• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal–Organic Framework with Guest-Adaptive Pore Channels

    2022-06-11 09:01:26ZhoqingZhngXiliCuiXiomingJingQiDingJiyuCuiYuninZhngYoussefBelmkhoutKrimAdilMohmedEddoudiHuinXing
    Engineering 2022年4期

    Zhoqing Zhng,Xili Cui,Xioming Jing,Qi Ding,Jiyu Cui,Yunin Zhng,Youssef Belmkhout,Krim Adil, Mohmed Eddoudi, Huin Xing,*

    a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

    c Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

    Keywords:Adsorption and separation Trans-/cis-butene Ultramicroporous metal–organic frameworks Pore engineering Guest-adaptive

    ABSTRACT Trans-/cis-olefin isomers play a vital role in the petrochemical industry. The paucity of energy-efficient technologies for their splitting is mainly due to the similarities of their physicochemical properties.Herein, two new tailor-made anion-pillared ultramicroporous metal–organic frameworks (MOFs), ZU-36-Ni and ZU-36-Fe(GeFSIX-3-Ni and GeFSIX-3-Fe)are reported for the first time for the efficient trans-/cis-2-butene (trans-/cis-C4H8) mixture splitting by enhanced molecular exclusion. Notably, ZU-36-Ni unexpectedly exhibited smart guest-adaptive pore channels for trapping trans-C4H8 with a remarkable adsorption capacity (2.45 mmol?g-1) while effectively rejecting cis-C4H8 with a high purity of 99.99%.The dispersion-corrected density functional theory (DFT-D) calculation suggested that the guestadaptive behavior of ZU-36-Ni in response to trans-C4H8 is derived from the organic linker rotation and the optimal pore dimensions, which not only improve the favorable adsorption/diffusion of trans-C4H8 with optimal host–guest interactions, but also enhance the size-exclusion of cis-C4H8. This work opens a new avenue for pore engineering in advanced smart or adaptive porous materials for specific applications involving guest molecular recognition.

    1. Introduction

    Trans-/cis-isomers differ only in the spatial arrangement of the atoms.Remarkably,such a minor variation imparts significant differences in their reactivity in organic synthesis and pharmacological activity. Trans-/cis-olefins have important applications in chemical research and processing. For example, trans- and cis-2-butenes (C4H8), the simplest olefins displaying trans-/cisisomerism,are the basic raw materials for producing various types of polymers and organic chemicals. Notably, cis-C4H8is a crucial feedstock for the production of maleic acid, butadiene, and polymers. However, the inevitable presence of trans-C4H8as an impurity in cis-C4H8adversely impacts the quality of the products [1–4].High-purity trans-C4H8(>95%)is significant for several applications, such as the production of propylene via the metathesis of trans-C4H8and ethylene [5,6]. Therefore, it is highly necessary to separate cis-C4H8and trans-C4H8. The similarity in the molecular structures and boiling points (Fig. 1(a) and Table S1 in Appendix A)of trans-/cis-olefin isomers poses great challenges in their separation [7–10]. Furthermore, 2-C4H8is highly reactive and tends to undergo copolymerization or dimerization at elevated temperatures. This characteristic renders the isolation of the high purity individual 2-C4H8isomers highly challenging via the traditional energy-intensive extractive distillation [9,11–12]. Size-selective physisorption using ultramicroporous materials is a promising energy-efficient alternative and has been demonstrated as a promising candidate for the efficient separation of light hydrocarbon mixtures[13–16]. However, to the best of our knowledge,the efficient separation of trans-/cis-olefin isomers by porous materials has rarely been reported.

    Fig. 1. Schematic of representative robust porous materials with (a) rigid pore structures and (b) a typical Langmuir adsorption isotherm for microporous materials. Novel porous materials with (c) guest-adaptive pore channels and (d) corresponding desired stepped adsorption isotherm for increasing the working capacity. 1 bar = 105 Pa.

    Metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are custom-tailored porous crystalline materials with tunable pore chemistry. This kind of material has recently been successfully used as systems for separating mixtures of varying degrees of complexity [16], such as paraffins and olefins[13,17–21], olefins and alkynes [23–31], n-isomer and iso-isomer mixtures [12,32–34], and other analogous molecules. However,achieving high efficiency for the high-level separation complexity using MOFs is still exceedingly challenging [16] when the differences in size and shape between the probes, such as trans-/cisisomers, are subtle. The trans-/cis-isomer separation selectivity,and particularly the diffusivity, achieved using the current stateof-the-art MOFs is still not suitable for use in industrial processes in comparison to distillation [9]. For example, zeolitic imidazolate framework-7 (ZIF-7) with its narrow pore window size and structural flexibility exhibits gate-opening phenomenon in response to the external stimuli of trans-/cis-C4H8. However, both the isomers exert the same gate-opening pressure of 2 kPa, which leads to a poor separation performance [35]. Zeolites with rigid frameworks have been used to separate trans-/cis-C4H8mixtures by sieving effect, however, their trans-C4H8uptake capacity is very low at 1.05 and 0.83 mmol?g-1on ITQ-32(ITQ stands for Instituto de Tecnología Química)[36] and deca-dodecasil 3 rhombohedral (DD3R)[37], respectively, owing to the limited space available for the gas uptake in the rigid pore structures within zeolites (Fig. 1(a)). Similar low trans-C4H8capacity was also observed for metal-gallates(Ni,Mg,and Co)owing to their robust nature[8].In general,robust zeolites exhibit Langmuir-type adsorption isotherms for trans-C4H8which is the cause for their limited loading capacity (Fig. 1(b)) in swing adsorption processes driven by pressure. This, in turn, presents major bottlenecks in their practical application owing to recyclability concerns. Furthermore, porous materials with large pore sizes (> 5.0 ?, 1 ? = 10-10m) usually exhibit high capacity but almost no separation selectivity for trans-/cis-C4H8, such as Y-fum-fcu-MOF (fum stands for fumarate; fcu stands for facecentered cubic) [10] and ZJNU-30 (ZJNU stands for Zhejiang Normal University).Thus,the discovery of a porous material with optimal pore dimensions, functionality, and energetics, that could discriminate or sieve particular trans-/cis-olefin isomers without sacrificing high gas uptake capacity, is a significantly profound challenge.

    Anion-pillared ultramicroporous MOFs featuring electronegative inorganic and contracted pore surface [38–41] have unveiled outstanding separation performance for several important industrial gases such as C2H2/C2H4[28]and C3H6/C3H8[21].The variable combination of inorganic anions and metal ions enables the ultrafine-tuning of the pore apertures within the 0.1–0.5 ? scale[41–46].Herein,we report the results from the further exploration of this fluorinated ultramicroporous platform that allowed us to unveil ZU-36-Ni (GeFSIX-3-Ni, Ni(GeF6)(pyz)2, GeFSIX = GeF62-,3 = pyrazine = pyz), which displayed an unprecedented efficiency in trapping significant amounts of trans-C4H8while achieving effective exclusion of the cis-isomers (Fig. 1(c)). Importantly, ZU-36-Ni displayed an interesting step-wise adsorption isotherm that indicates an enhanced adsorption capacity and regeneration process with less energy input. Moreover, the adaptive pore channels for separating trans-C4H8, derived from the organic linker rotation for the guest molecule,conferred an increased sorption capacity to ZU-36-Ni (2.45 mmol?g-1) while the contracted pore window enhanced the cis-C4H8exclusion effect,leading to improved trans-/cis-C4H8separation selectivity (Fig. 1(d)).

    2. Material and methods

    2.1. Materials

    Nickel(II) tetrafluoroborate hexahydrate (Ni(BF4)2?6H2O, 99%,J&K Scientific, China), ammonium hexafluorogermanate ((NH4)2-GeF6, 99.99%, J&K Scientific), ammonium hexafluorosilicate((NH4)2SiF6,99.99%,Sigma–Aldrich,USA),iron(II)tetrafluoroborate hexahydrate (Fe(BF4)2?6H2O, 97%, Sigma–Aldrich), and methanol(CH3OH, anhydrous, 99.8%, Sigma–Aldrich) were purchased and used without further purification.

    Trans-2-butene (trans-C4H8, 99.9%), cis-2-butene (cis-C4H8,99.9%), and helium (He, 99.99%) were purchased from Hangzhou Jingong material Co., Ltd. (China). The mixture of 1,3-butadiene/trans-2-butene/1-butene/cis-2-butene/iso-butene/n-butane/isobutane (45/6.5/13/5.5/24/5/1, v/v) was purchased from Shanghai Weichuang Standard Gas Co., Ltd. (China).

    2.2. Material syntheses

    ZU-36-Ni (GeFSIX-3-Ni) was prepared using a literature report[41]. In a typical process, 1 mmol of Ni(BF4)2?6H2O (340 mg),1 mmol of(NH4)2GeF6(223 mg),and 1 g of pyrazine were dissolved in 2 mL of CH3OH and 2 mL of H2O, and stirred at ambient conditions for 2 d, which yielded a blue powder. The blue powder was then heated to 140 °C at 5 °C?min-1and was maintained for 24 h under vacuum to obtain the ZU-36-Ni material. SIFSIX-3-Ni was synthesized with the same method except that (NH4)2GeF6was substituted by (NH4)2SiF6. For ZU-36-Fe, the synthesis procedure is the same as that for GeFSIX-3-Ni,except that Ni(BF4)2?6H2-O was replaced by Fe(BF4)2?6H2O.

    2.3. Characterization

    Powder X-ray diffraction (PXRD) was conducted at room temperature on a Bruker D8 Advance diffractometer (Bruker AXS,Germany) using Cu-Kα radiation (λ = 1.5418 ?). PXRD data treatment and the structural determination were performed using the JANA2006.FullProf.98 program was applied for the Rietveld refinements. The background was refined with a polynomial function.The thermal stability of the obtained materials was investigated via thermalgravimetric analysis (TGA, TA Instruments SDT 600,USA) under N2atmosphere with a flow rate of 20 mL?min-1.

    2.4. Gas adsorption

    The sorption isotherms of C4hydrocarbons at low pressures up to 1 bar(1 bar=105Pa)were collected on a fully automated ASAP 2050 adsorption analyzer (Micromeritics Instruments, USA). The temperature was controlled with a water circulation bath.

    2.5. Breakthrough test of C4 isomers

    The fixed-bed breakthrough tests were conducted on a selfmade dynamic gas breakthrough equipment [30]. The test was conducted using a stainless-steel chromatographic column with an inner diameter of 4.6 mm and length of 50 mm. Samples of ZU-36-Ni, SIFSIX-3-Ni, and ZU-36-Fe were packed in three of the same columns which weighed 0.62, 0.64, and 0.67 g, respectively.The column packed with the sample powders was first activated with a flow of He (10 mL?min-1) at 100 °C for 12 h. After the activation, a cis-C4H8/trans-C4H8(50/50, v/v) mixture with a flow rate of 0.5 mL?min-1was introduced. After the breakthrough test, the fixed-bed was regenerated under He flow (5 mL?min-1) at 100 °C for 12 h. The actual separation performance of the as-synthesized material for C4mixtures including 1,3-butadiene, trans-2-butene,1-butene, cis-2-butene, iso-butene, n-butane, and iso-butane(1,3-C4H6/trans-C4H8/n-C4H8/cis-C4H8/iso-C4H8/n-C4H10/iso-C4H10,45/6.5/13/5.5/24/5/1,v/v)was further investigated with a flow rate of 0.75 mL?min-1. The real-time outlet gas eluted from the fixedbed was monitored using a gas chromatography (Micro GC-490,Agilent,USA).For studying the effect of humidity on the separation performance, the cis-C4H8/trans-C4H8(50/50, v/v) mixture with a flow rate of 1 mL?min-1was introduced into a water tank at 298 K, and the outflow gas was then flowed through a sorption column. The outlet gas from the column was monitored using a GC-2010 (Shimadzu, Japan) equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD).

    A correction for the dead time was applied by He breakthrough experiments, and the He retention time (He is regarded as nonadsorbed) was applied as the dead time.

    3. Results and discussion

    3.1. Fine-tuned pore structure

    Two ultramicroporous MOFs, ZU-36-Ni and ZU-36-Fe(Fe(GeF6)(pyz)2), were prepared by the reaction of ammonium hexafluorogermanate ((NH4)2GeF6), pyrazine, and Ni(BF4)2or Fe(BF4)2in a CH3OH and H2O mixture,followed by heating the isolated solid at 140 °C for 24 h in vacuo (Figs. 2(a) and (b)). The refined unit cell parameters of ZU-36-Ni were a = b = 6.984 ?,and c = 7.587 ? (also termed as the pore dimension of ZU-36-Ni,Table S2 in Appendix A), which is in accordance with the threedimensional scales of trans-C4H8(7.4 ? × 5.35 ? × 4.16 ?) and favors the preferential binding of trans-C4H8in the unit cells of ZU-36-Ni. In contrast, ZU-36-Fe showed a longer pore cell with c = 7.73 ?, resulting from the weak coordination affinity between Fe2+and the N atoms in the organic linker. Such a different pore dimension may lead to different sorption behaviors and host–guest interaction modes in limited pore space [27]. The introduction of GeF62-with increased Ge–F distance (1.83 ?) results in onedimensional (1D) contracted pore channels compared with SIFSIX-3-Ni (Si–F distance: 1.67 ?). The abundant electronegative F atoms protruding into the 1D pore channels can bind the guest molecule via strong H-bonding[42–45].The quasi-maximum pore sizes(upper limit of the pore size,Fig.S1 in Appendix A)of ZU-36-Ni and ZU-36-Fe(blue break lines in Fig.2(c))are 4.75 and 4.85 ?,respectively. Such ultra-micro pores could efficiently exclude cis-C4H8(4.94 ?, kinetic diameter), but allow the trapping of trans-C4H8(4.31 ?, kinetic diameter) (Fig. 2(d)). The purity of the assynthesized ZU-36-Ni and ZU-36-Fe was confirmed by comparing the PXRD patterns with the calculated patterns of ZU-36-Ni and ZU-36-Fe (Fig. S2 in Appendix A). The Brunauer–Emmett–Teller(BET) surface areas calculated by CO2adsorption isotherms at 273 K were 313 and 295 m2?g-1for ZU-36-Ni and ZU-36-Fe,respectively(Fig. S3 in Appendix A). Thermostability is a key metric that reflects certain aspects of the framework stability.The TGA results demonstrated that ZU-36-Ni is stable up to 340 °C (Fig. S4 in Appendix A), which is relatively superior to the other reported ultramicroporous MOFs such as NbOFFIVE-1-Ni (310 °C) [43] and SIFSIX-3-Ni (210 °C). The improved thermal stability of ZU-36-Ni compared with the analogous MOFs may be attributed to the short and strong bonds between Ni2+and the organic linkers, and the strong binding affinity of GeF62-with Ni2+,which leads to the contracted framework.Furthermore,the structure and adsorption performance of both the anion-pillared MOFs could be well retained after exposure to humid air, indicating their high tolerance to humid air (Figs. S2 and S3).

    3.2. Adsorption performances

    When used as sorbents for the separation of trans-/cis-C4H8,ZU-36-Fe exhibited a typical Langmuir-type adsorption isotherm for trans-C4H8with strong binding affinity and high uptake at low pressures. The trans-C4H8uptake amount on ZU-36-Fe is 1.81 mmol?g-1at 1 bar and 298 K. On the other hand, ZU-36-Ni(Fig. 3(a)) exhibited a stepped-adsorption isotherm for trans-C4H8. At the low-pressure range (< 0.01 bar), the less steep slope of the adsorption isotherm indicated that trans-C4H8interacts less strongly with ZU-36-Ni, which caused the low capture uptake of trans-C4H8at such low pressures. With the pressure increasing,the slope increased, indicating that ZU-36-Ni shows increased and homogeneous binding affinity for trans-C4H8. Finally, ZU-36-Ni showed a remarkable trans-C4H8capacity of 2.45 mmol?g-1(equals to one molecule per cell), which is significantly higher than that on ZU-36-Fe although the pore size is relatively smaller(Fig. 3(b)). Such reversal in adsorption behavior is attributed to the adaptivity of the pore structure of ZU-36-Ni, which allowed the enhanced accommodation of trans-C4H8molecules. A desorption pressure(Pdesor)of 0.01 bar was selected according to the purity and yield requirements of the product. The working capacity(Fig.S5 in Appendix A)of ZU-36-Ni,2.25 mmol?g-1,is much higher than that for ZU-36-Fe (0.77 mmol?g-1). Notably, ZU-36-Ni exhibited much higher uptake for trans-C4H8(2.45 mmol?g-1)than other reported size-sieving materials (Table S3 in Appendix A), such as ITQ-32 (1.1 mmol?g-1) [36] and DD3R [37] (0.832 mmol?g-1at 303 K).In contrast,both ZU-36-Ni and ZU-36-Fe showed relatively negligible adsorption of cis-C4H8because of the molecular exclusion effect. Owing to its relatively smaller aperture size, ZU-36-Ni (4.75 ? vs 4.85 ? for ZU-36-Fe) exhibited a lower cis-C4H8uptake (0.35 mmol?g-1) than ZU-36-Fe (0.5 mmol?g-1) and SIFSIX-3-Ni (0.8 mmol?g-1, Fig. S6 in Appendix A) at 1 bar and 298 K. Such a low cis-C4H8uptake and high trans-C4H8capacity endowed ZU-36-Ni with a benchmark trans-/cis-C4H8uptake ratio of 7, which is much higher than that of ZU-36-Fe (3.6) and the other previously reported materials such as Mg-gallate (3.2) [8],Y-fum-fcu-MOF (0.94) [10], and ZJNU-30 (1.13).

    Fig. 2. Schematic illustration of (a) synthesis and (b) pore structure of ZU-36 material. (c) Quasi-maximum and empirical pore size are defined by paralleled F–F distance(blue break lines)and diagonal F–F distance(pink break lines),respectively,and the unit cell of ZU-36 viewed from a direction with c axis controlled.(d)Molecular structures and sizes of trans-C4H8 and cis-C4H8.

    Fig.3. (a)Stepped sorption isotherms of trans-C4H8 on ZU-36-Ni compared with(b)typical Langmuir adsorption isotherms of trans-C4H8 on ZU-36-Fe(298 K).(c)Trans-/cis-C4H8 adsorption isotherms on other ultramicroporous materials at 298 K.(d)Ideal adsorbed solution theory(IAST)selectivities of various MOFs for trans-/cis-C4H8(50/50,v/v)mixture.

    Other ultramicroporous MOFs were also investigated for comparison.Interpenetrated anion-pillared MOFs with larger pore size only exhibit moderate uptake ratios for trans-/cis-C4H8(Fig. 3(c),Fig. S7 in Appendix A, and Table S3). For example, ZU-32(GeFSIX-2-Cu-i) with a pore window size of 4.5 ? × 4.5 ? exhibits high trans-C4H8and cis-C4H8uptake capacity (3.55 and 2.85 mmol?g-1, respectively) at 1 bar and 298 K but a low uptake ratio of 1.37 (Fig. 3(c)), and moderate separation potential.SIFSIX-1-Cu and ZIF-8-Zn exhibit high but almost the same uptake for both trans- and cis-C4H8, indicating the negligible separation selectivity for trans-/cis-C4H8mixtures (Fig. 3(c)).

    3.3. Separation selectivities

    The feasible separation selectivity of anion-pillared ultramicroporous MOFs for trans-/cis-C4H8(50/50,v/v)mixture were qualitatively evaluated using calculations of the ideal adsorbed solution theory (IAST) (Fig. 3(d), Table S4 in Appendix A) [47]. ZU-36-Ni and ZU-36-Fe displayed separation selectivities of 191 and 170,respectively, which were much higher than that for ZU-32 (7.6),ZIF-8-Zn (1.2), and ZJNU-30 (1.5). Furthermore, the initial slope ratios (Figs. S8–S13 and Table S5 in Appendix A) also suggest that ZU-36-Ni (18.7) exhibits excellent separation performance compared with other materials, such as Ni-gallate (7.9) [8] and ZU-32(7), and can be a promising physical adsorbent for trans-/cis-C4H8separation.

    3.4. Dispersion-corrected density functional theory (DFT-D)calculations

    To better understand the origin of the guest-adaptivity, the binding sites of trans-C4H8were systematically investigated through DFT-D calculations (Figs. 4 and S14 in Appendix A). The initial ZU-36-Ni exhibited a primitive cubic (pcu) network with vicinal pyrazine rings in one cell perpendicular to each other and parallel with the inorganic pillars (Fig. 4(a)). When trans-C4H8was trapped into the pore channels, an obvious rotation of pyrazine was observed to adapt the trans-C4H8molecules (Figs. 4(b)and S14). Trans-C4H8preferentially resides at the middle of the cavity because of the suitable pore dimension and π–π interactions between its sp2carbons and the aromatic ring of pyrazine. After saturation, one trans-C4H8molecule is grasped by eight F atoms from the two planes with C–H???F H-bonding (distances: 2.50–2.59, 3.41, and 3.47 ?) accompanied with the pyrazine rotation by 9.5° (Fig. 4(b)), with a calculated binding energy (ΔE) of 49.6 kJ?mol-1. Such effective binding configuration of trans-C4H8in ZU-36-Ni results from the combination of suitable c-axis length(7.587 ?)and pore size of ZU-36-Ni,which affords full immobilization of one trans-C4H8in one cell. In summary, the guest-adaptive behavior of ZU-36-Ni is realized by the rotation of organic linkers to maximize the host–guest interactions with optimal conformation. Additionally, the transport of trans-C4H8from one cell to another in the 1D pore channels requires co-operative rotation of the pyrazines to accelerate this process owing to the limited pore space [20]. Such adaptive configuration transformation for guest molecules makes a great contribution to enhancing the recognition ability of trans-C4H8and increasing the uptake capacity.

    The calculated binding sites of trans-C4H8in ZU-36-Fe were quite different (Fig. 4(c)). Trans-C4H8is bound only by the four F atoms from the same plane via strong H-bonding,which indicated the availability of a large space unoccupied by the guest molecules in one unit cell. This is consistent with the adsorption isotherm of trans-C4H8on ZU-36-Fe, and only 0.8 molecule of trans-C4H8trapped in each unit cell of ZU-36-Fe, thus leading to a reduced uptake amount of trans-C4H8at saturation. Such a different optimized binding configuration of trans-C4H8in ZU-36-Fe, compared with that in ZU-36-Ni, is due to the fact that the longer c-axis(7.73 ?) in ZU-36-Fe could not fully match the scale or dimension of trans-C4H8. The calculated ΔE of trans-C4H8on ZU-36-Fe was 60.5 kJ?mol-1, which is much higher than that of ZU-36-Ni(49.6 kJ?mol-1), implying the stronger host–guest interactions between trans-C4H8with ZU-36-Fe at low trans-C4H8loading. The lower ΔE on ZU-36-Ni can be ascribed to the compensation by the deformation of the framework (11.0 kJ?mol-1) to adapt the guest molecule. Simultaneously, coverage-dependent adsorption enthalpy (Qst) calculated based on Clausius–Clapeyron equation using the isotherms at different temperatures (Figs. S15 and S16 in Appendix A) shows that the Qstfor trans-C4H8at zero loading on ZU-36-Ni is 42.0 kJ?mol-1(Fig.S17 in Appendix A),which is also lower than that on ZU-36-Fe (61.8 kJ?mol-1), signifying that much milder regeneration conditions are required for ZU-36-Ni compared with those for ZU-36-Fe. To confirm the easier regeneration of ZU-36-Ni,cyclic adsorption tests were conducted with the materials regenerated using the room temperature and vacuum condition (Fig. S18 in Appendix A). Indeed, the results confirmed that ZU-36-Ni can be more easily regenerated with the trans-C4H8uptake well retained, whereas the trans-C4H8uptake on ZU-36-Fe slightly declined under the same conditions, which may be attributed to the insufficient regeneration of ZU-36-Fe resulting from the strong binding affinity for trans-C4H8.

    3.5. Breakthrough experiments

    Fig. 4. (a) Initial framework of ZU-36. Binding configurations of trans-C4H8 in (b) ZU-36-Ni and (c) ZU-36-Fe, respectively, obtained by DFT-D calculations. Color code: H,gray-25%; C, gray; N, blue; Ni, turquoise; Ge, light blue; F, peak green; Fe, lime. Bond length unit: ?.

    Fig. 5. (a) Breakthrough experiments for trans-/cis-C4H8 (50/50, v/v) mixture separation on ZU-36-Ni and ZU-36-Fe (with dead volume excluded; CA/C0: the relative concentration in outlet stream compared with that in feed gas). (b) Cycling breakthrough experiments for trans-/cis-C4H8 (50/50, v/v) separation on ZU-36-Ni.

    The actual separation performances of the trans-/cis-C4H8(50/50, v/v) mixture on ZU-36-Ni and ZU-36-Fe were evaluated using experimental fixed-bed breakthrough tests at 1 bar and 298 K (Fig. 5(a)). Both materials exhibit excellent trans-/cis-C4H8separation performances. Cis-C4H8elutes out of the column of ZU-36-Ni or ZU-36-Fe almost simultaneously with high purity(>99.99%),indicating the excellent sieving effect of both materials for cis-C4H8.Trans-C4H8could be trapped in the ZU-36-Ni fixed bed for about 58 min (93.5 min?g-1) with the corresponding capture amount of 1.15 mmol?g-1, which is better than that of ZU-36-Fe(37 min, 55.2 min?g-1) with a capture amount of 0.72 mmol?g-1.Additionally,a sharp molecular cut-off behavior for the separation of trans-/cis-C4H8mixture was not observed when using SIFSIX-3-Ni(Fig.S19 in Appendix A),which is consistent with the isotherms of trans-/cis-C4H8on the material (Fig. S6). More importantly, for ZU-36-Ni, there was no noticeable loss in trans-C4H8adsorption and separation capacity even after 10 cycles of breakthrough experiments (Fig. 5(b)), illustrating the excellent structural and cycling stability of ZU-36-Ni for trans-/cis-C4H8mixtures separation. Furthermore, the separation performance is unimpeded by humidity(Fig.S20 in Appendix A)showcasing the strong potential of ZU-36-Ni for trans-/cis-C4H8mixture separation for industrial applications. Last but not least, ZU-36-Ni also exhibited good separation performance for the C4mixture (1,3-C4H6/trans-C4H8/n-C4H8/cis-C4H8/iso-C4H8/n-C4H10/iso-C4H10, 45/6.5/13/5.5/24/5/1, v/v, Fig. S21 in Appendix A) indicating that ZU-36-Ni is a promising material for C4hydrocarbon separation.

    4. Conclusions

    In summary, two anion-pillared ultramicroporous MOFs, ZU-36-Ni (GeFSIX-3-Ni) and ZU-36-Fe (GeFSIX-3-Fe) are reported for the first time and used for highly efficient trans-/cis-C4H8splitting.ZU-36-Ni with its guest-adaptive pore channels coming from the rotation of organic linkers, exhibited an interesting step-wise adsorption isotherm for trans-C4H8. This attribute confers ZU-36-Ni with an increased capacity (2.45 mmol?g-1) compared to ZU-36-Fe (1.81 mmol?g-1) that does not possess adaptive pore channels. In addition, ZU-36-Ni adsorbed less cis-C4H8than ZU-36-Fe,as ZU-36-Ni with the contracted pore window size excluded cis-C4H8with a higher efficiency.The excellent trans-/cis-C4H8separation selectivity(191)and high-purity cis-C4H8(99.99%)observed in the breakthrough tests present ZU-36-Ni as an ideal adsorbent for trans-/cis-C4H8separation. This work provides new insights into the structural property–adsorption relationships necessary for anticipating the discovery of smart and efficient porous materials for the separation of hydrocarbon isomers of different dimensions and shapes.

    Acknowledgments

    This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LZ18B060001), and the National Natural Science Foundation of China (21725603, 21476192, and U1862110).

    Compliance with ethics guidelines

    Zhaoqiang Zhang, Xili Cui, Xiaoming Jiang, Qi Ding, Jiyu Cui,Yuanbin Zhang, Youssef Belmabkhout, Karim Adil, Mohamed Eddaoudi, and Huabin Xing declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.10.013.

    在线a可以看的网站| 久久久久亚洲av毛片大全| 亚洲真实伦在线观看| 午夜a级毛片| 亚洲激情在线av| 18禁在线播放成人免费| 99热6这里只有精品| 国内精品久久久久精免费| 国产精品一区二区三区四区免费观看 | 久久天躁狠狠躁夜夜2o2o| 又爽又黄无遮挡网站| 午夜免费男女啪啪视频观看 | 日本熟妇午夜| 18禁黄网站禁片免费观看直播| 国产精品爽爽va在线观看网站| 一级作爱视频免费观看| 国产av一区在线观看免费| 天天一区二区日本电影三级| 日韩精品青青久久久久久| 午夜福利在线在线| 午夜福利欧美成人| 色吧在线观看| 亚洲无线在线观看| 日韩欧美三级三区| www日本黄色视频网| 欧美在线黄色| 精品一区二区免费观看| 国内久久婷婷六月综合欲色啪| 精品一区二区三区视频在线| 国产美女午夜福利| bbb黄色大片| 最新在线观看一区二区三区| 亚洲久久久久久中文字幕| 淫妇啪啪啪对白视频| netflix在线观看网站| 亚洲色图av天堂| 又紧又爽又黄一区二区| 国产精品亚洲美女久久久| 十八禁人妻一区二区| 国内毛片毛片毛片毛片毛片| 久久天躁狠狠躁夜夜2o2o| 午夜激情福利司机影院| 亚洲精品456在线播放app | 嫩草影院入口| 国产精品久久视频播放| 欧美成人a在线观看| 国产精品久久视频播放| 真人一进一出gif抽搐免费| 能在线免费观看的黄片| 色视频www国产| 又爽又黄无遮挡网站| 特大巨黑吊av在线直播| 中文字幕人妻熟人妻熟丝袜美| 老司机福利观看| 精品久久久久久久久久免费视频| 99精品在免费线老司机午夜| 日本熟妇午夜| 午夜福利在线观看免费完整高清在 | 亚洲人与动物交配视频| 久久久久免费精品人妻一区二区| 亚洲精品成人久久久久久| а√天堂www在线а√下载| 久久99热6这里只有精品| 真人做人爱边吃奶动态| 久久久久久九九精品二区国产| 床上黄色一级片| 欧美日韩福利视频一区二区| 欧美日本视频| 亚洲欧美日韩无卡精品| 天天躁日日操中文字幕| 亚洲在线观看片| 欧美三级亚洲精品| 有码 亚洲区| 精品人妻熟女av久视频| 国产免费男女视频| 久久99热这里只有精品18| 在线观看午夜福利视频| 日本一本二区三区精品| 日韩免费av在线播放| 长腿黑丝高跟| 久久99热6这里只有精品| 久久精品国产亚洲av涩爱 | 日本与韩国留学比较| 亚洲精品456在线播放app | 美女xxoo啪啪120秒动态图 | 欧美日韩瑟瑟在线播放| 亚洲经典国产精华液单 | 男人和女人高潮做爰伦理| 日韩 亚洲 欧美在线| 国产精品久久久久久久久免 | 亚洲成人久久性| 神马国产精品三级电影在线观看| 久久精品国产亚洲av香蕉五月| 国产精品日韩av在线免费观看| 亚洲精品影视一区二区三区av| 国模一区二区三区四区视频| 亚洲av电影不卡..在线观看| 啦啦啦韩国在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 我要搜黄色片| 人妻久久中文字幕网| 国语自产精品视频在线第100页| 久久这里只有精品中国| 久久久国产成人免费| 成人一区二区视频在线观看| 亚洲自拍偷在线| 欧美激情在线99| 天堂影院成人在线观看| 日韩欧美国产一区二区入口| 亚洲黑人精品在线| 怎么达到女性高潮| 村上凉子中文字幕在线| 一区二区三区免费毛片| 国产av麻豆久久久久久久| 久久久久亚洲av毛片大全| 一个人免费在线观看电影| 老司机福利观看| 欧美日韩综合久久久久久 | 欧美性猛交╳xxx乱大交人| 首页视频小说图片口味搜索| 婷婷亚洲欧美| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 1000部很黄的大片| 狠狠狠狠99中文字幕| 国产成人啪精品午夜网站| 国产老妇女一区| 长腿黑丝高跟| 老司机午夜十八禁免费视频| 久久香蕉精品热| 国产国拍精品亚洲av在线观看| 国产麻豆成人av免费视频| 国产伦一二天堂av在线观看| 深夜精品福利| 国产成人欧美在线观看| 全区人妻精品视频| 亚洲内射少妇av| 国产视频内射| 中文亚洲av片在线观看爽| 久久人人爽人人爽人人片va | 12—13女人毛片做爰片一| 毛片女人毛片| 可以在线观看毛片的网站| 亚洲真实伦在线观看| 91久久精品国产一区二区成人| 国产综合懂色| 日本五十路高清| 岛国在线免费视频观看| 欧美成人免费av一区二区三区| 亚洲专区国产一区二区| or卡值多少钱| 国产色爽女视频免费观看| 国产爱豆传媒在线观看| 啪啪无遮挡十八禁网站| 午夜视频国产福利| 国产精品久久久久久精品电影| 成年人黄色毛片网站| 在线播放无遮挡| 少妇被粗大猛烈的视频| 99在线视频只有这里精品首页| 日韩欧美在线乱码| 欧美午夜高清在线| x7x7x7水蜜桃| 国语自产精品视频在线第100页| 十八禁网站免费在线| 夜夜夜夜夜久久久久| 99久久九九国产精品国产免费| 88av欧美| 在线免费观看不下载黄p国产 | 亚洲片人在线观看| 三级毛片av免费| 伊人久久精品亚洲午夜| 亚洲熟妇熟女久久| 性欧美人与动物交配| 国产黄片美女视频| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久v下载方式| 国产精品永久免费网站| 日本在线视频免费播放| 国产探花极品一区二区| 日韩成人在线观看一区二区三区| 欧美性猛交╳xxx乱大交人| 别揉我奶头~嗯~啊~动态视频| 欧美国产日韩亚洲一区| 亚洲国产日韩欧美精品在线观看| 精品一区二区三区视频在线观看免费| 国产极品精品免费视频能看的| 国产精品av视频在线免费观看| 国产精品三级大全| 一边摸一边抽搐一进一小说| 国产精品久久久久久人妻精品电影| 亚洲人与动物交配视频| 久久国产精品人妻蜜桃| 欧美精品啪啪一区二区三区| 国产精品一区二区性色av| 草草在线视频免费看| 国产精品精品国产色婷婷| 最近在线观看免费完整版| www.熟女人妻精品国产| 亚洲午夜理论影院| 日韩欧美三级三区| 桃红色精品国产亚洲av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 人妻丰满熟妇av一区二区三区| 18+在线观看网站| 1000部很黄的大片| 香蕉av资源在线| 亚洲性夜色夜夜综合| 精品一区二区三区视频在线| 亚洲第一电影网av| 国产探花在线观看一区二区| 99久久九九国产精品国产免费| 99国产极品粉嫩在线观看| 亚洲国产欧洲综合997久久,| 毛片一级片免费看久久久久 | a在线观看视频网站| 亚洲男人的天堂狠狠| 内射极品少妇av片p| 日韩大尺度精品在线看网址| 午夜激情福利司机影院| 日韩欧美在线二视频| 亚洲欧美激情综合另类| 赤兔流量卡办理| 欧美最新免费一区二区三区 | 琪琪午夜伦伦电影理论片6080| www.www免费av| 日本三级黄在线观看| 中文资源天堂在线| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品999在线| 精品久久久久久久久av| 性色avwww在线观看| 亚洲人成网站在线播| 日韩精品中文字幕看吧| 国产三级中文精品| 床上黄色一级片| 亚洲人成电影免费在线| 精品日产1卡2卡| 亚洲三级黄色毛片| 国产一区二区三区视频了| 一区福利在线观看| 一区二区三区免费毛片| 久久伊人香网站| 亚洲色图av天堂| 国产精品一及| 啪啪无遮挡十八禁网站| 国产精品永久免费网站| 亚洲国产高清在线一区二区三| 免费高清视频大片| 成年人黄色毛片网站| 淫妇啪啪啪对白视频| 欧美一区二区精品小视频在线| 国产高清视频在线观看网站| 国产麻豆成人av免费视频| 9191精品国产免费久久| 国产一区二区三区视频了| 一二三四社区在线视频社区8| 亚洲av免费高清在线观看| 91在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 久久性视频一级片| 亚洲国产日韩欧美精品在线观看| 久久精品国产自在天天线| 成人无遮挡网站| www.熟女人妻精品国产| 不卡一级毛片| 丰满人妻一区二区三区视频av| 亚洲av熟女| 日本在线视频免费播放| 精品一区二区三区视频在线观看免费| 欧美黄色片欧美黄色片| 亚洲成av人片免费观看| 午夜日韩欧美国产| 精品人妻1区二区| 欧美性感艳星| 精品久久久久久久久久免费视频| 一区福利在线观看| 成人亚洲精品av一区二区| 久久热精品热| 亚洲欧美日韩高清专用| 国产午夜福利久久久久久| 日本a在线网址| 丁香六月欧美| 五月玫瑰六月丁香| 又黄又爽又刺激的免费视频.| 午夜福利18| 亚洲欧美清纯卡通| 色综合婷婷激情| 色在线成人网| 久久6这里有精品| 老司机福利观看| 激情在线观看视频在线高清| 九九久久精品国产亚洲av麻豆| 国产精华一区二区三区| 十八禁国产超污无遮挡网站| 欧美三级亚洲精品| 亚洲熟妇熟女久久| aaaaa片日本免费| 国产成+人综合+亚洲专区| av欧美777| 国模一区二区三区四区视频| 99久久精品国产亚洲精品| 啪啪无遮挡十八禁网站| 国产单亲对白刺激| 91在线观看av| 亚洲 国产 在线| 一级毛片久久久久久久久女| 久久精品国产99精品国产亚洲性色| a级一级毛片免费在线观看| 神马国产精品三级电影在线观看| 亚洲av电影在线进入| 成人亚洲精品av一区二区| 搞女人的毛片| 少妇被粗大猛烈的视频| 亚洲五月婷婷丁香| 男女那种视频在线观看| 1000部很黄的大片| 亚洲无线在线观看| 色综合欧美亚洲国产小说| 网址你懂的国产日韩在线| 免费av毛片视频| 亚洲成人久久爱视频| 日韩欧美在线乱码| 色在线成人网| 久久天躁狠狠躁夜夜2o2o| 免费观看精品视频网站| 波多野结衣高清无吗| 国产黄色小视频在线观看| 国内久久婷婷六月综合欲色啪| 两个人的视频大全免费| 少妇裸体淫交视频免费看高清| 欧美成人免费av一区二区三区| 永久网站在线| 51午夜福利影视在线观看| 亚洲精品乱码久久久v下载方式| av福利片在线观看| 长腿黑丝高跟| 欧美丝袜亚洲另类 | 老司机福利观看| 国产亚洲精品综合一区在线观看| 少妇人妻一区二区三区视频| 有码 亚洲区| 精品熟女少妇八av免费久了| 天天一区二区日本电影三级| 久久婷婷人人爽人人干人人爱| 非洲黑人性xxxx精品又粗又长| 久久久久久久久久成人| 午夜福利欧美成人| 亚洲aⅴ乱码一区二区在线播放| 婷婷丁香在线五月| 国产乱人伦免费视频| 欧美bdsm另类| 舔av片在线| 色av中文字幕| 成人特级黄色片久久久久久久| 十八禁网站免费在线| 99热这里只有精品一区| 欧美三级亚洲精品| 最近视频中文字幕2019在线8| 亚洲国产精品久久男人天堂| 小说图片视频综合网站| 床上黄色一级片| 亚洲欧美精品综合久久99| 999久久久精品免费观看国产| 啪啪无遮挡十八禁网站| 午夜精品一区二区三区免费看| 一进一出抽搐gif免费好疼| 深爱激情五月婷婷| 99热这里只有是精品50| 嫩草影视91久久| or卡值多少钱| 又黄又爽又刺激的免费视频.| 日韩精品青青久久久久久| 欧美成人性av电影在线观看| 欧美国产日韩亚洲一区| 99国产极品粉嫩在线观看| 99国产精品一区二区蜜桃av| 级片在线观看| 国产乱人视频| 免费搜索国产男女视频| 人妻丰满熟妇av一区二区三区| 人人妻人人澡欧美一区二区| 国产成人影院久久av| 日韩大尺度精品在线看网址| 最新中文字幕久久久久| 能在线免费观看的黄片| 欧美日韩国产亚洲二区| 免费电影在线观看免费观看| 欧美色欧美亚洲另类二区| 欧美激情久久久久久爽电影| 人人妻,人人澡人人爽秒播| 国产黄a三级三级三级人| 性欧美人与动物交配| av在线蜜桃| 在线观看午夜福利视频| 中文资源天堂在线| 亚洲国产欧洲综合997久久,| 内地一区二区视频在线| 亚洲自拍偷在线| 精品欧美国产一区二区三| 丁香六月欧美| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| h日本视频在线播放| 国产精品自产拍在线观看55亚洲| 夜夜躁狠狠躁天天躁| 国产私拍福利视频在线观看| 精品国内亚洲2022精品成人| 亚洲美女视频黄频| 久久草成人影院| 一区二区三区激情视频| 欧美日韩瑟瑟在线播放| 亚洲精品成人久久久久久| a在线观看视频网站| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 日本黄色片子视频| 成年女人看的毛片在线观看| av视频在线观看入口| netflix在线观看网站| 亚洲av免费在线观看| 又爽又黄无遮挡网站| 日韩免费av在线播放| 午夜老司机福利剧场| 欧美+日韩+精品| 成人特级av手机在线观看| 一本精品99久久精品77| 美女免费视频网站| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| 美女xxoo啪啪120秒动态图 | 亚洲精品日韩av片在线观看| 精品熟女少妇八av免费久了| 麻豆成人av在线观看| 亚洲av日韩精品久久久久久密| 亚洲天堂国产精品一区在线| eeuss影院久久| 欧美xxxx性猛交bbbb| 一区二区三区激情视频| 久久6这里有精品| 欧美激情国产日韩精品一区| 亚洲国产欧美人成| 亚洲在线自拍视频| 国产精品一及| 蜜桃久久精品国产亚洲av| 2021天堂中文幕一二区在线观| 成人av在线播放网站| 欧美日韩综合久久久久久 | 亚洲精品粉嫩美女一区| 一本精品99久久精品77| 午夜福利欧美成人| 又爽又黄无遮挡网站| 又粗又爽又猛毛片免费看| 桃红色精品国产亚洲av| 在线a可以看的网站| 日本a在线网址| 小蜜桃在线观看免费完整版高清| 久久99热这里只有精品18| 色av中文字幕| av在线观看视频网站免费| 特级一级黄色大片| 2021天堂中文幕一二区在线观| 久久精品国产清高在天天线| 国产高清三级在线| 国产成人福利小说| 国产探花极品一区二区| 日韩欧美精品免费久久 | 欧美色视频一区免费| 欧美三级亚洲精品| 男女视频在线观看网站免费| 赤兔流量卡办理| 一区福利在线观看| 又爽又黄无遮挡网站| 欧美+亚洲+日韩+国产| 久久午夜亚洲精品久久| 亚洲中文字幕日韩| 午夜福利在线观看吧| 国产伦在线观看视频一区| 一个人免费在线观看的高清视频| 天堂网av新在线| 国产精品久久久久久精品电影| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 综合色av麻豆| 色哟哟哟哟哟哟| 18禁在线播放成人免费| 搡老熟女国产l中国老女人| 国产亚洲欧美在线一区二区| 成人一区二区视频在线观看| 欧美精品国产亚洲| 99热这里只有是精品50| 久久精品国产亚洲av香蕉五月| 亚洲第一欧美日韩一区二区三区| 日韩欧美精品v在线| bbb黄色大片| 我的老师免费观看完整版| www.www免费av| 国产视频一区二区在线看| 精品久久久久久久末码| 91九色精品人成在线观看| 中文字幕熟女人妻在线| 在线观看舔阴道视频| 人妻制服诱惑在线中文字幕| 久久国产乱子伦精品免费另类| 国产淫片久久久久久久久 | 国产视频一区二区在线看| 香蕉av资源在线| av视频在线观看入口| 中文字幕精品亚洲无线码一区| 国产精品亚洲一级av第二区| 国产精品久久视频播放| 免费av不卡在线播放| 免费搜索国产男女视频| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看| 欧美日韩国产亚洲二区| 熟女人妻精品中文字幕| 日韩中字成人| 成人一区二区视频在线观看| 一夜夜www| 性色avwww在线观看| 亚洲国产高清在线一区二区三| 中文字幕精品亚洲无线码一区| 久久九九热精品免费| 国产精品久久久久久亚洲av鲁大| 精品久久久久久成人av| 亚洲国产欧美人成| 99久久九九国产精品国产免费| 波多野结衣巨乳人妻| 嫩草影院新地址| 国内精品美女久久久久久| 美女高潮的动态| 欧美黄色片欧美黄色片| 日日摸夜夜添夜夜添av毛片 | 亚洲第一欧美日韩一区二区三区| 精品午夜福利在线看| netflix在线观看网站| 一边摸一边抽搐一进一小说| 国产男靠女视频免费网站| 亚洲av成人av| 99国产精品一区二区三区| 国产亚洲精品久久久com| 日韩欧美精品v在线| 久久人妻av系列| 超碰av人人做人人爽久久| 757午夜福利合集在线观看| 亚洲国产色片| 99精品久久久久人妻精品| 免费看a级黄色片| 高清在线国产一区| 国产一区二区激情短视频| 国产精品1区2区在线观看.| 精品欧美国产一区二区三| 18禁黄网站禁片免费观看直播| 男女那种视频在线观看| а√天堂www在线а√下载| 国产午夜福利久久久久久| 国产精品久久久久久久久免 | 成熟少妇高潮喷水视频| 哪里可以看免费的av片| 成人永久免费在线观看视频| 国产精品嫩草影院av在线观看 | 一进一出好大好爽视频| av专区在线播放| 亚洲五月天丁香| 在线a可以看的网站| 午夜福利视频1000在线观看| 99久久久亚洲精品蜜臀av| 免费观看人在逋| 国产麻豆成人av免费视频| 男人舔奶头视频| 精品无人区乱码1区二区| 日韩成人在线观看一区二区三区| 久久草成人影院| 久久中文看片网| 日韩欧美国产在线观看| 亚洲熟妇中文字幕五十中出| 少妇的逼水好多| 日本黄大片高清| 搡老妇女老女人老熟妇| 激情在线观看视频在线高清| 亚洲aⅴ乱码一区二区在线播放| av天堂中文字幕网| 国产亚洲精品久久久com| 亚洲 国产 在线| 国产单亲对白刺激| 九九久久精品国产亚洲av麻豆| 观看免费一级毛片| 久久精品综合一区二区三区| 在线观看舔阴道视频| 69av精品久久久久久| av福利片在线观看| 亚洲欧美清纯卡通| 成人av一区二区三区在线看| 在线看三级毛片| 男女下面进入的视频免费午夜| 真实男女啪啪啪动态图| 最近视频中文字幕2019在线8| 欧美激情国产日韩精品一区| 一级作爱视频免费观看| 国产精品av视频在线免费观看| 欧美日韩国产亚洲二区| 好男人在线观看高清免费视频| 久久精品国产亚洲av香蕉五月| 18+在线观看网站| 日韩亚洲欧美综合| 一区福利在线观看| 一本综合久久免费| 毛片女人毛片| 久久这里只有精品中国| 午夜日韩欧美国产| 欧美色视频一区免费| 日本 av在线| 欧美+日韩+精品| 麻豆国产av国片精品|