲| 九九在线视频观看精品| 国产精品嫩草影院av在线观看 | 欧美色欧美亚洲另类二区| 国产一级毛片七仙女欲春2| 老鸭窝网址在线观看| 免费看光身美女| 国产亚洲欧美在线一区二区| 尤物成人国产欧美一区二区三区| 精华霜和精华液先用哪个| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 日韩欧美精品免费久久 | 国内精品一区二区在线观看| 久久香蕉国产精品| 99热这里只有精品一区| 一区二区三区高清视频在线| 69人妻影院| 亚洲天堂国产精品一区在线| 国产精品久久久久久亚洲av鲁大| 一本久久中文字幕| 色老头精品视频在线观看| 久久久久久久午夜电影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美绝顶高潮抽搐喷水| 国产黄a三级三级三级人| 国产高清videossex| 亚洲精品成人久久久久久| 无人区码免费观看不卡| 亚洲精品在线美女| 99久久无色码亚洲精品果冻| 亚洲无线观看免费| 老汉色av国产亚洲站长工具| 一本精品99久久精品77| 美女免费视频网站| 免费在线观看亚洲国产| 久久久久久九九精品二区国产| 亚洲五月天丁香| av视频在线观看入口| 亚洲av电影不卡..在线观看| 午夜两性在线视频| 深爱激情五月婷婷| 夜夜躁狠狠躁天天躁| 国产私拍福利视频在线观看| 法律面前人人平等表现在哪些方面| 国产野战对白在线观看| 亚洲人成伊人成综合网2020| 成人av一区二区三区在线看| 国产精华一区二区三区| 一个人看的www免费观看视频| av视频在线观看入口| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av香蕉五月| 久久久久国内视频| 午夜精品一区二区三区免费看| 小蜜桃在线观看免费完整版高清| 99久久久亚洲精品蜜臀av| 一本久久中文字幕| 国产精品99久久99久久久不卡| 天天添夜夜摸| 欧美最黄视频在线播放免费| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久久久免 | 午夜免费男女啪啪视频观看 | 日韩av在线大香蕉| 又黄又粗又硬又大视频| 90打野战视频偷拍视频| 中文在线观看免费www的网站| 欧美bdsm另类| xxxwww97欧美| 日本免费一区二区三区高清不卡| 中亚洲国语对白在线视频| 激情在线观看视频在线高清| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添小说| 宅男免费午夜| 国产在视频线在精品| 日韩欧美精品v在线| 老司机午夜福利在线观看视频| 久久欧美精品欧美久久欧美| 国产欧美日韩一区二区精品| 九九在线视频观看精品| 免费看十八禁软件| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 免费av观看视频| 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 精品乱码久久久久久99久播| 午夜久久久久精精品| 一区福利在线观看| 精品日产1卡2卡| 精华霜和精华液先用哪个| 18禁黄网站禁片午夜丰满| 麻豆成人av在线观看| 亚洲五月天丁香| 免费无遮挡裸体视频| 一夜夜www| 日韩国内少妇激情av| 老汉色av国产亚洲站长工具| 中文字幕人妻熟人妻熟丝袜美 | 国产成人啪精品午夜网站| 日本与韩国留学比较| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 欧美日韩一级在线毛片| 久久国产精品影院| 十八禁人妻一区二区| 一区二区三区激情视频| 成人无遮挡网站| 99久久九九国产精品国产免费| 香蕉丝袜av| 淫妇啪啪啪对白视频| 久久久久久久久大av| 成人18禁在线播放| 色噜噜av男人的天堂激情| 国产单亲对白刺激| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 欧美在线黄色| 色视频www国产| av中文乱码字幕在线| 亚洲人成电影免费在线| 国产一区二区三区视频了| 亚洲国产色片| 精品电影一区二区在线| 久99久视频精品免费| 一区二区三区激情视频| 亚洲精品影视一区二区三区av| 国产精品国产高清国产av| 在线观看美女被高潮喷水网站 | 亚洲黑人精品在线| 国产伦在线观看视频一区| 亚洲av电影在线进入| 国产熟女xx| 99国产综合亚洲精品| 婷婷亚洲欧美| 亚洲五月天丁香| 在线观看免费视频日本深夜| 久久天躁狠狠躁夜夜2o2o| 亚洲中文字幕日韩| 免费观看的影片在线观看| 精品国产亚洲在线| 男人的好看免费观看在线视频| 在线a可以看的网站| 午夜老司机福利剧场| 国产99白浆流出| 亚洲五月婷婷丁香| 国产午夜福利久久久久久| 99在线视频只有这里精品首页| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 国内精品美女久久久久久| 别揉我奶头~嗯~啊~动态视频| 日本黄大片高清| 欧美日韩福利视频一区二区| 此物有八面人人有两片| 美女高潮的动态| 国产一区在线观看成人免费| 精品99又大又爽又粗少妇毛片 | 日韩欧美在线乱码| 亚洲性夜色夜夜综合| 国产探花极品一区二区| 亚洲aⅴ乱码一区二区在线播放| 岛国在线观看网站| 亚洲av一区综合| 免费看光身美女| 午夜福利在线观看吧| 国产午夜福利久久久久久| 香蕉丝袜av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美极品一区二区三区四区| 一a级毛片在线观看| 法律面前人人平等表现在哪些方面| 久久精品国产清高在天天线| 欧美大码av| 天堂√8在线中文| 人人妻人人看人人澡| 免费大片18禁| 亚洲国产精品合色在线| av视频在线观看入口| 麻豆成人av在线观看| 欧美成狂野欧美在线观看| 精品电影一区二区在线| 美女 人体艺术 gogo| 国产成人系列免费观看| 99热这里只有精品一区| 男女下面进入的视频免费午夜| 九色国产91popny在线| 99在线人妻在线中文字幕| 国产成人av激情在线播放| www.999成人在线观看| 久久久久久久亚洲中文字幕 | 久久久久久久久久黄片| 天堂网av新在线| 亚洲av日韩精品久久久久久密| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 午夜免费男女啪啪视频观看 | bbb黄色大片| 亚洲美女黄片视频| 色尼玛亚洲综合影院| 免费电影在线观看免费观看| 久久久精品大字幕| 欧美性猛交黑人性爽| 国内精品一区二区在线观看| 午夜精品在线福利| 最好的美女福利视频网| 久久久久精品国产欧美久久久| 亚洲18禁久久av| 99热这里只有是精品50| 亚洲精品国产精品久久久不卡| 国产精品亚洲美女久久久| 99国产精品一区二区蜜桃av| 黄色日韩在线| 午夜精品在线福利| 又粗又爽又猛毛片免费看| 久久久国产成人精品二区| 国产精品久久久久久精品电影| 日日摸夜夜添夜夜添小说| 99国产精品一区二区蜜桃av| 全区人妻精品视频| av女优亚洲男人天堂| 国产野战对白在线观看| 欧美中文综合在线视频| 日韩欧美三级三区| 国产亚洲精品一区二区www| 99riav亚洲国产免费|