胡倩 蔣文斌 楊濤語 張明燕 朱斐超 吳明華 余德游
摘要:芬頓氧化技術(shù)是絲綢印染廢水深度處理中以保障水質(zhì)達(dá)標(biāo)排放或中水高效回用的新興工藝,但常規(guī)芬頓工藝因H2O2難活化而效率偏低。為此,本文在開發(fā)混價(jià)MIL-53(Fe)催化過氧乙酸新型芬頓技術(shù)的基礎(chǔ)上,通過考察其對模型污染物對硝基苯酚的降解性能,系統(tǒng)研究了過氧乙酸摩爾濃度、催化劑質(zhì)量濃度、初始pH值、碳酸根摩爾濃度、氯離子摩爾濃度、腐殖酸質(zhì)量濃度等關(guān)鍵因素的影響規(guī)律。結(jié)果表明:除了氯離子摩爾濃度,其他因素對降解性能均有重要影響,其中過氧乙酸摩爾濃度和催化劑的質(zhì)量濃度與降解性能呈正相關(guān),其余的都與降解性能呈負(fù)相關(guān)。該新型芬頓技術(shù)對絲綢印染二級(jí)出水具有良好的處理效果。
關(guān)鍵詞:混價(jià)MIL-53(Fe);過氧乙酸;絲綢印染廢水;催化;降解;芬頓
中圖分類號(hào):TS190.3文獻(xiàn)標(biāo)志碼:A文章編號(hào): 10017003(2022)06002707
引用頁碼: 061104
DOI: 10.3969/j.issn.1001-7003.2022.06.004(篇序)
基金項(xiàng)目: 國家自然科學(xué)基金項(xiàng)目(22106141);浙江理工大學(xué)桐鄉(xiāng)研究院博士后基金資助項(xiàng)目(TYY202103)
作者簡介:胡倩(1991),女,博士研究生,研究方向?yàn)橛∪緩U水處理及再生利用。通信作者:余德游,特聘副教授,yudeyou92@zstu.edu.cn。
絲綢制品因其親膚、滑爽、舒適的特點(diǎn)深受大眾喜愛,但其在印染過程中會(huì)產(chǎn)生大量的有色、有毒污水,對水生態(tài)環(huán)境和人類身體健康造成潛在危害[1]。絲綢印染廢水組分復(fù)雜、化學(xué)需氧量高、色度較深、毒性較強(qiáng)、體量龐大,亟需深度處理以實(shí)現(xiàn)凈化[2-3]。目前,污水的深度處理方法主要有吸附法[4]、電化學(xué)法[5]、膜分離法[6]和高級(jí)氧化法[7]等,其中基于芬頓過程的高級(jí)氧化法具有效率高、成本低、清潔環(huán)保等優(yōu)勢,已被廣泛運(yùn)用于絲綢印染廢水的深度處理[8]。
金屬有機(jī)框架(MOFs)是一種具有超大比表面積和豐富不飽和金屬配位的新型多孔材料,在多相催化、氣體分離、氣體存儲(chǔ)、癌癥診療及環(huán)境治理等領(lǐng)域受到越來越多的關(guān)注[9-11]。研究者利用其骨架的可修飾性,通過預(yù)設(shè)計(jì)或后改性策略制備高性能的鐵基金屬有機(jī)框架(Fe-MOFs)催化材料,以提升其芬頓、催化臭氧及光催化活性。特別是,研究發(fā)現(xiàn)Fe-MOFs催化過氧化氫的活性比傳統(tǒng)氧化物催化劑(如三氧化二鐵、四氧化三鐵)高1.0~2.0個(gè)數(shù)量級(jí),在芬頓/類芬頓技術(shù)中展現(xiàn)出突出的催化性能[12-14]。
本文在開發(fā)混價(jià)MIL-53(Fe)材料用于催化過氧乙酸增效處理印染廢水新型芬頓技術(shù)的基礎(chǔ)上,采用印染廢水二級(jí)出水中難以降解的對硝基苯酚作為模型污染物,進(jìn)一步從催化工藝和廢水基質(zhì)兩個(gè)層面,探究過氧乙酸摩爾濃度、催化劑質(zhì)量濃度、初始pH值、碳酸根摩爾濃度、氯離子摩爾濃度、腐殖酸質(zhì)量濃度等關(guān)鍵因素對混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能的影響及相關(guān)規(guī)律,并利用三維熒光光譜技術(shù)考察了混價(jià)MIL-53(Fe)/過氧乙酸體系對絲綢印染二級(jí)出水的處理效果。
1 實(shí) 驗(yàn)
1.1 試 劑
對苯二甲酸、四水合氯化亞鐵、六水合氯化鐵、對硝基苯酚、氫氧化鈉、甲醇均為分析純,過氧乙酸(≥15%),腐殖酸(≥90%)(阿拉丁試劑(上海)有限公司),N,N-二甲基甲酰胺、無水乙醇、鹽酸(37.5%)、碳酸鈉、氯化鈉均為分析純(杭州高晶精細(xì)化工有限公司),叔丁醇(≥99.0%)(上海麥克林生化科技有限公司),實(shí)驗(yàn)用水為自制超純水。
1.2 混價(jià)MIL-53(Fe)催化劑的制備
將100 mmol的對苯二甲酸粉末超聲溶解于200 mL N,N-二甲基甲酰胺中,隨后在對苯二甲酸/N,N-二甲基甲酰胺溶液中加入70 mmol六水合氯化鐵和30 mmol四水合氯化亞鐵,磁力攪拌2 h得到混價(jià)MIL-53(Fe)催化劑前驅(qū)體溶液。將前驅(qū)體溶液轉(zhuǎn)移到200 mL水熱反應(yīng)釜中,于150 ℃鼓風(fēng)烘箱中結(jié)晶反應(yīng)3 h;自然冷卻后離心分離懸濁液得到初級(jí)催化劑,并用N,N-二甲基甲酰胺和乙醇反復(fù)洗滌至廢液無色透明;最后將分離出的固體置于100 ℃的真空烘箱中干燥過夜,得到紅棕色粉末顆粒,即為混價(jià)MIL-53(Fe)催化劑。
1.3 混價(jià)MIL-53(Fe)催化過氧乙酸降解性能測試
將一定量的混價(jià)MIL-53(Fe)催化劑(0.1、0.2、0.4、0.6 g/L)超聲分散于50 mL質(zhì)量濃度為20 mg/L的對硝基苯酚水溶液中,隨后加入一定量的過氧乙酸,形成0.5、1、5、10、15 mmol/L梯度的摩爾濃度,在室溫條件下進(jìn)行對硝基苯酚的降解反應(yīng)。分別采用鹽酸和氫氧化鈉、碳酸鈉、氯化鈉、腐殖酸調(diào)節(jié)降解溶液初始pH值(4、5、6、7、8、9),碳酸根摩爾濃度(0、0.5、1、2、4 mmol/L)、氯離子摩爾濃度(0、0.5、1、2、4 mmol/L)、大分子有機(jī)物質(zhì)量濃度(0、2、4、8、10 mg/L),以探究催化工藝因素和廢水基質(zhì)特征對對硝基苯酚降解的影響。一定時(shí)間間隔后取樣2.0 mL,利用針式濾頭(孔徑為0.22 μm)過濾分離混價(jià)MIL-53(Fe)催化劑,且立即在濾液中加入少許叔丁醇猝滅殘余氧源和活性氧物種,消除其對實(shí)驗(yàn)結(jié)果的干擾。所有降解實(shí)驗(yàn)平行3次,降解率取平均值,計(jì)算公式如下:BB80066B-E5D9-4376-B0DB-1CEFCD6261EE
A/%=(1-Ct/C0)×100??? (1)
式中:A是對硝基苯酚降解率,%;C0是對硝基苯酚初始質(zhì)量濃度,mg/L;Ct是降解時(shí)間為t時(shí)的對硝基苯酚質(zhì)量濃度,mg/L。
采用Series 1260高效液相色譜儀(HPLC)(美國Angilent公司)測定對硝基苯酚的質(zhì)量濃度,固定相為ZORBAX Eclipse XDB-C18色譜柱,流動(dòng)相為30%超純水和70%甲醇的混合溶液,柱溫30 ℃,流動(dòng)相流速0.8 mL/min,進(jìn)樣量20 μL,此條件下對硝基苯酚的保留時(shí)間約2.5 min。采用偽一級(jí)動(dòng)力學(xué)模型對對硝基苯酚降解過程進(jìn)行擬合,獲得表觀降解速率常數(shù)(kobs)以比較不同條件下的降解能力差異。
1.4 混價(jià)MIL-53(Fe)催化過氧乙酸處理絲綢印染二級(jí)出水絲綢印染廢水取自杭州華絲夏莎紡織科技有限公司的二級(jí)出水(2021年7月26日),過濾后存放于-5 ℃冰箱中。以絲綢印染二級(jí)出水為目標(biāo)水樣,采用F-4600三維熒光光譜(EEMs)(日本Hitzchi公司)研究混價(jià)MIL-53(Fe)催化過氧乙酸對絲綢印染廢水的處理效能。取50 mL絲綢印染廢水放入燒杯中,加入20 mg混價(jià)MIL-53(Fe)催化劑,攪拌分散均勻;隨后加入0.25 mmol過氧乙酸觸發(fā)反應(yīng),待反應(yīng)90 min后,取樣5.0 mL,測定其三維熒光光譜圖;通過比較分析絲綢印染二級(jí)出水的三維熒光光譜圖判斷混價(jià)MIL-53(Fe)催化過氧乙酸體系對絲綢印染廢水的處理效果。
2 結(jié)果與分析
2.1 催化工藝對混價(jià)MIL-53(Fe)催化過氧乙酸降解性能的影響
2.1.1 過氧乙酸摩爾濃度
過氧乙酸摩爾濃度關(guān)乎絲綢印染廢水處理速率及成本,探究其對混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能的調(diào)變作用具有重要意義。固定降解反應(yīng)初始pH值為7,催化劑質(zhì)量濃度為0.4 g/L,調(diào)節(jié)過氧乙酸梯度摩爾濃度,降解性能測試結(jié)果如圖1所示。從圖1可以看出,隨著過氧乙酸摩爾濃度從0.5 mmol/L增加到15 mmol/L,對硝基苯酚的降解率從601%上升到100.0%,表明過氧乙酸摩爾濃度與混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能呈正相關(guān);采用偽一級(jí)動(dòng)力學(xué)模型對對硝基苯酚降解過程進(jìn)行擬合,發(fā)現(xiàn)表觀降解速率常數(shù)kobs值從0.010 min-1提高至0.086 min-1,表明增加過氧乙酸摩爾濃度可顯著促進(jìn)對硝基苯酚的降解,分析認(rèn)為是因?yàn)榛靸r(jià)MIL-53(Fe)/過氧乙酸體系中產(chǎn)生的羥基自由基等活性氧物種濃度依賴于氧源過氧乙酸的摩爾濃度。此外,當(dāng)過氧乙酸摩爾濃度從10 mmol/L增加至15 mmol/L時(shí),對硝基苯酚的降解率和表觀降解速率常數(shù)kobs值未有明顯變化,表明進(jìn)一步增加的過氧乙酸對降解性能并無顯著的提升作用,分析認(rèn)為是因?yàn)榇呋瘎┗钚晕粷舛扔邢?,難以催化活化過多的過氧乙酸產(chǎn)生更多的活性氧物種。
2.1.2 催化劑質(zhì)量濃度
探究催化劑質(zhì)量濃度對混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能的調(diào)變作用可為增效絲綢印染廢水處理、降低成本提供關(guān)鍵數(shù)據(jù)指導(dǎo)。固定降解反應(yīng)初始pH值為7,過氧乙酸摩爾濃度為5 mmol/L,調(diào)節(jié)催化劑梯度質(zhì)量濃度,實(shí)驗(yàn)結(jié)果如圖2所示。從圖2可以知道,隨著催化劑質(zhì)量濃度從0.1 g/L增加到0.6 g/L,對硝基苯酚的降解率和表觀降解速率常數(shù)kobs值分別從80.5%上升到100%、0.017 min-1提高至0.052 min-1。這表明催化劑質(zhì)量濃度與混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能呈正相關(guān),即增加催化劑質(zhì)量濃度可有效提升對硝基苯酚的降解效率。上述現(xiàn)象可能是由于混價(jià)MIL-53(Fe)/過氧乙酸體系中活性位濃度隨著催化劑質(zhì)量濃度的增加而增大。此外,當(dāng)催化劑質(zhì)量濃度從0.4 g/L增加至0.6 g/L時(shí),未能明顯提升對硝基苯酚的降解率和表觀降解速率常數(shù)kobs值,表明進(jìn)一步增加催化劑質(zhì)量濃度對提升對硝基苯酚降解率效果不明顯,可能由于氧源(過氧乙酸)摩爾濃度相對催化劑質(zhì)量濃度過低,增加的活性位濃度未能明顯起到催化活化作用。
2.1.3 初始pH值
基于芬頓化學(xué)的高級(jí)氧化法存在適用pH值范圍窄的缺點(diǎn),探究初始pH值對混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能的調(diào)變作用具有現(xiàn)實(shí)意義。固定降解反應(yīng)催化劑質(zhì)量濃度為0.4 g/L,過氧乙酸摩爾濃度為5 mmol/L,測試不同初始pH值條件下混價(jià)MIL-53(Fe)/過氧乙酸體系的降解性能,結(jié)果如圖3所示。從圖3可以看出,當(dāng)初始pH值為4時(shí),對硝基苯酚的降解率和表觀降解速率常數(shù)kobs值分別達(dá)到100%和0.076 min-1,隨著初始pH值增加到9,降解率和kobs值分別下降到84.8%和0.021 min-1,表明初始pH值與混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能呈負(fù)相關(guān),即提高初始pH值會(huì)減弱對硝基苯酚的降解。這可能是由體系中關(guān)鍵活性氧物種—羥基自由基的氧化電位在高pH值條件下相對較低(pH 14時(shí),E0=+2.0 V;pH 0時(shí),E0=+2.9 V)所致[15]。此外,對硝基苯酚降解率和表觀降解速率常數(shù)kobs值在中性條件下分別為100%和0.052 min-1,表明采用過氧乙酸為氧源的混價(jià)MIL-53(Fe)/過氧乙酸體系在一定程度上拓寬了新型芬頓氧化法的適用pH值范圍。BB80066B-E5D9-4376-B0DB-1CEFCD6261EE
2.2 廢水基質(zhì)對混價(jià)MIL-53(Fe)催化過氧乙酸降解性能的影響各類基質(zhì)存在于廢水中并會(huì)影響催化劑/氧源體系深度處理廢水的效果,研究不同廢水基質(zhì)影響混價(jià)MIL-53(Fe)催化過氧乙酸降解性能的規(guī)律對該新型芬頓技術(shù)的實(shí)際應(yīng)用具有重要意義。固定降解反應(yīng)初始pH值為7,催化劑質(zhì)量濃度為0.4 g/L,過氧乙酸摩爾濃度為5 mmol/L,在反應(yīng)中加入不同種類的廢水基質(zhì)并調(diào)節(jié)其梯度摩爾濃度或質(zhì)量濃度,實(shí)驗(yàn)結(jié)果分別展開進(jìn)行探討。
2.2.1 碳酸根摩爾濃度
碳酸根廣泛存在于各類水體中,且是絲綢印染廢水中的主要陰離子之一,其摩爾濃度對混價(jià)MIL-53(Fe)催化過氧乙酸降解性能的影響如圖4所示。由圖4可知,隨著碳酸根摩爾濃度從0增加到4 mmol/L,對硝基苯酚的降解率和表觀降解速率常數(shù)kobs值分別從100%下降到46.3%、0.052 min-1下降到0005 min-1。這表明碳酸根摩爾濃度與混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能呈負(fù)相關(guān),即增加碳酸根摩爾濃度會(huì)顯著降低對硝基苯酚的降解,分析認(rèn)為是因?yàn)樘妓岣膳c羥基自由基結(jié)合,抑制了體系活性氧物種氧化降解對硝基苯酚的反應(yīng)[16]。
2.2.2 氯離子摩爾濃度
絲綢印染工藝中常采用氯化鈉作為助染組分,因此評估氯離子摩爾濃度對混價(jià)MIL-53(Fe)催化過氧乙酸降解性能的影響尤為重要,結(jié)果如圖5所示。由圖5可知,隨著氯離子摩爾濃度從0增加到4 mmol/L,對硝基苯酚的降解效率沒有明顯下降,降解率和表觀降解速率常數(shù)kobs值分別穩(wěn)定在99%、0.050 min-1左右,表明氯離子摩爾濃度對混價(jià)MIL-53(Fe)/過氧乙酸體系的降解性能無明顯影響。
2.2.3 腐殖酸質(zhì)量濃度
腐殖酸是絲綢印染廢水二級(jí)出水中常見的大分子有機(jī)物。由圖6可知,當(dāng)腐殖酸質(zhì)量濃度從0增加到10 mg/L時(shí),對硝基苯酚的降解率從100%下降到43.5%,表觀降解速率常數(shù)kobs值從0.052 min-1下降到0.005 min-1,這表明碳酸根摩爾濃度與混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能呈負(fù)相關(guān),即腐殖酸質(zhì)量濃度的增加會(huì)顯著削弱對硝基苯酚的降解效率。分析認(rèn)為一方面催化劑表面活性位點(diǎn)會(huì)被腐殖酸的羧基和酚羥基等基團(tuán)阻斷;另一方面體系中活性氧物種會(huì)被腐殖酸用于自身氧化降解,從而導(dǎo)致混價(jià)MIL-53(Fe)/過氧乙酸體系降解性能大大減弱[16]。
2.3 應(yīng)用性能
圖7為絲綢印染二級(jí)出水經(jīng)混價(jià)MIL-53(Fe)/過氧乙酸體系降解前后的三維熒光光譜,光譜被劃分為四個(gè)區(qū)域。
區(qū)域Ⅰ主要為簡單的含苯環(huán)類蛋白,激發(fā)波長/發(fā)射波長如下式:
λex/λem=(200-250 nm)/(280-380 nm)??? (2)
區(qū)域Ⅱ主要為富里酸類物質(zhì),激發(fā)波長/發(fā)射波長如下式:
λex/λem=(200-250 nm)/(380-550 nm)??? (3)
區(qū)域Ⅲ主要為微生物活動(dòng)相關(guān)代謝產(chǎn)物,激發(fā)波長/發(fā)射波長如下式:
λex/λem=(>250 nm)/(<380 nm)??? (4)區(qū)域Ⅳ主要物質(zhì)為腐殖酸類有機(jī)物[17],激發(fā)波長/發(fā)射波長如下式:
λex/λem=(>280 nm)/(>380 nm)??? (5)
由圖7(a)可知,絲綢印染二級(jí)出水中主要存在可溶性微生物代謝產(chǎn)物,同時(shí)含有少量腐殖酸類有機(jī)物。由圖7(b)可以看出,經(jīng)過混價(jià)MIL-53(Fe)/過氧乙酸體系降解后,盡管腐殖酸類有機(jī)物含量變化不大,但可溶性微生物代謝產(chǎn)物幾乎已被完全降解,只有極少量殘留,表明混價(jià)MIL-53(Fe)催化過氧乙酸降解體系對絲綢印染二級(jí)出水具有良好的深度處理效果,并伴有一定的選擇性。
3 結(jié) 論
混價(jià)MIL-53(Fe)/過氧乙酸體系對絲綢印染二級(jí)出水具有良好的深度處理效果,其中催化工藝和廢水基質(zhì)對該催化降解體系性能的影響具有差異性。
1) 在催化工藝中,增加過氧乙酸摩爾濃度、催化劑質(zhì)量濃度有利于提升混價(jià)MIL-53(Fe)/過氧乙酸體系降解對硝基苯酚的效率;而增加初始pH值會(huì)降低混價(jià)MIL-53(Fe)/過氧乙酸體系降解對硝基苯酚的能力。
2) 在廢水基質(zhì)中,碳酸根和腐殖酸的存在抑制了混價(jià)MIL-53(Fe)/過氧乙酸體系降解對硝基苯酚的反應(yīng),且隨著它們摩爾濃度或質(zhì)量濃度的增加抑制效應(yīng)越明顯;而氯離子的存在對混價(jià)MIL-53(Fe)/過氧乙酸體系降解對硝基苯酚的效率無明顯影響。
參考文獻(xiàn):
[1]陳冬芝, 龔文麗, 楊曉剛, 等. 氨基化纖維素的制備及對絲綢印染廢水的凈化處理[J]. 絲綢, 2020, 57(1): 26-30.
CHEN Dongzhi, GONG Wenli, YANG Xiaogang, et al. Preparation of aminated cellulose and its application in purifying silk printing and dyeing wastewater[J]. Journal of Silk, 2020, 57(1): 26-30.BB80066B-E5D9-4376-B0DB-1CEFCD6261EE
[2]章耀鵬, 沈忱思, 徐晨燁, 等. 紡織工業(yè)典型污染物治理技術(shù)回顧[J]. 紡織學(xué)報(bào), 2021, 45(8): 24-33.
ZHANG Yaopeng, SHEN Chensi, XU Chenye, et al. Review on treatment technology for typical pollutants in textile industry[J]. Journal of Textile Research, 2021, 45(8): 24-33.
[3]徐競成, 何文源, 金兆豐, 等. 絲綢印染廢水深度處理技術(shù)及工程應(yīng)用[J]. 印染, 2009, 35(3): 34-36.
XU Jingcheng, HE Wenyuan, JIN Zhaofeng, et al. Enhanced treatment of wastewater from silk dye house and its engineering application[J]. China Dyeing and Finishing, 2009, 35(3): 34-36.
[4]PEREIRA A, RODRIGUES F, PAULINO A, et al. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review[J]. Journal of Cleaner Production, 2021, 284: 124703.
[5]胡承志, 劉會(huì)娟, 曲久輝. 電化學(xué)水處理技術(shù)研究進(jìn)展[J]. 環(huán)境工程學(xué)報(bào), 2018, 12(3): 677-696.
HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 677-696.
[6]EPSZTEIN R, DUCHANOIS R, RITT C, et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020, 15(6): 426-436.
[7]HODGES B, CATES E, KIM J. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650.
[8]YANG Z, QIAN J, YU A, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6659-6664.
[9]JAMES S L. Metal-organic frameworks[J]. Chemical Society Reviews, 2003, 32(5): 276.
[10]SHEN K, ZHANG L, CHEN X, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210.
[11]張鑒澤, 劉文賢, 王兵慶, 等. 金屬有機(jī)框架材料在環(huán)境化學(xué)中的研究進(jìn)展[J]. 中國科學(xué): 化學(xué), 2018, 48(3): 231-242.
ZHANG Jianze, LIU Wenxian, WANG Bingqing, et al. Research progress of metal-organic framework in environmental chemistry[J]. Science China: Chemistry, 2018, 48(3): 231-242.
[12]LIANG R, JING F, SHEN L, et al. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(Ⅵ) and oxidation of dyes[J]. Journal of Hazardous Materials, 2015, 287: 364-372.
[13]YU D, WU M, HU Q, et al. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism[J]. Journal of Hazardous Materials, 2019, 367: 456-464.BB80066B-E5D9-4376-B0DB-1CEFCD6261EE
[14]GAO C, CHEN S, QUAN X, et al. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants[J]. Journal of Catalysis, 2017, 356: 125-132.
[15]DAUD N K, HAMEED B H. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst[J]. Journal of Hazardous Materials, 2010, 176: 938-944.
[16]CHEN W, BAO Y, LI X, et al. Role of Si-F groups in enhancing interfacial reaction of Fe-MCM-41 for pollutant removal with ozone[J]. Journal of Hazardous Materials, 2020, 393: 122387.
[17]VALENCIA S, MARIN J M, RESTREPO G, et al. Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation-emission matrix fluorescence spectros-copy during TiO2/UV process[J]. Water Research, 2014, 51: 124-133.
Influencing factors of silk printing & dyeing wastewater treatment by mixed-valenceMIL-53(Fe) activated peracetic acid process
HU Qian1a,b,2, JIANG Wenbin1a,b, YANG Taoyu1a,b, ZHANG Mingyan1a,b, ZHU Feichao1a,c, WU Minghua1a,b, YU Deyou1a,b,2
(1a.College of Textile Science & Engineering; 1b.MOE Engineering Research Center of Ecological Dyeing and Finishing Technology;1c.MOE Key Laboratory of Advanced Textile Material and Preparation Technology, Zhejiang Sci-Tech University, Hangzhou 310018,China; 2.Zhejiang Sci-Tech University Tongxiang Research Institute, Jiaxing 314500, China)
Abstract:Silk is a typical type of natural protein fiber with a reputation of "queen of the fiber". Silk products have attracted much attention among consumers due to its bright color, soft hand feeling, as well as comfortable wearability. Mature printing and dyeing (P&D) technology with great ability is widely used to process raw silk fabrics into exquisite satins. However, the wastewater generated during the P&D processes containing a large number of organic pollutants such as dyes and surfactants has the characteristics of high complexity, large chemical oxygen demand and deep chromaticity. After common treatments, these organic pollutants are usually converted into nonbiodegradable and refractory phenolic compounds (e.g., p-nitrophenol (4-NP)) which require further purifications by advanced treatments. Due to its high efficiency, low cost, cleanness and environmental protection, Fenton oxidation has been applied as an emerging technique for the advanced treatment of silk P&D wastewater to control the quality of discharged effluent and/or to enable the efficient reuse of wastewater. Unfortunately, conventional Fenton processes initiated by hydrogen peroxide (H2O2) are inefficient due to the difficult activation of H2O2and limitation of available pH range. Compared with H2O2, peracetic acid (PAA) molecules have an asymmetrical structure with a relatively low bond energy of O—O (159 kJ/mol), suggesting the easier activation of PAA for potential usage. However, researches focusing on the potential of using PAA as oxygen source for Fenton process are scarce. Thereby, it is of great significance to develop an efficient and stable heterogeneous catalyst with PAA and investigate the relationship of treatment efficiency with catalytic process conditions and wastewater matrices for the advanced treatment of silk P&D wastewater.BB80066B-E5D9-4376-B0DB-1CEFCD6261EE
Recently, the Fenton catalytic activity of Fe-MOFs has been evidenced significantly greater compared with traditional oxide catalyst (e.g., Fe2O3, Fe3O4). Furthermore, the pre-design and post-modification of the structure of Fe-MOFs show potential to further improve their catalytic performances. Herein, based on the development of new mixed-valence MIL-53(Fe) Fenton technology for PAA activation process, this work focuses on the investigation of effect of catalytic process conditions and wastewater matrice on the silk P&D wastewater treatment efficiency of mixed-valence MIL-53(Fe)/PAA system using 4-NP as a model substrate. In particular, various influencing factors, such as PAA and catalyst dosage, initial pH value, as well as the concentration of carbonate, chloride and humic acid are systematically evaluated. In addition, the aim of this study is also to identify the key modulation capacity of influencing factors and research the law of modulation while the treatment effect of mixed-valence MIL-53(Fe)/PAA system on the secondary effluent discharged from real silk P&D processes is tentatively demonstrated. The related findings are expected to provide essential data for efficiency enhancement of silk P&D wastewater treatment.
We find that the developed mixed-valence MIL-53(Fe)/PAA process exhibits an excellent treatment capacity for real silk P&D effluent. The effects of the catalytic process conditions and the wastewater matrice on the efficiency are quite different. As for the process conditions, both the PAA and catalyst dosage present a positive correlation with the 4-NP degradation efficiency while the pH value is negatively correlated with the 4-NP degradation efficiency. In the case of the wastewater matrice, all the related influencing factors except chloride concentration show negative correlations with the 4-NP degradation efficiency.
The results of the effect of catalytic process conditions and wastewater matrice on the treatment capacity of mixed-valence MIL-53(Fe)/PAA system can provide comprehensive research basis for the development and application of advanced treatment technique for silk P&D wastewater, which is conducive to evaluating the practicality of this technique. Our findings can also provide significant insights for the design and practice of high-efficient Fe-MOFs Fenton catalysts.
Key words:mixed-valence MIL-53(Fe); PAA; silk printing & dyeing wastewater; catalysis; degradation; FentonBB80066B-E5D9-4376-B0DB-1CEFCD6261EE