• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering Sodium Metal Anode with Sodiophilic Bismuthide Penetration for Dendrite-Free and High-Rate Sodium-Ion Battery

    2022-06-11 09:03:20WnyuZhoMinGuoZhijunZuoXioliZhoHunglinDouYijieZhngShiyingLiZihenWuYyunShiZifengXioweiYng
    Engineering 2022年4期

    Wnyu Zho,Min Guo,Zhijun Zuo,Xioli Zho,Hunglin Dou,Yijie Zhng,Shiying Li,Zihen Wu,Yyun Shi, Zifeng M*, Xiowei Yng,*

    a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

    b School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China

    c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China

    d Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    Keywords:Sodium metal anode Dendrite-free Compact electrodeposition Sodiophilic bismuthide Ion diffusion barrier

    ABSTRACT Sodium(Na)metal batteries with a high volumetric energy density that can be operated at high rates are highly desirable. However, an uneven Na-ion migration in bulk Na anodes leads to localized deposition/dissolution of sodium during high-rate plating/stripping behaviors, followed by severe dendrite growth and loose stacking. Herein, we engineer the Na hybrid anode with sodiophilic Na3Bi-penetration to develop the abundant phase-boundary ionic transport channels. Compared to intrinsic Na, the reduced adsorption energy and ion-diffusion barrier on Na3Bi ensure even Na+nucleation and rapid Na+migration within the hybrid electrode, leading to uniform deposition and dissolution at high current densities.Furthermore, the bismuthide enables compact Na deposition within the sodiophilic framework during cycling, thus favoring a high volumetric capacity. Consequently, the obtained anode was endowed with a high current density(up to 5 mA?cm-2),high areal capacity(up to 5 mA?h?cm-2),and long-term cycling stability (up to 2800 h at 2 mA?cm-2).

    1. Introduction

    Rechargeable batteries with high volumetric energy densities that can be charged/discharged at high rates are desirable for electric vehicles(EVs)and other high-power devices[1–5].While considerable progress has been achieved in the most commercialized lithium-ion batteries, depleted Li resources remain a significant issue for market consideration [6–10]. Na-ion batteries offer an affordable and earth-abundant alternative to Li counterpart [11–13]; however, the commonly used hard carbon anodes with high-rate features suffer the suboptimal energy densities [14–16]. Na with a low electrochemical potential and high theoretical capacity is considered a promising anode material [17–21]. However, dendrite growth and loose deposition stacking remain the major barriers impeding the application of Na anodes in engineering, especially at high rates [22–32].

    The formation of dendrites on Na anodes stems from uneven ion distribution and electrodeposition[33,34].An ideal Na deposition at high current densities requires rapidly and evenly distributed Na+flux. Otherwise, Na+would prefer to selectively electrodeposite on local sites, causing dendrite or porous stacking growth[35].During the stripping process,Na ions have to migrate from the interior of the bulk Na anodes into the electrolyte[36,37].Nevertheless,Na in the dense metal foil primarily diffuses through sluggish lattice diffusion (10-9cm2?s-1) with a high Na+diffusion barrier [37–41], thus possibly leading to the localized dissolution of metallic Na during the high-rate stripping process, followed by the collapse of local solid electrolyte interphase (SEI) layer, and then triggering dendrite growth in the following plating process[37].To address the above issues,tactics of introducing ionic transport paths with a low Na+diffusion barrier is conducive to accelerate the Na diffusion throughout the bulk anodes. Although complex electrodes with mixed ion and electron-conducting scaffolds have been reported in recent studies,commonly using porous structures may result in irreversible electrolyte consumption and low volumetric capacity [25,42–46]. The balance between the fast charge/discharge, dendrite-free deposition, and compact stacking remains challenging.

    Here, we introduced ‘‘sodiophilic” Na3Bi penetration into Na anodes to build abundant phase-boundary ion-transport channels.Ion diffusion along the phase boundaries is supposed to enable several orders of magnitude faster than lattice diffusion [41,47–49].Thus,Na ions quickly extract/insert along the boundaries between Na and Na3Bi phase during stripping and plating processes, thus maintaining the even ion-flux distribution as shown in Fig. 1(a).Moreover, the sodiophilic bismuthide enables uniform and dense Na deposition during cycling,thus aiding high volumetric capacity.The Na3Bi-penetrated Na hybrid anode delivers a high current density of 5 mA?cm-2along with a capacity of 5 mA?h?cm-2for over 300 h and ultralong cycle life (over 2800 h) at 2 mA?cm-2under 2 mA?h?cm-2. The Na3V2(PO4)3(NVP)/(Na/Na3Bi) full cell exhibits superior electrochemical performance than those with the bare Na foil anodes.

    2. Results and discussion

    Fig.1 shows the comparison between Na3Bi-penetrated Na and Na on Cu foil (Na/Cu anode) during initial plating, subsequent stripping, and plating behaviors. During predepositing Na on Cu foil, Na+flux preferentially deposits at tips because of the convergent electrical field, thus forming non-uniform initial deposition(Fig. 1(b)). The sluggish and uneven Na+diffusion paths lead to localized dissolution and deposition over cycling in subsequent stripping and plating processes. The resulting cavities and volumetric fluctuations induce continuous destruction and repair of the SEI,thus becoming a potential danger of dendrite growth.Conversely, Na+flux nuclear homogenously on the Na3Bi framework for the initial plating because of the strong affinity between Na and Na3Bi, thereby filling the inner space of the Na3Bi framework(Fig. 1(a)) to ensure the compactness of Na3Bi-penetrated Na hybrid anode and deliver high volumetric capacity. Correspondingly,Na+rapidly exits/enters along the boundaries,thus maintaining the stability of the anode interface. Unlike the Na/bulk Na3Bi anode, although because of the sodiophilic nature of the Na3Bi material,bulk Na3Bi can lead to uniform deposition to some certain extent.However,because of the lack of a framework to accommodate metallic Na, it tends to concentrate on the upper part of the anode, which is not conducive to long-term cycle stability(Scheme S1 in Appendix A).

    The compact Na anodes with Na3Bi penetration (Na/Na3Bi anode) was developed by electroplating metallic Na into a threedimensional (3D) Na3Bi framework. The Na3Bi framework was evolved from bismuth (Bi) powder through alloying/dealloying processes (Figs. S1 and S2 in Appendix A) [50,51]. Fig. 2(a) shows the scanning electron microscopy (SEM, Nova NanoSEM450, FEI company, USA) image. The Na3Bi framework presents a coral-like structure, and the unique morphology makes it easier for Na+to be deposited uniformly (Fig. 2(b), as described later). In a highresolution transmission electron microscope (HRTEM, JEM-2100,JEOL,Japan)image(Fig.S3 in Appendix A),the interplanar distance of 4.04 ? (1 ? = 10-10m) corresponded to (101) crystal planes of Na3Bi. After electroplating, metallic Na is completely embedded in the Na3Bi framework to form the Na3Bi-penetrated Na anodes,as shown in Figs. 2(c) and (d). The prominent peaks in the X-ray diffraction (XRD, D8 Advance, Bruker, Germany) spectra are well matched to the characteristic Na3Bi and Na, confirming that the presence of Na does not affect the composition of the framework(Fig. S4 in Appendix A). We set up two control groups, namely,the Na/bulk Na3Bi (i.e., without the alloying/dealloying process and framework structure)and Na/Cu anodes,to compare the superiority of the Na/Na3Bi anode.Furthermore,the difference between the control groups is described in detail in Appendix A.

    The ‘‘sodiophilic” Na3Bi framework leads to uniform local ion distribution and delivers homogenous inner-space Na+plating.The energy to overcome the nucleation barrier between Na and substrates is remarked as a nucleation overpotential. As shown in Figs. 2(b) and S5 in Appendix A, the overpotential on Cu is~19 mV at 0.1 mA?cm-2and ~20 mV at 1 mA?cm-2, whereas Na3Bi framework and bulk Na3Bi show an extremely small overpotential (below 4 mV) at the same current density. Differences became apparent with increase in current (Fig. S6 in Appendix A).Thus,both bulk Na3Bi and Na3Bi framework samples effectively reduce the nucleation overpotential, thus confirming the sodiophilic nature of Na3Bi. The same conclusion could be drawn in the phase diagram where Na–Bi alloy exists, and there is no solubility for Na–Cu at room temperature(Fig.S7 in Appendix A),confirming that lower nucleation barriers are present on Na3Bi [52].

    Fig. 1. Schematic for Na stripping/plating in (a) Na3Bi-penetrated Na and (b) Na/Cu anode.

    Fig.2. (a)SEM images of the Na3Bi framework before penetrating in Na anode.(b) Na plating curves on three matrix samples at 0.1 mA?cm-2,showing overpotential of Na nucleation.SEM images of top and cross view of(c,d)compact Na anodes with Na3Bi penetration and(e,f)Na on Cu foil.The insets schematically elucidate the initial plating morphology.

    Uniform and compact deposition of Na on Na3Bi could be visually observed in SEM images.As shown in Fig.S8 in Appendix A,Na surrounds and covers the framework with even distribution and fills the original Na3Bi framework with the increasing initial plating capacity increases (from 3 to 5 mA?h?cm-2). Top and cross-sectional SEM images show a smooth surface and compact cross-section at 8 mA?h?cm-2of capacity (Figs. 2(c) and (d)).Moreover,the corresponding energy dispersive X-ray spectrometer(EDX, Model 550i, IXRF, USA) mapping intuitively presents the uniform deposition(Figs.S9 and S10 in Appendix A).Consequently,the dense electrode structure demonstrates the close volumetric capacity to the theoretical value of bulk Na with nearly the maximum sodium capacity this framework could withstand. However,mossy and walnut-like Na could be observed on Na plating on Cu foil, which confirms the formation of dendrite growth after nucleating Na on the top of the Cu foil.Furthermore,uneven deposition results in a porous and loose structure(Figs.2(e)and(f)),which is not conducive to subsequent anode long-term durability performance. As for bulk Na3Bi, the deposition of Na is still nonuniform (Fig. S11 in Appendix A), confirming the importance of the penetrated sodiophilic frameworks to the uniform and dense deposition. Based on the above evidence, we demonstrated that the‘‘sodiophilic”Na3Bi framework is prone to induce uniform local ion distribution, thereby delivering homogenous the inner-space Na+plating and suppressing volume fluctuations.

    In addition to the even nucleation,the ionic diffusion barrier of pure Na and Na3Bi was studied by using density-functional theory(DFT)calculation.By equivalent adsorption sites,the diffusion barrier of Na+in all directions can be calculated[53,54].Figs.3(a)and(b) show the minimum energy path for Na diffusion on Na and Na3Bi surfaces,and Figs.3(c)and(d)show Na diffusion along with the minimum energy path among different adsorption sites. We also compared the Na+adsorption energy on different adsorption sites (Figs. 3(e), S12, and Table S1 in Appendix A). The maximum Na+adsorption energy of pure Na and Na3Bi materials are -1.04 and -1.44 eV (1 eV = 1.602176 × 10-19J), respectively. The reduced adsorption energy of Na+on Na3Bi indicates that Na+is inclined to deposit on Na3Bi,thus ensuring the uniform deposition of metallic Na on the Na3Bi framework.The Na+diffusion barrier of Na3Bi(110) is 0.14 eV; however, that of pure Na(100) is 0.27 eV(Fig. 3(e)). The rapid Na+transport on Na3Bi(110) surface ensures phase boundaries between metallic Na and Na3Bi with high Na+migration. For metallic Na, the 0.27 eV of Na+diffusion barrier guides one-dimensional growth pattern to form Na dendrites(Fig. 3(e)). Consequently, 3D boundary diffusion paths are distributed in the entire anode, as shown in Fig. 3(f). Moreover, the diffusion coefficient (D) and corresponding ionic conductivity of Na+in the Na3Bi bulk phase were calculated by galvanostatic intermittent titration technique (GITT) test are 7 × 10-8cm2?s-1and 9.8 × 10-4S?m-1, respectively (Fig. S13 in Appendix A). The high Na+diffusion coefficient indicates that Na3Bi can withstand a part of Na+transportation.As shown in Fig.S14 in Appendix A,the GITT curves of Na/Na3Bi||Na/Na3Bi anode delivers lower overpotential compared to that of Na||Na anode,thus showing faster mass transfer kinetics of the Na/Na3Bi electrode.

    Electrochemical deposition/dissolution behaviors were further studied,and the top and cross-section of surface morphology were characterized (Figs. 4 and S15 in Appendix A). We notice an interesting phenomenon that no matter how the capacity of Na/Na3Bi anode changes during plating or stripping,the anode surface morphology always remains uniform and flat. The comparison of SEM images between Na/Na3Bi and Na/Cu anode with plating capacity of 3 and 5 mA?h?cm-2clearly indicate that Na/Cu anode is accompanied by uneven deposition and dendrites formation (Figs. 4(a)–(d)). As shown in Figs. 4(e)–(j), theoretically, Na3Bi could be gradually exposed with sodium capacity decreasing;however,the surface still maintains a relatively flat morphology, which indicates that the Na stripping process is entirely carried out on the Na/Na3Bi anode. In this manner, the integrity of the SEI formed on the surface is preserved and gradually stabilizes during subsequent plating and stripping. Cycled-anodes were disassembled and replaced in carbonate electrolyte containing specific Cl element to further confirm the stripping/deposition behaviors of bare Na along with Na/Na3Bi anode. As shown in Fig. S16 in Appendix A,EDX elemental exhibits the strong Cl signal is distributed over the bare Na foil and the content is more than 3%, indicating the permeation of electrolyte into the interior of the anode. However,Na3Bi-penetrated Na anodes maintain their dense structure with the Cl element’s weak signal on the cross-section. Consequently,the SEI layer of Na/Na3Bi anode remains stable, preventing the simultaneous permeation of electrolytes [44]. Theoretical volume change of ‘‘hostless” Na could reach 200% in the corresponding process (Fig. S17 in Appendix A); however, Na3Bi-penetrated Na anodes with different sodium capacities could almost maintain the same thickness, conducive to stability.

    The possible explanation for the flat surface is that theoretically,the metal holes during the stripping process would be left at the interface between Na and the SEI layer, which tend to submerge into the bulk of Na by diffusion. Unfortunately, lattice diffusion delivers a severe situation to atomic migration and is followed by poor Na diffusivity:The diffusivity of Na atoms in the Na metal possesses a low value of 10-9cm2?s-1(25 °C) [38]. Consequently,holes accumulate at the sodium/SEI interface and lead to the concentration of large cavities when the rate of Na+extraction is higher than that of holes submergence[37],which is not beneficial for the stability of the SEI layer[36].As for the Na3Bi-penetrated Na anodes,the Na and Na3Bi boundaries enable fast Na+diffusion such that the Na vacancies generating in the surface layer can be quickly filled to maintain the stability of the SEI layer and anode. Consequently,the stripping process can mobilize the Na source and help prevent SEI changes caused by the run-off of the surface sodium.As a result, the embedded Na is protected from exposure to the electrolyte, which causes low coulombic efficiency (CE) and contributes to the electrode’s long-life cycling durability.

    Fig.3. The minimum energy path for Na diffusion on(a)Na and(b)Na3Bi surfaces.Green and purple balls represent Na and Bi atoms.The energy barrier of Na diffusion along with the minimum energy path on (c) Na and (d) Na3Bi surfaces. Red ball stands for the diffusion Na. (e) Comparison of the energy barrier of Na diffusion and adsorption energies on Na and Na3Bi surfaces. (f) Schematic of 3D boundary diffusion path in Na/Na3Bi anode.

    Fig.4. Investigation of sodium plating/stripping process of Na/Na3Bi and Na/Cu anode.Top view SEM images between(a,b)Na/Na3Bi and(c,d)Na/Cu anode during plating process with 3 and 5 mA?h?cm-2.(e–j)Top and cross view SEM images of Na/Na3Bi anode during stripping process with(e,h)8,(f,i)5,and(g,j)3 mA?h?cm-2 capacity.The inset pictures schematically elucidate the presence of sodium inside the anode.

    CE is an important indicator to investigate the durability of anodes[55].The CE measurement was performed with three working electrodes(Cu foil,bulk Na3Bi,and Na3Bi framework)from the current densities of 2–5 mA?cm-2with capacities of from 2 to 5 mA?h?cm-2(Figs. 5(a), 5(b), and S18 in Appendix A). Over the 900 cycles, CE of Na3Bi could reach 99.78% at 2 mA?cm-2and 2 mA?h?cm-2, indicating SEI stability; however, Na deposition/stripping on the bulk Na3Bi and Cu foil samples exhibit lower CE with high fluctuation (Fig. 5(a)). The instability of SEI could be reflected by the low CE values on Cu foil and bulk Na3Bi, while the large fluctuation is attributed to the formation of dead Na and the consumption of electrolytes. The CE of Na3Bi framework anode reaches 97.25% over 300 cycles when the capacity is 4 mA?h?cm-2. Similar CE values and high retention exist for other current density and plating/stripping capacity (Fig. S18). The CE of Na/Na3Bi anode in this study is higher than that of scaffoldconstructing works and equal to that of artificial SEI-constructing works (Fig. S19 and Table S2 in Appendix A).

    The nature of the interface between electrolyte components and anodes can be reflected by the Tafel plot[46,56].Mass transfer dominants current density in high overpotential areas. The higher exchange current density (1.2 compared with 0.058 mA?cm-2)indicates that the Na/Na3Bi anode delivers a faster mass transfer process than that of Na foil (Fig. 5(c)). Electrochemical impedance spectroscopy (EIS, VMP3, Bio-Logic, France) is an effective method to research interface changes between electrolyte components and anodes before and after 50 cycles among Na/Cu anode, Na/bulk Na3Bi anode, and Na/Na3Bi anode (Figs. 5(d) and S20 in Appendix A).Before cycling,the interfacial impedances of Na/Na3Bi, Na/bulk Na3Bi, and Na/Cu anodes are ~2, ~3, and ~25 Ω, respectively.After repetitive cycling, Na/Cu anode showed augmented interfacial impedances to 55 Ω, which is commonly observed because of the SEI accumulation and excessive dead Na build-up; conversely,benefited from the fast Na+diffusion and a stable interface,the resistance of Na/Na3Bi anode maintained low and stable(~1.5 Ω).

    Fig.5. The CE of Na deposition of three samples for(a)2 mA?h?cm-2 and 2 mA?cm-2,and(b)4 mA?h?cm-2 and 4 mA?cm-2.(c)Tafel plots obtained from cyclic voltammetry measurements. (d) Nyquist plot with Na/Cu electrode, Na/bulk Na3Bi anode, and Na/Na3Bi anode before and after 50 cycles.

    The galvanostatic cycling durability for Na/Cu anode, Na/bulk Na3Bi anode and Na/Na3Bi anode was investigated.Fig.6(a)shows the voltage profiles for the three anodes cycled for 2 mA?cm-2along with 2 mA?h?cm-2. Note that the Na/Na3Bi anode exhibits low overpotential (~10 mV) with long-life stability for over 2800 h, while the other two anodes fail in 400 h. Moreover, Na/Na3Bi anode displays ~35.5 mV of low overpotentials after 300 h at a current density of 5 mA?cm-2with 5 mA?h?cm-2, which is superior to those of Na/Cu and Na/bulk Na3Bi anode, affirming the excellent stability of Na3Bi at high rates and with deep plating/stripping behaviors(Fig.6(b)).Top and cross view SEM images(Figs. 6(c)–(f) and S21 in Appendix A) are obtained to study the derivation of the cycling durability of Na/Na3Bi anode:Smooth surface morphology and compact Na3Bi-penetrated structure occur during the whole cycling, whereas increasingly uneven deposition and gradually loose structure cause the failure of Na/Cu anode in a short time. X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific, USA) was also used to examine the SEI formed in the cycled anode(Fig.S22 in Appendix A).The C 1s spectrum can be fitted using three peaks with the binding energies of 288.2 eV (RCH2ONa), 286.0 eV (C–O), and 284.8 eV (C–C and C–H), whereas the O 1s spectrum shows a corresponding peak at 535.5 eV (C–O), both of which are consistent with sodium alkoxides being the main reduction product of diglyme [57,58]. The O 1s spectrum also shows a peak at 530.9 eV (Na–O). Combining these analyses with the Na 1s spectrum,we deduce that the Na 1s feature at 1071.0 eV comprises two overlapping peaks (Na–O and Na–F), which are consistent with the tabulated values for Na2O and NaF. These results indicate the formation of Na2O and NaOH(532.8 eV)as the reaction product of Na metal with trace amounts of O2and H2O in the Ar-filled glovebox(<0.5 ppm)and NaF as the main reduction product of NaPF6[57–59].Overall, we see that the top surface of the SEI contained both organic(RCH2ONa)and inorganic (Na2O and NaF) components. Note that the electrochemical performance of Na/bulk Na3Bi anode is not significantly optimized,which indirectly affirms the important role of phase-boundary diffusion in guiding homogeneous and rapid ion transport. Furthermore, the Na3Bi framework remains stable based on SEM images(Fig. S23 in Appendix A) because the plating/stripping potential(±50 mV) of Na is far away from the phase change potential of Na3Bi (0.7 and 0.5 V for alloying potentials and 0.6 and 0.75 V for de-alloying potentials), thus ensuring the structure’s stability.The advantages of the overpotential and cycle life are also reflected in other current density and fixed real capacity conditions(Fig.S24 in Appendix A). Moreover, the Na/Na3Bi anode delivers good rate performance (Fig. 6(g)), in which small polarization (~100 mV)can still be obtained even at a relatively high current density(10 mA?cm-2). It is essential to explore the performance of electrodes at low temperatures because ion-diffusion kinetics is closely related to the operating temperature,and demand for high-energy batteries that can operate at low-temperature conditions continues to grow. The cycling performance of the Na/Na3Bi and Na/Cu anodes at 2 mA?cm-2and 2 mA?h?cm-2at 278 K is shown in Fig. 6(h), and a Na/Na3Bi anode with lower overpotential(~100 mV) and stable cycling over 300 h is obtained. Conversely,Na/Cu anode fails quickly with 200–300 mV of overpotential,signifying that the low diffusion barrier of phase boundaries between Na and Na3Bi enable effective ion transportation even at low temperature.

    To assess the electrochemical performance of three different anodes in full cells, the Na/Na3Bi and bare Na anodes are coupled with NVP as the cathode in 1 mol?L-1NaClO4in ethylene carbonate(EC)/diethyl carbonate (DEC) respectively. Due to the fast ion transport and uniform deposition/stripping of Na/Na3Bi anode,high-energy-density Na–metal batteries are obtained. NVP/(Na/Na3Bi) cell shows good capability retention of 93.8% with current densities of 0.2 to 2 C (Fig. S25 in Appendix A), which is much higher than Na anodes. As current densities increasing, the polarization of the charge/discharge plateaus slowly increases(Fig. S26 in Appendix A). Moreover, NVP/(Na/Na3Bi) cell delivers excellent cycling performance for 72 mA?h?g-1of reversible capacity at 1 C and over 1000 cycles,and the capacity retention is 91.1%(Figs. S25 and S26). During charging, the average CE of NVP/(Na/Na3Bi) cell at 1 C could achieve 98.35% and maintains durable cycling performance.

    Fig.6. Galvanostatic cycling performance of different anodes for(a)2 mA?h?cm-2 and 2 mA?cm-2m,and(b)5 mA?h?cm-2 and 5 mA?cm-2.Top and cross view SEM images of(c, d) Na3Bi-penetrated Na anode and (e, f) Na/Cu anode after galvanostatic cycling. (g) Rate performance of the Na/Na3Bi anode. (h) Low temperature (278 K) cycling performance of Na/Na3Bi and Na/Cu anode.

    3. Conclusions

    In this work,bulk Na–metal anodes with sodiophilic Na3Bi penetration, which holds even nucleation and uniform and dense Na deposition, could deliver a high rate, a long cycle life, and a high volumetric capacity. As a result, abundant Na/Na3Bi phase boundaries, which proved to enable Na+diffusion several orders of magnitude faster than lattice diffusion,ensure sufficient and rapid Na+migration taking place upon plating and stripping. During initial deposition, the exposed ‘‘sodiophilic” Na3Bi framework induces uniform local ion distribution, thereby delivering homogenous inner-space Na+plating and suppressing volume fluctuations. In subsequent stripping and plating processes, Na+rapidly exits and enters along the boundaries of Na and Na3Bi phase, maintaining the stability of the anode/electrolyte interface. Furthermore, the obtained anode delivers superior cycling and rate performances coupled with the NVP cathodes.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (21938005 and 21776197) and Key Laboratory of Coal Science and Technology, Education Ministry and Shanxi Province, Taiyuan University of Technology.

    Compliance with ethics guidelines

    Wanyu Zhao, Min Guo, Zhijun Zuo, Xiaoli Zhao, Huanglin Dou,Yijie Zhang, Shiying Li, Zichen Wu, Yayun Shi, Zifeng Ma, and Xiaowei Yang declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.08.028.

    老司机福利观看| 777久久人妻少妇嫩草av网站| 日日爽夜夜爽网站| 91精品国产国语对白视频| 国产精品乱码一区二三区的特点 | 亚洲国产毛片av蜜桃av| 天堂√8在线中文| 久久久久国内视频| 日韩欧美在线二视频| 女人爽到高潮嗷嗷叫在线视频| 天堂俺去俺来也www色官网| av中文乱码字幕在线| 国产成年人精品一区二区 | 国产高清视频在线播放一区| 88av欧美| a级毛片在线看网站| 色婷婷av一区二区三区视频| 国产亚洲精品一区二区www| 亚洲专区中文字幕在线| 99在线人妻在线中文字幕| 黄片大片在线免费观看| 在线播放国产精品三级| 亚洲欧美日韩另类电影网站| 18禁国产床啪视频网站| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 不卡av一区二区三区| av天堂在线播放| 国产精品日韩av在线免费观看 | 精品久久久久久久久久免费视频 | 黄频高清免费视频| 亚洲精品国产一区二区精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 大陆偷拍与自拍| 99香蕉大伊视频| 淫妇啪啪啪对白视频| 麻豆成人av在线观看| avwww免费| 18禁美女被吸乳视频| 日本wwww免费看| 亚洲中文日韩欧美视频| 亚洲伊人色综图| 国产精品九九99| 亚洲人成电影观看| 夜夜躁狠狠躁天天躁| 国产视频一区二区在线看| 日韩精品免费视频一区二区三区| 久久亚洲真实| 国产成人av激情在线播放| 国产精品亚洲一级av第二区| 久久中文看片网| 日韩高清综合在线| www.熟女人妻精品国产| 亚洲午夜精品一区,二区,三区| 丁香欧美五月| 亚洲av熟女| 大码成人一级视频| 人人妻人人添人人爽欧美一区卜| 日韩国内少妇激情av| 国产精品免费视频内射| 亚洲成人久久性| 黄片小视频在线播放| 麻豆av在线久日| 大码成人一级视频| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 久久精品成人免费网站| 人人妻人人添人人爽欧美一区卜| 身体一侧抽搐| 在线视频色国产色| 国产欧美日韩一区二区三| 久久久国产精品麻豆| 亚洲人成电影观看| 国产区一区二久久| 亚洲精品国产色婷婷电影| 丝袜美足系列| 757午夜福利合集在线观看| 国产精品亚洲一级av第二区| 妹子高潮喷水视频| 亚洲专区国产一区二区| 天堂俺去俺来也www色官网| 亚洲成人久久性| 国产在线观看jvid| 久久精品aⅴ一区二区三区四区| 黄色女人牲交| 88av欧美| 99国产综合亚洲精品| 欧美日韩乱码在线| 嫁个100分男人电影在线观看| 国产精品秋霞免费鲁丝片| 国内久久婷婷六月综合欲色啪| 成人精品一区二区免费| 国产精品1区2区在线观看.| 18禁观看日本| 日韩欧美一区二区三区在线观看| videosex国产| 久久精品国产99精品国产亚洲性色 | 性色av乱码一区二区三区2| 亚洲国产欧美一区二区综合| 黄片大片在线免费观看| 亚洲成国产人片在线观看| 精品一区二区三区av网在线观看| 精品福利观看| 天堂√8在线中文| 视频区图区小说| 亚洲午夜理论影院| 成人三级黄色视频| 亚洲七黄色美女视频| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| 三上悠亚av全集在线观看| 精品人妻在线不人妻| 亚洲狠狠婷婷综合久久图片| 亚洲精华国产精华精| √禁漫天堂资源中文www| 99久久国产精品久久久| 国产激情欧美一区二区| 啦啦啦免费观看视频1| 国产精品久久久久久人妻精品电影| 亚洲一区高清亚洲精品| xxxhd国产人妻xxx| 成人永久免费在线观看视频| 久久久久久免费高清国产稀缺| 涩涩av久久男人的天堂| 少妇裸体淫交视频免费看高清 | 国产亚洲精品久久久久久毛片| 在线观看一区二区三区激情| 亚洲精品美女久久久久99蜜臀| 中亚洲国语对白在线视频| 久久这里只有精品19| 美女扒开内裤让男人捅视频| 看免费av毛片| 女同久久另类99精品国产91| 777久久人妻少妇嫩草av网站| 日韩精品青青久久久久久| 一进一出好大好爽视频| 亚洲av电影在线进入| 久久亚洲真实| 操美女的视频在线观看| av天堂久久9| 精品久久久精品久久久| 亚洲一区二区三区色噜噜 | 精品免费久久久久久久清纯| 99久久国产精品久久久| 精品国产乱子伦一区二区三区| 国产视频一区二区在线看| 亚洲国产看品久久| 宅男免费午夜| 曰老女人黄片| 欧美一区二区精品小视频在线| 亚洲伊人色综图| 最好的美女福利视频网| 女人爽到高潮嗷嗷叫在线视频| 国产精品98久久久久久宅男小说| 一级黄色大片毛片| 国产精品综合久久久久久久免费 | av天堂在线播放| 免费人成视频x8x8入口观看| 丰满迷人的少妇在线观看| 一进一出抽搐gif免费好疼 | 国产无遮挡羞羞视频在线观看| 琪琪午夜伦伦电影理论片6080| 欧美丝袜亚洲另类 | 成年人免费黄色播放视频| 欧美激情高清一区二区三区| 欧美人与性动交α欧美精品济南到| 夫妻午夜视频| 不卡av一区二区三区| 久久天堂一区二区三区四区| 性欧美人与动物交配| 水蜜桃什么品种好| 亚洲精品粉嫩美女一区| 一级片'在线观看视频| 亚洲熟女毛片儿| 午夜福利免费观看在线| 欧美久久黑人一区二区| 久久久国产欧美日韩av| 欧美人与性动交α欧美精品济南到| 午夜福利影视在线免费观看| 国产免费av片在线观看野外av| 日韩有码中文字幕| 免费日韩欧美在线观看| 女生性感内裤真人,穿戴方法视频| 久久久久久亚洲精品国产蜜桃av| 一级a爱视频在线免费观看| 天堂√8在线中文| 精品久久蜜臀av无| 999久久久国产精品视频| 亚洲国产精品一区二区三区在线| 真人做人爱边吃奶动态| 他把我摸到了高潮在线观看| 欧美丝袜亚洲另类 | 亚洲一区中文字幕在线| 午夜免费成人在线视频| 久久亚洲真实| 日日夜夜操网爽| 97碰自拍视频| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 久久精品国产亚洲av香蕉五月| 久久性视频一级片| 欧美不卡视频在线免费观看 | 欧美中文综合在线视频| 在线观看66精品国产| 欧美日韩中文字幕国产精品一区二区三区 | 人妻丰满熟妇av一区二区三区| av中文乱码字幕在线| 亚洲七黄色美女视频| 亚洲精品久久午夜乱码| 天天躁夜夜躁狠狠躁躁| 交换朋友夫妻互换小说| 黄片播放在线免费| 日韩成人在线观看一区二区三区| 国产精华一区二区三区| 在线十欧美十亚洲十日本专区| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 欧美日韩精品网址| 91av网站免费观看| 国产人伦9x9x在线观看| 国产av在哪里看| 亚洲精品中文字幕一二三四区| 免费观看精品视频网站| 一级a爱片免费观看的视频| 午夜福利在线观看吧| 免费观看精品视频网站| 国产高清激情床上av| 国产成人av教育| 午夜激情av网站| 久久精品国产清高在天天线| 女人被狂操c到高潮| 国产亚洲精品久久久久久毛片| 久久中文字幕一级| 午夜免费鲁丝| 天天躁狠狠躁夜夜躁狠狠躁| 欧美色视频一区免费| 免费观看精品视频网站| 日韩精品免费视频一区二区三区| 69精品国产乱码久久久| 黑人巨大精品欧美一区二区mp4| 中文字幕人妻丝袜一区二区| 高清在线国产一区| 亚洲少妇的诱惑av| 国产精品美女特级片免费视频播放器 | 50天的宝宝边吃奶边哭怎么回事| 老熟妇仑乱视频hdxx| av超薄肉色丝袜交足视频| 黄色怎么调成土黄色| 欧美一区二区精品小视频在线| 久久人妻福利社区极品人妻图片| www国产在线视频色| 麻豆久久精品国产亚洲av | 国产精品久久久久成人av| 丰满的人妻完整版| 十分钟在线观看高清视频www| 精品国产超薄肉色丝袜足j| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| 亚洲一区二区三区色噜噜 | 制服人妻中文乱码| 欧美一区二区精品小视频在线| а√天堂www在线а√下载| 夜夜躁狠狠躁天天躁| 成人三级黄色视频| 午夜精品在线福利| 天堂俺去俺来也www色官网| 淫秽高清视频在线观看| 免费一级毛片在线播放高清视频 | 精品国产乱码久久久久久男人| 狂野欧美激情性xxxx| 12—13女人毛片做爰片一| 男女之事视频高清在线观看| 真人做人爱边吃奶动态| 亚洲精品一二三| 人妻久久中文字幕网| 黄色 视频免费看| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 老汉色av国产亚洲站长工具| 亚洲成国产人片在线观看| 大型黄色视频在线免费观看| 黄片大片在线免费观看| 国产亚洲精品久久久久久毛片| 国产免费现黄频在线看| 精品一区二区三区av网在线观看| 国产野战对白在线观看| 精品国产一区二区久久| 亚洲午夜精品一区,二区,三区| 天天添夜夜摸| 多毛熟女@视频| 涩涩av久久男人的天堂| 最近最新中文字幕大全免费视频| 黄色怎么调成土黄色| 村上凉子中文字幕在线| av福利片在线| 黄色成人免费大全| 夜夜爽天天搞| 777久久人妻少妇嫩草av网站| videosex国产| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 久久久久精品国产欧美久久久| 国产深夜福利视频在线观看| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区| 亚洲精品中文字幕一二三四区| 亚洲色图综合在线观看| 中文字幕人妻丝袜一区二区| 日韩欧美在线二视频| 巨乳人妻的诱惑在线观看| 99在线视频只有这里精品首页| 中文亚洲av片在线观看爽| 中文字幕人妻丝袜制服| 美国免费a级毛片| 亚洲熟妇中文字幕五十中出 | 男人舔女人的私密视频| av福利片在线| 999久久久国产精品视频| 日韩高清综合在线| 国产精品一区二区精品视频观看| 国内毛片毛片毛片毛片毛片| 亚洲欧美一区二区三区久久| 国产午夜精品久久久久久| 国产日韩一区二区三区精品不卡| 午夜福利欧美成人| av网站在线播放免费| 日韩成人在线观看一区二区三区| 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 日韩高清综合在线| 在线观看www视频免费| 日本a在线网址| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站 | 91av网站免费观看| 久久 成人 亚洲| 国产精品二区激情视频| 人妻久久中文字幕网| 在线观看一区二区三区激情| av网站在线播放免费| 国产深夜福利视频在线观看| 亚洲人成伊人成综合网2020| 丝袜在线中文字幕| 一进一出抽搐动态| 欧美成人午夜精品| 日日干狠狠操夜夜爽| 国产成人免费无遮挡视频| 国产免费av片在线观看野外av| av片东京热男人的天堂| 亚洲国产毛片av蜜桃av| 国产精品亚洲av一区麻豆| 午夜精品国产一区二区电影| 在线观看免费午夜福利视频| 欧美日韩黄片免| tocl精华| 国产成+人综合+亚洲专区| 大陆偷拍与自拍| 咕卡用的链子| 嫩草影院精品99| 看黄色毛片网站| 亚洲成av片中文字幕在线观看| 国产精品一区二区免费欧美| 一区二区日韩欧美中文字幕| 成人影院久久| 亚洲片人在线观看| 国产av一区在线观看免费| 80岁老熟妇乱子伦牲交| 精品日产1卡2卡| 日韩 欧美 亚洲 中文字幕| 亚洲人成伊人成综合网2020| 久久国产乱子伦精品免费另类| 中文字幕人妻熟女乱码| 午夜精品国产一区二区电影| www.www免费av| 777久久人妻少妇嫩草av网站| 人成视频在线观看免费观看| 国产精品乱码一区二三区的特点 | 久久这里只有精品19| 动漫黄色视频在线观看| 久久香蕉激情| 国产99白浆流出| 两性夫妻黄色片| 身体一侧抽搐| 亚洲色图 男人天堂 中文字幕| 免费在线观看影片大全网站| 波多野结衣一区麻豆| 亚洲精品中文字幕在线视频| 欧美乱妇无乱码| 黄色 视频免费看| 又大又爽又粗| 久久久久久免费高清国产稀缺| 身体一侧抽搐| 大香蕉久久成人网| 12—13女人毛片做爰片一| 在线观看日韩欧美| 91字幕亚洲| 国产av又大| 久久久久久免费高清国产稀缺| 免费看十八禁软件| 国产成人欧美| 国产国语露脸激情在线看| 女人被躁到高潮嗷嗷叫费观| 操出白浆在线播放| 午夜视频精品福利| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 色婷婷av一区二区三区视频| 日韩免费av在线播放| 国产成人av教育| 国产亚洲精品第一综合不卡| 色婷婷av一区二区三区视频| 日本欧美视频一区| 成人三级做爰电影| a级片在线免费高清观看视频| 熟女少妇亚洲综合色aaa.| 国产xxxxx性猛交| 又大又爽又粗| 在线观看免费视频日本深夜| 别揉我奶头~嗯~啊~动态视频| 手机成人av网站| 最近最新免费中文字幕在线| 国产无遮挡羞羞视频在线观看| 久久性视频一级片| 18禁观看日本| 国产麻豆69| 在线视频色国产色| 成人18禁在线播放| 久久精品国产清高在天天线| 窝窝影院91人妻| 亚洲av成人av| 搡老熟女国产l中国老女人| 亚洲精品国产精品久久久不卡| 美女福利国产在线| 香蕉丝袜av| 欧美日韩国产mv在线观看视频| 久久人妻熟女aⅴ| 亚洲一区二区三区不卡视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品粉嫩美女一区| 精品久久久精品久久久| 国产精品日韩av在线免费观看 | 国产精品综合久久久久久久免费 | 人人妻人人澡人人看| 国产av在哪里看| 视频区图区小说| 亚洲国产精品sss在线观看 | 国产高清视频在线播放一区| 久久香蕉激情| 亚洲国产精品sss在线观看 | 久久狼人影院| 亚洲第一欧美日韩一区二区三区| 成人三级黄色视频| 国产片内射在线| 国产一区二区三区综合在线观看| 日日摸夜夜添夜夜添小说| av在线天堂中文字幕 | 国产精品久久久av美女十八| 波多野结衣一区麻豆| 神马国产精品三级电影在线观看 | 欧美一区二区精品小视频在线| 免费不卡黄色视频| 午夜a级毛片| 亚洲国产中文字幕在线视频| 岛国视频午夜一区免费看| 丰满迷人的少妇在线观看| 亚洲中文av在线| 久久国产亚洲av麻豆专区| 国产亚洲精品久久久久5区| 亚洲国产精品合色在线| 亚洲精华国产精华精| 国产成人欧美| 国产国语露脸激情在线看| 天天影视国产精品| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 在线观看免费高清a一片| 久久精品人人爽人人爽视色| 亚洲一区二区三区不卡视频| 久久精品91无色码中文字幕| 日韩中文字幕欧美一区二区| 老司机午夜十八禁免费视频| 亚洲自拍偷在线| 日韩欧美在线二视频| 80岁老熟妇乱子伦牲交| 免费一级毛片在线播放高清视频 | 欧美色视频一区免费| 亚洲少妇的诱惑av| 久久久国产成人精品二区 | 伦理电影免费视频| 国产精品日韩av在线免费观看 | 老熟妇仑乱视频hdxx| 在线观看日韩欧美| 精品国产一区二区三区四区第35| 最新美女视频免费是黄的| 日韩欧美三级三区| 美国免费a级毛片| 18禁美女被吸乳视频| 天堂俺去俺来也www色官网| 精品无人区乱码1区二区| 精品人妻1区二区| svipshipincom国产片| 国产精品久久久人人做人人爽| 中文字幕av电影在线播放| 精品免费久久久久久久清纯| 一级a爱视频在线免费观看| 日韩有码中文字幕| 国产又色又爽无遮挡免费看| 两个人看的免费小视频| 日韩视频一区二区在线观看| 男男h啪啪无遮挡| 国产精品av久久久久免费| 在线观看免费视频日本深夜| 99在线视频只有这里精品首页| 精品久久久久久,| 级片在线观看| 国产三级黄色录像| 曰老女人黄片| 青草久久国产| 村上凉子中文字幕在线| 最新美女视频免费是黄的| 亚洲精品国产精品久久久不卡| 岛国在线观看网站| 国产精品自产拍在线观看55亚洲| 侵犯人妻中文字幕一二三四区| 99久久国产精品久久久| 国产成人系列免费观看| 精品一区二区三区av网在线观看| 午夜福利免费观看在线| 又紧又爽又黄一区二区| aaaaa片日本免费| 精品一区二区三卡| 亚洲精品av麻豆狂野| 老汉色av国产亚洲站长工具| 亚洲午夜理论影院| 国产成人影院久久av| 欧美一区二区精品小视频在线| 校园春色视频在线观看| 亚洲av成人av| 日韩免费高清中文字幕av| 1024视频免费在线观看| 亚洲av成人不卡在线观看播放网| 中出人妻视频一区二区| 亚洲av成人av| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 久久 成人 亚洲| av超薄肉色丝袜交足视频| 久久国产亚洲av麻豆专区| 亚洲精品美女久久av网站| 免费一级毛片在线播放高清视频 | 无遮挡黄片免费观看| www.精华液| 国产精品免费一区二区三区在线| 真人做人爱边吃奶动态| 视频在线观看一区二区三区| 精品人妻1区二区| 久久久久国产一级毛片高清牌| 日本精品一区二区三区蜜桃| 免费在线观看视频国产中文字幕亚洲| 日韩人妻精品一区2区三区| 神马国产精品三级电影在线观看 | 欧美国产精品va在线观看不卡| 在线观看免费日韩欧美大片| 成人三级黄色视频| 免费av中文字幕在线| 黑丝袜美女国产一区| 激情视频va一区二区三区| 精品国产一区二区久久| 国产在线观看jvid| 亚洲情色 制服丝袜| 精品乱码久久久久久99久播| 精品高清国产在线一区| 亚洲aⅴ乱码一区二区在线播放 | 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 久久青草综合色| 国产精品 国内视频| 老熟妇仑乱视频hdxx| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人色综图| 久久热在线av| 国产成人精品无人区| 亚洲欧美激情在线| www国产在线视频色| 亚洲精品粉嫩美女一区| 国产精品98久久久久久宅男小说| 国产欧美日韩综合在线一区二区| 久久精品aⅴ一区二区三区四区| 国产亚洲精品综合一区在线观看 | 国产亚洲精品第一综合不卡| 自线自在国产av| 欧美午夜高清在线| 免费av中文字幕在线| 久久精品国产清高在天天线| 亚洲在线自拍视频| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 亚洲国产毛片av蜜桃av| av网站在线播放免费| 亚洲国产看品久久| 淫妇啪啪啪对白视频| 国产精品日韩av在线免费观看 | 天天添夜夜摸| 精品久久久精品久久久| 免费人成视频x8x8入口观看| 亚洲一区二区三区色噜噜 | 一本综合久久免费| 俄罗斯特黄特色一大片| 亚洲av五月六月丁香网| 在线观看免费日韩欧美大片| 久久久久亚洲av毛片大全| 91麻豆av在线| 长腿黑丝高跟| 色婷婷久久久亚洲欧美| 日本免费a在线|