• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prospects of Huygens’ Metasurfaces for Antenna Applications

    2022-06-11 09:03:10GeorgeEleftheriadesMinseokKimVasileiosAtaloglouAymanDorrah
    Engineering 2022年4期

    George V. Eleftheriades, Minseok Kim, Vasileios G. Ataloglou, Ayman H. Dorrah

    Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada

    1. Introduction

    In recent years,there has been an intense research effort by the international community in the field of‘‘artificial”electromagnetic materials,or‘‘metamaterials.”Metamaterials are engineered structures that induce a tailored arrangement of magnetic and electric dipole moments when excited by an incident electromagnetic field. Under certain conditions, such as when the comprising unit cells are sub-wavelength, metamaterials can be homogenized and described in terms of macroscopic constitutive parameters such as permeability, permittivity, and refractive index. A summary of the early work on ‘‘artificial dielectrics” can be found in Ref.[1].In the over 20-year-old field of metamaterials,the desired macroscopic parameters correspond to extreme properties such as negative permittivity,negative permeability,and a negative refractive index. Perhaps the most recognized metamaterial is that which realizes a negative refractive index,originally demonstrated at microwaves and based on a unit cell made out of a split-ring resonator and a wire [2]. In the engineering community, a transmission-line approach was developed for implementing metamaterials with significant advantages, such as reduced transmission losses and wider operating bandwidths [3,4].

    In the context of metamaterials, metasurfaces can be considered as two-dimensional (2D) metamaterials. It is perhaps noteworthy that most of the research on metasurfaces was conducted following the work on three-dimensional (3D) metamaterials [5–9].In this article,we focus on the concept of the Huygens’metasurface (HMS) and its application to antenna engineering. HMSs are composed of 2D arrays of Huygens’ scatterers or sources, giving rise to passive and active HMSs, respectively. In their most basic form,these HMSs are implemented by co-located orthogonal electric and magnetic dipole moments (or currents) [6,7]. Such 2D metasurfaces are homogenized with macroscopic parameters such as surface susceptibility or impedance/admittance tensors, since there is no volume to properly define constitutive parameters such as permeability or permittivity. The important aspect here is that the wave nature of light can be understood using secondary sources(Huygens’sources)and emanating wavelets,as envisioned by Christiaan Huygens dating back to the 17th century. Hence,HMSs offer a powerful method to engineer and control electromagnetic wavefronts at will.Consequently,there is ample opportunity to apply these HMSs to antenna theory and practice, as will be highlighted in the remainder of this short article.

    2. Basic HMS theory

    Fig. 1 shows the basic setup for formulating the theory of an HMS. As shown, an incident electromagnetic wave consisting of an electric field E1and a magnetic field H1is transformed into a desired transmitted wave with electric field E2and a magnetic field H2by passing through a thin HMS surface. This transformation is achieved by exciting suitable orthogonal electric and magnetic currents, denoted by Jsand Msrespectively, as shown in Eq. (1).

    Fig.1. Schematicofa genericHMS.The surfacecurrentdensities Js and Ms allowfor adiscontinuityinthe fields (E1,H1)and (E2,H2)atthetwosides of the HMS.E1 and H1 are the electric and magnetic fields at the input side (region 1),respectively. E2 and H2 are the electricand magnetic fields at the transmittedside (region 2),respectively.n︿ istheunitvector normalto the HMS pointingtowards region 2.

    where Re refers to the real part of the normal power density.The extra degree of freedom offered by omega-bianisotropy enables the total control of the reflections in region 1(Fig.1).For example,O-BHMs have been used to demonstrate reflectionless refraction even when the angle of incidence and refraction are greatly different, which is a significant milestone in the development of such metasurfaces [11].

    3. Antenna beamforming

    One appealing application of HMSs in antennas is antenna beamforming. In particular, HMSs can be utilized for antenna beamforming with precise pattern control,but without the explicit utilization of a feeding network as in conventional antenna arrays.Although the general formulation in Eq. (2) would seem to allow for arbitrary amplitude and phase control over a given metasurface aperture, the requirement of local power conservation in Eq. (3)imposes a severe restriction on such arbitrary magnitude and phase control. One solution to this issue is to allow reflections to occur in order to taper the amplitude of the refracted waves to become arbitrary. In order to recover this otherwise lost reflected power, the metasurface can be enclosed in an oversized cavity[12]. As shown in Fig. 2 [12], the cavity is excited by a current source element in close proximity to the radiating metasurface aperture. It should also be noted that the reflections in the cavity permit the efficient illumination of the aperture, thus providing an increased gain as desirable.

    4. Electronic beamforming and steering

    Fig. 2. Cavity-excited HMS for antenna beamforming [12]. (a) Sketch of the structure. x,y,and z refer to a cartesian coordinate system. δ is the Dirac function. θout is a desirable transmission angle. A current source J with amplitude I0 is placed at y=y′, z=z′ within a cavity of length L and depth d. Radiation towards θout is obtained.(b)Fabricated antenna for highly directive radiation at the broadside.λ is the free-space wavelength.(c)Measured,theoretical,and simulated patterns at 20 GHz in decibels(dB).

    Fig.3. Single O-BHMS for beamforming applications through auxiliary surface waves.(a)Sketch of the configuration[16].Incident electric field Einc and magnetic field Hinc is transformed to desired output electric field Eout and magnetic field Hout by means of auxiliary surface waves characterized by an electric field Esw and magnetic field Hsw.(b)Sample unit cell to realize the HMS parameters.Four dogbone layers with widths W1,W2,W3,and W4 are etched on Rogers RO3010 substrates.(c)Radiation pattern from physical structure simulations for a Taylor pattern with a –20 dB sidelobe level.φ represents the angle in the azimuthal (x–y) plane.

    As previously mentioned, one of the unique field manipulation capabilities of O-BHMSs is ‘‘perfect” refraction, in which an incident electromagnetic (EM) wave can be arbitrarily refracted even at extreme angles without producing any spurious diffraction[11,17]. For example, by asymmetrically placing a wire and a loop to form an omega-bianisotropic Huygens’ unit cell, Chen and Eleftheriades [17] experimentally demonstrated the refraction of a normally incident EM wave at 72° with negligible reflections,as shown in Fig. 4 [17]. Such an unusual field manipulation capability is of particular interest in many antenna applications,since it can be used as a new paradigm for realizing a wide-angle scanning antenna. Indeed, Abdo-Sánchez et al. [18] utilized the unique refraction properties of O-BHMS in the implementation of a leaky-wave antenna (LWA) to demonstrate arbitrary control of the guided and leaky modes.In their work,these scholars replaced the top perfect electric conductor plate of a parallel-plate waveguide with an O-BHMS such that an arbitrarily stipulated guided mode could be transformed into a certain desired leaky mode.Since the guided mode and the leaky mode are user-defined quantities, their proposed LWA can radiate in any direction (including broadside) with arbitrary leakage constants. The ability to control the leakage constant also implies that a certain amplitude tapering can be synthesized on the O-BHMS to realize complex radiation patterns (e.g., a Dolph–Chebyshev pattern). Notwithstanding,many practical applications such as high-speed communications,radar, and remote sensing also require the dynamic control of radiation patterns. Consequently, significant effort has been devoted recently to the implementation of reconfigurable metasurfaces for the dynamic shaping of EM waves [19–23]. For example,Chen et al. [19] demonstrated a tunable Huygens’ metalens by incorporating three varactor diodes in each of their wire-loop unit cells. By individually biasing these diodes, the researchers could independently control the electric and magnetic resonances,thereby achieving the required phase control for tailoring the focused beam profiles. In comparison, so-called ‘‘1-bit” tunable metasurfaces have also been frequently demonstrated to dynamically steer multiple beams, which typically utilize positive–intrinsic–negative (PIN) diode switches in their unit-cell design [20,21].These surfaces, however, inevitably produce more than one beam when they are excited by normally incident plane waves,and most of the reported 1 bit metasurfaces are reflective,as the biasing network can easily be integrated behind a ground plane.In addition to these phase-only tunable metasurfaces, it should be briefly mentioned that surfaces that can dynamically alter the polarization state have also been demonstrated [22,23]. While the aforementioned tunable metasurfaces are capable of dynamic beam shaping,they still provide limited wave-control capabilities due to their inability to independently modulate the amplitude of the scattered field. Such functionality is highly desirable, as it would offer extreme capability for precise beamforming. In addition, most of the reported tunable surfaces have focused on dynamically manipulating free-space waves, which requires an external excitation source to be placed sufficiently far away from the surfaces. To address these issues, Kim and Eleftheriades [24] introduced a reconfigurable O-BHMS that can be integrated with a wave-guiding structure to realize a compact wave-control platform,as shown in Fig.5[24].The proposed tunable O-BHMS is capable of independently controlling the amplitude and phase of its reflection and transmission coefficients, thereby supporting an arbitrarily stipulated guided mode (i.e., there is no cutoff frequency) and any desired radiations.To be specific,this is achieved by cascading four tunable impedance surfaces.Each tunable impedance surface consists of dual-loop unit cells in which a varactor diode is integrated with the outermost loop to acquire the necessary tunability (Fig.5(a) [24]). The unique feature of their proposed unit cell is that its reactance can be widely tuned from inductance to capacitance as a function of the applied bias voltage, which makes it possible to synthesize arbitrary scattering parameters for the cascaded structure.As a proof of concept,Fig.5(c)shows the numerical simulation results of wide-angle scanning from–70°to 70°at the fixed operating frequency of 5 GHz. In contrast to traditional phased arrays,which struggle to scan at extreme angles due to the mutual coupling between elements, wide-angle scanning could be achieved,since the O-BHMS directly satisfies the necessary boundary conditions for any given field distributions to be fully Maxwellian.These unique attributes of a tunable O-BHMS are particularly interesting for various emerging applications such as the fifth generation mobile communication technology (5G)/the sixth generation mobile networks (6G) telecommunications, radars for autonomous vehicles, and traffic control.

    Fig. 4. Reflectionless wide-angle refraction based on an O-BHMS. (a) Electric field distribution of one period of the O-BHMS showing anomalous refraction of a normally incident wave at 72°;(b)the physical realization of the O-BHMS based on the asymmetric wire-loop design.Reproduced from Ref.[17]with permission from IEEE, ? 2020.

    Fig. 5. O-BHMS-assisted LWA. (a) The proposed unit cell design and (b) the schematic of the LWA that integrates the tunable O-BHMS [24]. SMA: subminiature version A.(c) Full-wave simulation results on gain variation at various scan angles. (d–f) The fabrication of the proposed reconfigurable LWA.

    5. The peripherally excited Huygens’ box antenna

    One of the first reports on HMSs involved the usage of an active HMS for cloaking applications [7,10]. This concept has also been utilized to excite unusual electromagnetic modes in an oversized metallic cavity lined by active Huygens’sources[25,26].For example,Wong and Eleftheriades[26]experimentally show how such a Huygens’ box arrangement can produce traveling waves at arbitrary angles in a rectangular closed metallic cavity(box).It is worth highlighting that these traveling waves are not from the inherent modes of metallic cavities,which are typically only capable of supporting standing waves. This feat becomes possible since the excited fields inside the metallic cavity of the Huygens’ box can be controlled by the peripheral Huygens’ sources (along the perimeter of the cavity) according to the equivalence principle.This Huygens’box device has been utilized to demonstrate the formation of sub-wavelength focal spots and cloaking [26]. More recently,the same concept was exploited to realize reconfigurable aperture antennas with a reduced number of active elements, as the number of active elements therein is no longer dependent on the area of the radiating aperture (N2dependence, where N2is the number of antenna elements) and is instead solely dependent on its circumference (N dependence) [27,28]. Fig. 6(a) shows a possible realization of this peripherally excited phased array(PEX-PA)concept.As shown,a cavity is lined up by active Huygens’sources,which can comprise simple dipole antennas backed up by the cavity side walls.The top surface of the cavity is a perforated or suitably slotted metallic plate that allows radiation to leak out. A prototype of the PEX-PA concept was fabricated using standard printed-circuit board fabrication technology, as shown in Fig. 6(b);the side walls of the cavity were constructed using metallic vias connecting the top and bottom plates of the board, and the radiating perforations were arranged in a 2D square lattice.Sample measured radiation patterns are depicted in Fig. 7 for single-beam operation and in Fig. 8 for multiple-beam operation. It is observed that the designed structure is capable of generating single and multiple pencil beams at broadside and tilted angles in different scan planes. This finding demonstrates the flexibility of the PEX-PA concept and the possibility of generating directive pencil beams solely from peripheral Huygens’ sources excitations. In principle, by controlling the phase and/or magnitude of these peripheral sources, the generated beam(s) can be scanned over a considerable range of angles.

    6. Discussion and conclusions

    HMSs offer great opportunities for advances in antenna theory and practice. Some opportunities have been highlighted in this article and include static beamforming without a feeding network but still with precise aperture and phase control.HMSs can also be used for dynamic beamforming and beam steering with an inherent capability of wide-angle scanning. We expect this latter attribute to be further exploited and demonstrated in the future.Another important characteristic of these surfaces is that they can be designed to achieve all-pass filtering characteristics [29].This attribute can be exploited in the future for ultra-wideband antenna applications with ultra-thin HMS apertures. Dynamic HMSs also permit low power consumption due to their compatibility with simple controlling elements, such as varactors. Moreover,the concept of the peripherally excited (PEX) Huygens’ box antenna offers an alternative to phased arrays but with a drastically reduced number of active elements.This concept is also likely to be further exploited and demonstrated in the future.Finally,time-modulated HMSs can be envisioned as offering opportunities for non-reciprocal antenna applications, such as for fullduplex 6G wireless networks [30].

    Fig. 6. The peripherally excited cavity antenna. (a) Demonstration of the concept. θ: the elevation angle. (b) Fabricated square prototype.

    Fig. 7. Examples of measured radiation patterns at 13 GHz. (a) Broadside; (b) titled close to the x–z plane; (c) titled close to the y–z plane.

    Fig.8. Examples of measured multiple-beam radiation patterns at 13.1 GHz.These plots show the normalized 3D radiation field intensity patterns to an arbitrary value of 100(V?m-1) in linear scale.

    国产精品一区www在线观看| 色视频在线一区二区三区| 亚洲国产欧美在线一区| 亚洲综合色网址| 国产综合精华液| 久久久久精品性色| 成人综合一区亚洲| 国产在线免费精品| 成人手机av| 黑人猛操日本美女一级片| 性色avwww在线观看| 精品99又大又爽又粗少妇毛片| 久久精品aⅴ一区二区三区四区 | 欧美精品一区二区大全| 日韩三级伦理在线观看| 中文字幕精品免费在线观看视频 | 五月玫瑰六月丁香| 美女内射精品一级片tv| av线在线观看网站| 精品国产一区二区三区久久久樱花| av播播在线观看一区| 国产精品欧美亚洲77777| 老司机亚洲免费影院| 国产爽快片一区二区三区| 伦精品一区二区三区| 亚洲av中文av极速乱| 免费久久久久久久精品成人欧美视频 | 一级,二级,三级黄色视频| 美女国产视频在线观看| 亚洲综合精品二区| 韩国精品一区二区三区 | 亚洲高清免费不卡视频| 国产深夜福利视频在线观看| 亚洲成人av在线免费| 视频区图区小说| 久久97久久精品| 妹子高潮喷水视频| 黄色一级大片看看| 婷婷色综合大香蕉| 99久久综合免费| 麻豆精品久久久久久蜜桃| 久久精品夜色国产| 国产免费福利视频在线观看| 久久av网站| 中国美白少妇内射xxxbb| 精品人妻在线不人妻| 成年av动漫网址| 精品亚洲乱码少妇综合久久| 亚洲少妇的诱惑av| 午夜免费男女啪啪视频观看| 成人毛片a级毛片在线播放| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩卡通动漫| 97在线人人人人妻| 欧美日韩综合久久久久久| 国产一区二区在线观看av| 国产精品久久久久久av不卡| videos熟女内射| 熟女电影av网| av又黄又爽大尺度在线免费看| 99九九在线精品视频| 亚洲国产欧美日韩在线播放| 久久狼人影院| 高清视频免费观看一区二区| 亚洲色图 男人天堂 中文字幕 | 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 一级片免费观看大全| 日本wwww免费看| 亚洲av.av天堂| 一边亲一边摸免费视频| 制服人妻中文乱码| 中文精品一卡2卡3卡4更新| 国产亚洲最大av| av在线播放精品| 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 成人影院久久| 热re99久久精品国产66热6| 亚洲久久久国产精品| 亚洲天堂av无毛| 日本爱情动作片www.在线观看| 欧美丝袜亚洲另类| 国产精品.久久久| 人人妻人人澡人人看| 美女内射精品一级片tv| 久久狼人影院| 午夜av观看不卡| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 不卡视频在线观看欧美| 国产麻豆69| 丰满少妇做爰视频| 18禁观看日本| 少妇的逼水好多| videosex国产| 亚洲av欧美aⅴ国产| 91aial.com中文字幕在线观看| 久久精品久久久久久噜噜老黄| 在线观看三级黄色| 亚洲,一卡二卡三卡| 夜夜骑夜夜射夜夜干| 如何舔出高潮| 欧美+日韩+精品| 男的添女的下面高潮视频| 视频区图区小说| 2018国产大陆天天弄谢| 成人18禁高潮啪啪吃奶动态图| 久久久久久久精品精品| 99久国产av精品国产电影| 成年av动漫网址| 熟女电影av网| 欧美另类一区| 久久99热6这里只有精品| 在线精品无人区一区二区三| 亚洲内射少妇av| 在线观看美女被高潮喷水网站| 青春草国产在线视频| 欧美激情国产日韩精品一区| 一本色道久久久久久精品综合| 99久国产av精品国产电影| 精品人妻在线不人妻| 日韩一本色道免费dvd| 我的女老师完整版在线观看| 午夜激情久久久久久久| 少妇的逼好多水| 精品少妇久久久久久888优播| 午夜91福利影院| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| 女人精品久久久久毛片| 精品少妇内射三级| 亚洲五月色婷婷综合| 99热全是精品| av线在线观看网站| 赤兔流量卡办理| 国产高清不卡午夜福利| 国产精品无大码| 成人国产av品久久久| av女优亚洲男人天堂| 国产精品国产av在线观看| 91aial.com中文字幕在线观看| 国产精品女同一区二区软件| 午夜影院在线不卡| 亚洲色图 男人天堂 中文字幕 | videos熟女内射| 亚洲中文av在线| 国产一区二区三区av在线| 黄色毛片三级朝国网站| 国产精品久久久av美女十八| 免费观看av网站的网址| 桃花免费在线播放| 咕卡用的链子| 亚洲欧美成人精品一区二区| 欧美bdsm另类| 国产成人aa在线观看| 亚洲,欧美精品.| 26uuu在线亚洲综合色| 日韩免费高清中文字幕av| 日韩一区二区视频免费看| 国产精品无大码| 王馨瑶露胸无遮挡在线观看| 精品人妻在线不人妻| 哪个播放器可以免费观看大片| 国产精品一区二区在线不卡| 婷婷色综合www| 超碰97精品在线观看| 80岁老熟妇乱子伦牲交| 中文字幕人妻丝袜制服| 国产一区二区三区av在线| 九色成人免费人妻av| 丰满饥渴人妻一区二区三| 成年人免费黄色播放视频| 我的女老师完整版在线观看| 国产精品久久久久久精品古装| 看十八女毛片水多多多| 国产精品人妻久久久影院| 一级黄片播放器| 国产精品.久久久| 成人国产av品久久久| 欧美精品高潮呻吟av久久| 欧美xxⅹ黑人| 少妇猛男粗大的猛烈进出视频| 少妇精品久久久久久久| 街头女战士在线观看网站| 一区二区三区乱码不卡18| 两个人免费观看高清视频| 26uuu在线亚洲综合色| 亚洲av免费高清在线观看| 熟女av电影| 亚洲国产av新网站| 亚洲欧美一区二区三区国产| 国产有黄有色有爽视频| 日日爽夜夜爽网站| 精品一品国产午夜福利视频| 哪个播放器可以免费观看大片| 高清欧美精品videossex| 18禁国产床啪视频网站| 亚洲综合色网址| 国产一级毛片在线| 久久免费观看电影| 精品久久久精品久久久| 久久久久精品人妻al黑| 亚洲综合色网址| 久久人人爽人人片av| 久久久久久久国产电影| 亚洲成国产人片在线观看| 黑人欧美特级aaaaaa片| 亚洲欧美中文字幕日韩二区| 老熟女久久久| av.在线天堂| 国产激情久久老熟女| 国产精品熟女久久久久浪| 久热这里只有精品99| 一区二区三区精品91| 久久精品久久精品一区二区三区| 蜜桃国产av成人99| av有码第一页| 亚洲综合色惰| 中文字幕精品免费在线观看视频 | 国产国语露脸激情在线看| 久久青草综合色| 国产精品国产三级国产专区5o| 晚上一个人看的免费电影| 80岁老熟妇乱子伦牲交| 日韩一本色道免费dvd| 国产激情久久老熟女| 黄色视频在线播放观看不卡| 欧美人与善性xxx| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 人妻 亚洲 视频| 亚洲精品自拍成人| 狂野欧美激情性xxxx在线观看| 美国免费a级毛片| 亚洲国产毛片av蜜桃av| 国产成人精品无人区| 777米奇影视久久| 国内精品宾馆在线| 国产又爽黄色视频| 大话2 男鬼变身卡| 午夜激情久久久久久久| 国产日韩欧美视频二区| 国产黄色免费在线视频| 日韩大片免费观看网站| 久久久久网色| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 啦啦啦中文免费视频观看日本| 中文字幕制服av| 日本免费在线观看一区| 草草在线视频免费看| 国产老妇伦熟女老妇高清| 亚洲三级黄色毛片| 免费高清在线观看视频在线观看| 亚洲 欧美一区二区三区| 晚上一个人看的免费电影| 夫妻性生交免费视频一级片| 欧美日韩精品成人综合77777| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久久久免| 91精品三级在线观看| 一区在线观看完整版| av在线播放精品| 亚洲av综合色区一区| 国产在线免费精品| 亚洲一级一片aⅴ在线观看| 国产片特级美女逼逼视频| 国产亚洲精品第一综合不卡 | 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 久久婷婷青草| 国产熟女欧美一区二区| 色吧在线观看| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 精品国产一区二区三区久久久樱花| 色吧在线观看| 亚洲精品日本国产第一区| 国产色爽女视频免费观看| 亚洲欧美精品自产自拍| 亚洲精品色激情综合| 男人爽女人下面视频在线观看| 中国美白少妇内射xxxbb| 日本vs欧美在线观看视频| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看| 最新的欧美精品一区二区| 久久精品久久精品一区二区三区| 久久精品国产a三级三级三级| 99国产综合亚洲精品| 亚洲精品乱久久久久久| 性色avwww在线观看| 在线观看一区二区三区激情| 最新的欧美精品一区二区| 日日摸夜夜添夜夜爱| 一级爰片在线观看| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 国产乱来视频区| 国产在线免费精品| 我的女老师完整版在线观看| 免费黄色在线免费观看| 尾随美女入室| 欧美亚洲 丝袜 人妻 在线| 中国国产av一级| 三上悠亚av全集在线观看| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| a 毛片基地| 十八禁网站网址无遮挡| 少妇被粗大猛烈的视频| 一级毛片我不卡| 国产精品人妻久久久久久| 国产极品粉嫩免费观看在线| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 国产极品天堂在线| 国产成人a∨麻豆精品| 亚洲欧美色中文字幕在线| 一区二区三区精品91| 国产成人a∨麻豆精品| 丁香六月天网| 亚洲精品aⅴ在线观看| 成人漫画全彩无遮挡| 三上悠亚av全集在线观看| 大话2 男鬼变身卡| 啦啦啦中文免费视频观看日本| 国产色爽女视频免费观看| 久久久久久久久久久久大奶| 男女国产视频网站| 久久久久久人人人人人| 久久久久久久久久久免费av| 啦啦啦在线观看免费高清www| 免费黄色在线免费观看| 人体艺术视频欧美日本| 成人影院久久| av在线老鸭窝| 如日韩欧美国产精品一区二区三区| 亚洲综合精品二区| 国产av一区二区精品久久| 亚洲国产av影院在线观看| 在现免费观看毛片| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 亚洲av综合色区一区| 日本黄大片高清| 国产综合精华液| 精品人妻一区二区三区麻豆| 午夜福利在线观看免费完整高清在| 国国产精品蜜臀av免费| 在线亚洲精品国产二区图片欧美| 亚洲成色77777| 国产激情久久老熟女| 久久久久久久国产电影| 制服丝袜香蕉在线| 久久精品久久精品一区二区三区| 精品亚洲成国产av| 视频在线观看一区二区三区| 亚洲成人手机| 精品人妻在线不人妻| 视频区图区小说| 九色亚洲精品在线播放| 九草在线视频观看| 国产一区亚洲一区在线观看| 如何舔出高潮| 亚洲精品aⅴ在线观看| 亚洲精品久久午夜乱码| 亚洲少妇的诱惑av| 婷婷色麻豆天堂久久| 国产av国产精品国产| 国产精品久久久av美女十八| 精品国产乱码久久久久久小说| 曰老女人黄片| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲日产国产| 女性被躁到高潮视频| 久久毛片免费看一区二区三区| 日韩伦理黄色片| 亚洲国产精品成人久久小说| 亚洲中文av在线| 久久久国产一区二区| 丝袜在线中文字幕| 欧美日韩综合久久久久久| 亚洲国产精品一区三区| 久久久久久久亚洲中文字幕| 国产 一区精品| 亚洲欧美中文字幕日韩二区| 女人久久www免费人成看片| 精品国产一区二区三区久久久樱花| av又黄又爽大尺度在线免费看| 侵犯人妻中文字幕一二三四区| www.av在线官网国产| 午夜激情久久久久久久| 婷婷色av中文字幕| 最近最新中文字幕大全免费视频 | 欧美人与性动交α欧美软件 | 男女国产视频网站| 久久久久久人妻| 交换朋友夫妻互换小说| 午夜福利视频精品| 色5月婷婷丁香| 黑人高潮一二区| 午夜精品国产一区二区电影| 永久免费av网站大全| 毛片一级片免费看久久久久| 人妻 亚洲 视频| 国产欧美日韩综合在线一区二区| 国产亚洲精品久久久com| 精品少妇黑人巨大在线播放| av又黄又爽大尺度在线免费看| 国产一级毛片在线| 22中文网久久字幕| www.熟女人妻精品国产 | 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 精品酒店卫生间| √禁漫天堂资源中文www| 18禁观看日本| 一级,二级,三级黄色视频| 好男人视频免费观看在线| kizo精华| 亚洲综合色网址| 亚洲美女搞黄在线观看| 两性夫妻黄色片 | 久热这里只有精品99| 少妇人妻 视频| 激情视频va一区二区三区| 一级,二级,三级黄色视频| 人妻系列 视频| 亚洲天堂av无毛| 国产深夜福利视频在线观看| xxx大片免费视频| 国产av一区二区精品久久| 两个人看的免费小视频| 久久久久久久久久久免费av| 亚洲四区av| 国产精品 国内视频| 黄网站色视频无遮挡免费观看| 波多野结衣一区麻豆| 国产深夜福利视频在线观看| 亚洲精品乱久久久久久| 国产精品国产av在线观看| 视频中文字幕在线观看| 成人亚洲精品一区在线观看| 国产亚洲精品久久久com| a级毛片在线看网站| 另类精品久久| 久久久久久伊人网av| 国产又爽黄色视频| 久久热在线av| 欧美最新免费一区二区三区| 亚洲国产精品成人久久小说| 欧美精品一区二区免费开放| 亚洲高清免费不卡视频| 国产av码专区亚洲av| 久久久久精品性色| 亚洲色图 男人天堂 中文字幕 | freevideosex欧美| 久久久久久久国产电影| 国产精品人妻久久久影院| 久久毛片免费看一区二区三区| 色视频在线一区二区三区| 90打野战视频偷拍视频| 亚洲国产色片| 日本av免费视频播放| 日韩制服丝袜自拍偷拍| 国产亚洲欧美精品永久| 国产成人一区二区在线| 成人无遮挡网站| 午夜福利网站1000一区二区三区| 激情视频va一区二区三区| 日韩不卡一区二区三区视频在线| 国产一区有黄有色的免费视频| 欧美少妇被猛烈插入视频| 捣出白浆h1v1| 高清欧美精品videossex| 亚洲激情五月婷婷啪啪| 欧美 日韩 精品 国产| 成人国产av品久久久| 18禁在线无遮挡免费观看视频| 亚洲中文av在线| 精品少妇内射三级| 黑丝袜美女国产一区| 午夜福利影视在线免费观看| 熟女电影av网| 亚洲精品国产av成人精品| 老司机影院毛片| 最后的刺客免费高清国语| 国产男女超爽视频在线观看| 99久久综合免费| 最近中文字幕2019免费版| 卡戴珊不雅视频在线播放| 日本黄色日本黄色录像| 97在线视频观看| 人妻 亚洲 视频| 成人18禁高潮啪啪吃奶动态图| 伦理电影大哥的女人| 在线 av 中文字幕| av播播在线观看一区| av黄色大香蕉| av天堂久久9| 久久女婷五月综合色啪小说| 国产精品99久久99久久久不卡 | 日本黄大片高清| 激情视频va一区二区三区| 精品一区二区免费观看| 国产精品国产av在线观看| 卡戴珊不雅视频在线播放| 男女下面插进去视频免费观看 | 亚洲av.av天堂| 另类亚洲欧美激情| 91精品国产国语对白视频| 日本黄大片高清| 亚洲成人一二三区av| 一级毛片 在线播放| 热99久久久久精品小说推荐| 久久韩国三级中文字幕| 久久久久久久久久久久大奶| 精品99又大又爽又粗少妇毛片| 黑人高潮一二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文字幕最新亚洲高清| 久久女婷五月综合色啪小说| 51国产日韩欧美| 少妇被粗大猛烈的视频| 亚洲丝袜综合中文字幕| 国精品久久久久久国模美| 国产福利在线免费观看视频| 热re99久久精品国产66热6| 国产精品国产三级国产av玫瑰| 18+在线观看网站| av卡一久久| 久久久久久久久久久久大奶| 九九爱精品视频在线观看| 欧美国产精品一级二级三级| 人人妻人人澡人人爽人人夜夜| 水蜜桃什么品种好| 日本wwww免费看| 亚洲av欧美aⅴ国产| 国产精品国产三级国产专区5o| 菩萨蛮人人尽说江南好唐韦庄| 成人午夜精彩视频在线观看| av卡一久久| a级毛片在线看网站| 免费黄网站久久成人精品| 亚洲内射少妇av| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 少妇人妻 视频| 少妇被粗大的猛进出69影院 | 亚洲欧美成人精品一区二区| 国产在视频线精品| 日本与韩国留学比较| 国产日韩欧美亚洲二区| 丰满迷人的少妇在线观看| 欧美日韩一区二区视频在线观看视频在线| 成年美女黄网站色视频大全免费| 亚洲人与动物交配视频| 国产成人91sexporn| 亚洲,欧美精品.| 国产精品久久久久成人av| 中文欧美无线码| 免费黄频网站在线观看国产| 日韩成人av中文字幕在线观看| 天堂中文最新版在线下载| 国产精品久久久久久久久免| 免费久久久久久久精品成人欧美视频 | 黑丝袜美女国产一区| 国产乱来视频区| 黑人高潮一二区| 在线天堂中文资源库| 黄色视频在线播放观看不卡| 亚洲国产av新网站| 午夜福利,免费看| www日本在线高清视频| 欧美bdsm另类| 午夜免费男女啪啪视频观看| 婷婷色综合www| 五月伊人婷婷丁香| 国产av一区二区精品久久| 性色avwww在线观看| 国产精品一国产av| 亚洲精品久久成人aⅴ小说| 嫩草影院入口| av播播在线观看一区| 亚洲三级黄色毛片| 丝袜美足系列| 免费高清在线观看视频在线观看| 亚洲国产毛片av蜜桃av| 中文字幕av电影在线播放| 午夜日本视频在线| 少妇精品久久久久久久| 免费观看无遮挡的男女| 婷婷色麻豆天堂久久| 欧美精品高潮呻吟av久久| 高清不卡的av网站| 午夜日本视频在线| 欧美精品高潮呻吟av久久| 国产成人免费无遮挡视频| 国产精品国产三级专区第一集| 国产精品麻豆人妻色哟哟久久| 国产av国产精品国产| 18在线观看网站| 国产一区有黄有色的免费视频| 亚洲精品av麻豆狂野| 亚洲精品视频女| 国产一区有黄有色的免费视频| 亚洲精品av麻豆狂野| 国产极品天堂在线| 日韩视频在线欧美| 少妇猛男粗大的猛烈进出视频| 日产精品乱码卡一卡2卡三| 午夜影院在线不卡|