• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮表面改性非晶碳基涂層的摩擦及腐蝕行為

    2022-05-28 07:16:50李昊鄭賀李淑鈺郭鵬孫麗麗柯培玲汪愛英
    表面技術(shù) 2022年5期
    關(guān)鍵詞:非晶耐蝕性頂層

    李昊,鄭賀,李淑鈺,郭鵬,孫麗麗,柯培玲,汪愛英

    氮表面改性非晶碳基涂層的摩擦及腐蝕行為

    李昊1,2,鄭賀3,李淑鈺1,2,郭鵬1,孫麗麗1,柯培玲1,2,汪愛英1,2

    (1.中國(guó)科學(xué)院寧波材料技術(shù)與工程研究所 a.中國(guó)科學(xué)院海洋新材料與應(yīng)用技術(shù)重點(diǎn)實(shí)驗(yàn)室 b.浙江省海洋材料與防護(hù)技術(shù)重點(diǎn)實(shí)驗(yàn)室,浙江 寧波 315201;2.中國(guó)科學(xué)院大學(xué) 材料與光電研究中心,北京 100049;3.寧波甬微集團(tuán)有限公司,浙江 寧波 315033)

    在本征無(wú)氫非晶碳涂層表面進(jìn)行摻N表面改性處理,研究其摩擦性能與海水腐蝕行為的演變規(guī)律,為海洋防護(hù)非晶碳涂層應(yīng)用提供新思路。采用直流磁控濺射固體石墨靶制備非晶碳涂層,并在頂層進(jìn)行N摻雜表面改性。改變Ar/N2氣流量比來(lái)控制頂層摻N量,調(diào)控沉積時(shí)間,控制涂層厚度一致。SEM用于觀測(cè)涂層厚度與截面形貌,XPS和Raman光譜儀分別用于表征涂層N摻雜量和碳鍵結(jié)構(gòu)。涂層力學(xué)性能和動(dòng)態(tài)摩擦因數(shù)則通過連續(xù)剛度模式納米壓痕儀和球盤式摩擦實(shí)驗(yàn)機(jī)測(cè)試得到。采用含有三電極體系的Gamry電化學(xué)工作站測(cè)量涂層的動(dòng)電位極化曲線、電化學(xué)交流阻抗譜等電化學(xué)性能。對(duì)無(wú)氫非晶碳涂層進(jìn)行表面改性,隨頂層改性N含量的增加,sp2—C易與N結(jié)合,導(dǎo)致sp2相含量降低。隨著N含量的增加,涂層的力學(xué)性能逐漸提升,當(dāng)N質(zhì)量分?jǐn)?shù)為21%時(shí),硬度與彈性模量達(dá)到最大值,分別為11.71 GPa和284.28 GPa;但當(dāng)N質(zhì)量分?jǐn)?shù)最小(12%)時(shí),涂層的斷裂韌性與抗彈塑性變形能力最優(yōu)。由于頂層引入摻N層后,sp2潤(rùn)滑相減少,涂層摩擦因數(shù)顯著上升,且隨N含量的增大逐漸增大。在頂層引入N摻雜量較少的改性層有利于提高非晶碳的耐蝕性,但隨N含量的增大,涂層表面的孔隙增多,腐蝕溶液滲透加速,涂層的耐蝕性迅速惡化。頂層少量N摻雜有利于改善非晶碳基涂層的力學(xué)性能和耐蝕性能。N含量過高時(shí),涂層性能隨著N含量的升高逐漸惡化。在海洋關(guān)鍵零部件表面制備微量N摻雜改性的非晶碳涂層有利于提高其防護(hù)性能。

    非晶碳;摩擦;腐蝕;磁控濺射;氮摻雜;表面改性

    目前,海洋的開發(fā)和利用在全球經(jīng)濟(jì)發(fā)展中發(fā)揮著越來(lái)越重要的作用。隨著海洋經(jīng)濟(jì)的快速發(fā)展,對(duì)高耐久性和可靠性的海洋基礎(chǔ)設(shè)施和重大裝備的需求迅速增加[1-3]。尤其是海洋裝備的船舶動(dòng)力裝置、潮汐能發(fā)電裝置、海水液壓傳動(dòng)裝置、深潛器浮力調(diào)節(jié)裝置、深海勘探和開采設(shè)備等[4-5],將直接暴露于海洋多重復(fù)雜耦合環(huán)境,如紫外線輻射、氯化物鹽、頻繁的干濕循環(huán)、高濕度以及低溫等[6],因此會(huì)加速金屬等結(jié)構(gòu)材料的降解和失效。采用表面防護(hù)涂層技術(shù),可以在不影響金屬等基材固有優(yōu)異性能的基礎(chǔ)上,突破其防護(hù)性能的不足,延長(zhǎng)關(guān)鍵部件的使用壽命,保障其可靠運(yùn)行[7]。

    非晶碳(Amorphous Carbon,a-C)涂層具有高硬度、低摩擦、優(yōu)異的化學(xué)穩(wěn)定性和生物相容性,在金屬材料的海洋腐蝕防護(hù)領(lǐng)域備受關(guān)注[8-14]。Radi等[15]發(fā)現(xiàn),在人工海水中浸泡14 d后,相比于不銹鋼基板,涂覆有非晶碳涂層的不銹鋼表面銹點(diǎn)更少,且具有更低的開路電位。同時(shí),為進(jìn)一步提高非晶碳涂層海水工況下的服役性能,不少學(xué)者嘗試在非晶碳涂層中摻雜適量異質(zhì)原子,來(lái)提高膜基結(jié)合力及涂層的耐蝕性能、力學(xué)性能和摩擦學(xué)性能[16-19]。Sui等[20]在鎳鈦合金表面制備氟摻雜非晶碳涂層來(lái)提高其耐蝕性,腐蝕電流密度降低1個(gè)數(shù)量級(jí)。Dhandapani等[21]發(fā)現(xiàn)Ag摻雜可以有效改善非晶碳涂層在3.5% NaCl溶液中的耐蝕性。Zhang等[22]制備的硅摻雜非晶碳涂層在720 h的鹽霧試驗(yàn)中未出現(xiàn)點(diǎn)蝕和剝落。但是,隨著金屬摻雜量的上升,涂層的耐蝕性往往提高有限甚至出現(xiàn)下降,磨損率也呈上升趨勢(shì),其原因主要源于金屬與非晶碳之間的電偶作用會(huì)加劇腐蝕速率,而生成的腐蝕產(chǎn)物多為金屬氧化物硬質(zhì)顆粒,又在磨擦過程中加劇涂層損傷[23-25]。與金屬不同,研究發(fā)現(xiàn),N作為非金屬元素?fù)诫s到非晶碳涂層中不會(huì)引入新的電偶對(duì),而且含氫非晶碳涂層中摻雜N元素有利于提高涂層的韌性和膜基結(jié)合強(qiáng)度,同時(shí)由于N摻入使得涂層sp2相增多,從而降低殘余應(yīng)力并起到減摩潤(rùn)滑作用,還可降低摩擦因數(shù)[26-28]。雖然含氫非晶碳涂層的硬度大、耐磨性好,但是在水環(huán)境下表面懸掛氫鍵易發(fā)生鈍化,導(dǎo)致摩擦因數(shù)增大,而無(wú)氫非晶碳涂層在多環(huán)境適應(yīng)性方面較為優(yōu)異[14,29-31]。因此,N摻雜或改性無(wú)氫非晶碳涂層在涉海工況下可能具有更優(yōu)異的防護(hù)性能,但相關(guān)改性非晶碳的摩擦及腐蝕行為尚未開展深入研究。

    本文以N摻雜無(wú)氫非晶碳涂層為研究對(duì)象,選用前期團(tuán)隊(duì)優(yōu)化非晶碳涂層思路,在其表面層繼續(xù)制備不同N摻雜量的非晶碳[14,30-31],系統(tǒng)研究表層不同N改性摻雜量的非晶碳表面改性涂層的摩擦行為,以及在模擬海水環(huán)境中的腐蝕性能變化。相關(guān)結(jié)果將為提高非晶碳涂層的抗磨蝕防護(hù)性能,并用于海洋裝備關(guān)鍵零部件防護(hù)提供新思路。

    1 試驗(yàn)

    1.1 涂層制備

    非晶碳涂層采用直流磁控濺射(Direct-current Magnetron Sputtering,DCMS)石墨靶制備,其中石墨靶(純度99.99%)尺寸為380 mm×100 mm×7 mm?;x用P(100)硅片和316L不銹鋼(15 mm × 3 mm),分別觀察其微觀結(jié)構(gòu),并測(cè)試其摩擦及腐蝕性能。首先,將準(zhǔn)備好的基體依次放入丙酮和乙醇中超聲清洗15 min,然后用干燥氮?dú)獯蹈珊笾糜谵D(zhuǎn)架上,基架與靶材之間相距約150 mm。待本底真空達(dá)到4×10?6Pa時(shí),通入Ar氣,在0.266 Pa氣壓下,以3 A的電流濺射清洗石墨靶15 min。然后,采用線性離子束技術(shù),利用Ar等離子體對(duì)基體表面刻蝕30 min以去除表面氧化層。隨后,采用DCMS在偏壓–200 V、濺射功率1.2 kW的參數(shù)下制備非晶碳層,沉積時(shí)間約1 h,接著通入氮?dú)庠诒韺右隢原子,通過調(diào)節(jié)Ar/N2流量比來(lái)改變N摻雜量,調(diào)節(jié)時(shí)間將所有涂層總厚度控制在200 nm左右,其中作為對(duì)照的本征非晶碳涂層N-0的沉積時(shí)間增加10 min,以確保所有樣品厚度一致,具體參數(shù)如表1所示。

    表1 N摻雜表面改性層沉積參數(shù)

    1.2 性能測(cè)試

    掃描電子顯微鏡(SEM,Verios G4 UC,US)用于觀測(cè)涂層厚度、橫截面微觀結(jié)構(gòu)。X射線光電子能譜儀(XPS,Axis ultradld,JP)用于表征涂層中的元素組成和原子鍵合狀態(tài)。使用共焦顯微拉曼光譜儀(Renishaw-inVia Reflection,UK),在532 nm激發(fā)波長(zhǎng)下表征碳鍵結(jié)構(gòu)。使用雙高斯函數(shù)擬合拉曼數(shù)據(jù),以獲得G峰位置和峰強(qiáng)度比(D/G)。使用納米壓痕設(shè)備(MTS NANO200,US)測(cè)量涂層的硬度和彈性模量值,測(cè)試采用連續(xù)剛度法,使用金剛石壓頭,壓入深度為100 nm,測(cè)試6個(gè)點(diǎn)以保證數(shù)據(jù)的準(zhǔn)確性。

    使用球盤式摩擦試驗(yàn)機(jī)(Rtec,US)在大氣環(huán)境室溫下進(jìn)行摩擦試驗(yàn)。以Al2O3陶瓷球(1 800HV,6 mm)為對(duì)磨副,滑動(dòng)速率為20 mm/s,摩擦總長(zhǎng)度為72 m,載荷為5 N。為了分析表層N摻雜改性非晶碳涂層的耐蝕性,使用Gamry電化學(xué)工作站(Reference 600+,US),采用傳統(tǒng)的三電極體系在3.5% NaCl溶液中進(jìn)行電化學(xué)性能測(cè)試。其中以Ag/AgCl電極為參比電極,涂層樣品為工作電極,鉑片為對(duì)電極。在電化學(xué)腐蝕試驗(yàn)之前,持續(xù)運(yùn)行開路電位(Open Circuit Potential,OCP)1 h,以確保整個(gè)測(cè)試系統(tǒng)的電化學(xué)穩(wěn)定性[6,29-30]。隨后,以105~ 10?2Hz的頻率、10 mV的正弦擾動(dòng)測(cè)量電化學(xué)阻抗譜(Electrochemical Impedance Spectroscopy,EIS)。以0.5 mV/s的掃描速率,掃描范圍從–0.2 V到+1.2 V(vs. Ag/AgCl),測(cè)量動(dòng)電位極化曲線。

    2 結(jié)果和討論

    2.1 涂層的組分結(jié)構(gòu)

    圖1為不同頂層摻N量的非晶碳涂層的SEM截面形貌。由圖1可知,所有涂層的總厚度都控制在(210±10) nm,且涂層整體連續(xù)致密,無(wú)明顯缺陷??傮w上看,所有涂層樣品在截面形貌上無(wú)明顯差異,這是由于表層的摻N層是原位生長(zhǎng)的,在沉積過程中不存在間斷,且下層非晶碳的沉積環(huán)境一致,這使得頂層摻N層沿著下層非晶碳的生長(zhǎng)取向,避免了明顯的界面分層現(xiàn)象。

    圖2為不同頂層摻N量的非晶碳涂層的XPS能譜圖。從全譜(圖2a)中可以看出,涂層中主要含有C、O、N 3種元素。氧元素與N-0樣品中的少量N元素,主要是由于沉積過程中真空室殘留空氣,或取樣后吸附空氣所致[32]。如圖2b所示,隨N2/Ar流量比增大,頂層N含量(原子數(shù)分?jǐn)?shù),下同)由1.4%逐漸增加,增大幅度逐漸減小,趨于飽和值24%。圖2c為C 1s精細(xì)譜,擬合分析表明,主要存在4種C原子化學(xué)雜化狀態(tài),即sp2、sp3、C—N以及C—O,譜峰位置分別位于284.6、285.4、286.4、286.6 eV[33-35]。采用洛倫茲函數(shù)(20%)和高斯函數(shù)(80%)對(duì)C 1s峰進(jìn)行分峰擬合處理,并對(duì)峰面積進(jìn)行積分,可以得到不同雜化狀態(tài)的碳鍵含量。如圖3d所示,隨著N摻雜量不斷增加,sp3—C鍵含量幾乎不變,而sp2—C鍵含量從66.3%降低到30.7%,該結(jié)果與拉曼分析結(jié)果相一致。這是因?yàn)閟p2—C的成鍵軌道上s軌道占據(jù)的比例比sp3—C的多,隧穿效應(yīng)更強(qiáng),因此sp2—C鍵的形成能比sp3—C鍵低,引入N原子更容易與sp2—C發(fā)生鍵合,導(dǎo)致sp2—C鍵的含量降低[36]。圖2e為N 1s精細(xì)譜,其中主要含有3種N原子化學(xué)狀態(tài),即位于398.6 eV附近的N—C鍵,400.4 eV附近的N=C鍵,402.2 eV附近的N—C=O鍵。N 1s峰的分峰擬合結(jié)果如圖2f所示,隨著N摻雜量的增加,N—C鍵含量基本不變,而N=C鍵含量逐漸增加,從47.4%增加到56.1%,這表明大量sp2—C鍵被N原子取代形成了N=C鍵。

    圖1 表層不同摻N量非晶碳涂層的SEM截面形貌

    圖2 表面N摻雜改性非晶碳涂層的XPS能譜

    拉曼光譜用于進(jìn)一步分析涂層碳鍵結(jié)構(gòu)的變化。如圖3a所示,所有涂層拉曼光譜均顯示出非晶碳的典型拉曼峰,且經(jīng)過高斯擬合后,每個(gè)樣品中均出現(xiàn)位于1 350 cm?1附近的D峰和1 560 cm?1附近的G峰[37-39]。其中,G峰對(duì)應(yīng)碳環(huán)和碳鏈中C—C鍵的伸縮振動(dòng),而D峰對(duì)應(yīng)碳環(huán)的呼吸振動(dòng)[35]。G峰的半高寬(G- FWHM)、G峰位置和D峰與G峰面積比D/G值可以反映非晶碳碳鍵結(jié)構(gòu)[40]。如圖3b所示,隨著頂層N含量的增多,D/G逐漸降低,從2.88降到1.82,這表明N摻入量增大不利于sp2團(tuán)簇的進(jìn)一步長(zhǎng)大。同樣,G峰位置向高波數(shù)方向偏移,從1 547 cm?1增加到1 559 cm?1,也表明氮元素引入阻礙了sp2團(tuán)簇的形成。G峰半高寬呈現(xiàn)先增大再減小的趨勢(shì),從最初的171.5 cm?1(N-0)增大到178.8 cm?1(N-2),再減小到172.9 cm?1(N-4),這表明隨著氮原子的摻入,使得涂層鍵長(zhǎng)、鍵角的扭曲程度以及結(jié)構(gòu)無(wú)序度均出現(xiàn)先增大再減小的變化趨勢(shì)。

    圖3 表面N摻雜改性非晶碳涂層的拉曼光譜

    2.2 涂層的力學(xué)性能

    表2列出了非晶碳涂層的硬度()和彈性模量(),以及相應(yīng)的/和3/2結(jié)果。可以看出,引入頂層N改性層可以顯著提高涂層的硬度和彈性模量,且隨著N含量的升高,硬度與彈性模量都呈現(xiàn)先升高后降低的趨勢(shì)。這是由于隨著N含量的增加,sp3—C呈現(xiàn)增大的趨勢(shì),通常情況下增大sp3—C含量可以有效地增加碳基涂層的硬度。當(dāng)N含量增大到21.1%以上時(shí),sp3—C含量不再明顯增大,而N=C含量增大會(huì)導(dǎo)致硬度略微下降[26-28]。因此,當(dāng)N摻雜量為21.1%(N-3)時(shí),硬度和彈性模量達(dá)到最大值,分別為11.71 GPa和284.28 GPa。/和3/2是反映材料抗彈塑性變形能力的關(guān)鍵參數(shù),與材料的斷裂韌性和耐磨性密切相關(guān)[41-47]。一般來(lái)說(shuō),/和3/2的值越高,材料斷裂韌性越高,耐磨性越好。隨著頂層N含量的增加,3/2呈現(xiàn)先減小后增大的趨勢(shì),其中N-3樣品的斷裂韌性以及抗彈塑性變形能力最差,盡管它的硬度和彈性模量最大。而摻N量最少的樣品(N-1)表現(xiàn)出最強(qiáng)的斷裂韌性以及抗彈塑性變形能力。

    表2 涂層力學(xué)性能匯總

    Tab.2 Summary of the mechanical properties of the coatings

    2.3 涂層的摩擦性能

    圖4為所有涂層樣品的摩擦因數(shù)隨時(shí)間的變化曲線。所有摩擦因數(shù)數(shù)據(jù)均為通過力學(xué)傳感器在每0.05 s內(nèi)采集的平均摩擦因數(shù)。由圖4可以看出,頂層N摻雜顯著增大了涂層的摩擦因數(shù)(Coefficient of Friction,COF),且隨著N含量的增大,穩(wěn)態(tài)平均摩擦因數(shù)從~0.24增大到~0.35。這可能是由于N摻雜導(dǎo)致sp2潤(rùn)滑相減少,從而使涂層的摩擦因數(shù)增大。同樣地,隨著N摻雜量的增大,涂層的摩擦因數(shù)更加不穩(wěn)定,這可能是由于摩擦過程中涂層碎裂導(dǎo)致的,尤其是斷裂韌性最差的N-3樣品,其摩擦因數(shù)的起伏最明顯。

    圖4 所有涂層樣品的摩擦因數(shù)隨時(shí)間的變化曲線

    2.4 涂層的耐蝕性能

    圖5a和表3列出了316L基體和所有涂層樣品在3.5%NaCl溶液中的動(dòng)電位極化曲線和相應(yīng)的分析結(jié)果。與316L基體相比,所有涂層樣品的動(dòng)電位極化曲線顯示出更高的自腐蝕電位(corr)、更低的腐蝕電流密度(corr)和更高的點(diǎn)蝕電位,這表明所有涂層樣品都顯著提高了316L基體的耐蝕性。此外,除了頂層摻N量最少的樣品(N-1)外,其他頂層摻N樣品的耐蝕性均顯著下降,且隨著N含量的增大,自腐蝕電位由0.382 V顯著降低至0.142 V,腐蝕電流密度由0.178 μA/cm2顯著增大至0.719 μA/cm2。這說(shuō)明隨著N含量的增加,涂層的腐蝕傾向和腐蝕速率都增大,腐蝕抗力下降。相比于本征非晶碳涂層,只有摻N量為11.9%的樣品(N-1)的自腐蝕電位最高,腐蝕電流密度最低。涂層腐蝕動(dòng)力學(xué)的差異與涂層內(nèi)部缺陷密切相關(guān),因此根據(jù)表2中列出的陽(yáng)極Tafel斜率(a)和陰極Tafel斜率(c),通過公式(1)—(2)計(jì)算極化電阻(p)和孔隙率值。其中,p(substrate)和p(coating)分別是基體和薄膜的極化電阻,Δcorr是涂層和基體之間的腐蝕電位差,式(2)中a是基體的陽(yáng)極Tafel斜率[48-50]。

    極化電阻和孔隙率的計(jì)算結(jié)果見圖5b。所有涂層樣品的極化電阻都要高出基體1個(gè)數(shù)量級(jí),表明所有涂層樣品均可以對(duì)基體起到良好的保護(hù)作用,這也與動(dòng)電位極化測(cè)試得到的結(jié)果一致。但是,所有頂層摻N樣品的極化電阻都要高于本征非晶碳涂層,這可能是由于涂層的孔隙滲透所致。因此,進(jìn)一步對(duì)所有涂層樣品的孔隙率進(jìn)行計(jì)算,發(fā)現(xiàn)頂層滲N處理后,涂層的孔隙率增大,且隨著N含量的增大,孔隙率從~0.4%上升至~1.4%,只有摻N量最低的N-1樣品的孔隙率與本征非晶碳涂層相近,均為~0.4%。這說(shuō)明頂層摻N量的增加會(huì)導(dǎo)致較低的極化電阻與高的孔隙率,促進(jìn)腐蝕溶液通過涂層孔隙進(jìn)行滲透,從而加速局部腐蝕,導(dǎo)致腐蝕電流密度發(fā)生變化。因此,從耐蝕性能上看,頂層微量N摻雜有利于降低腐蝕傾向,延緩腐蝕速率,頂層N含量過高會(huì)導(dǎo)致較多的孔隙缺陷,反而不利于腐蝕防護(hù)。

    圖5 316L基體與所有樣品在3.5% NaCl溶液中的動(dòng)電位極化曲線與相應(yīng)的極化電阻和孔隙率

    表3 3.5%NaCl溶液中動(dòng)電位極化測(cè)試結(jié)果分析

    Tab.3 Analysis results of potentiodynamic polarization test in 3.5wt.% NaCl

    圖6為所有涂層樣品和316L基體的EIS測(cè)試結(jié)果。與316L基體相比,所有涂層樣品在Nyquist圖和Bode圖中表現(xiàn)出更大的容抗弧半徑、更高的低頻阻抗和更寬的相角平臺(tái),這表明所有涂層樣品都大大提高了316L基體的耐蝕性。其中,頂層摻N量最少的樣品N-1具有最大的容抗弧半徑以及最高的低頻阻抗,這說(shuō)明其耐蝕性最佳。而隨著頂層摻N量的增大,涂層的耐蝕性逐漸下降,且相角平臺(tái)出現(xiàn)的位置明顯向低頻區(qū)偏移,這表明N含量過高會(huì)導(dǎo)致涂層在腐蝕萌生的初始階段就具有較高的腐蝕速率和腐蝕傾向。

    圖6 3.5%NaCl溶液中涂層和316L基體的EIS測(cè)試結(jié)果

    3 結(jié)論

    1)采用直流磁控濺射技術(shù)制備了一系列頂層摻N改性非晶碳涂層,并通過改變沉積過程中Ar/N2的流量比實(shí)現(xiàn)了N含量從1.4%到23.8%的大范圍調(diào)控。結(jié)果顯示,不同于通常的N摻雜含氫非晶碳,在無(wú)氫非晶碳中,隨著N含量的增大,更多的sp2—C與N鍵合,間接導(dǎo)致sp2—C含量由66.3%減少至30.7%。

    2)隨著頂層摻N量的增大,涂層硬度與彈性模量都有所提高,當(dāng)摻N量達(dá)到21.1%時(shí),硬度與彈性模量達(dá)到最大值,分別為11.71 GPa和284.28 GPa。但是,從斷裂韌性與抗彈塑性變形能力來(lái)看,摻N量最小(11.4%)的樣品具有最佳的力學(xué)性能。

    3)摩擦測(cè)試結(jié)果顯示,由于sp2潤(rùn)滑相減少,在頂層引入摻N層后,涂層的摩擦因數(shù)由~0.17顯著上升至~0.24,且隨著N含量的增大,摩擦因數(shù)進(jìn)一步增大至~0.35,這也與其斷裂韌性下降導(dǎo)致的磨粒磨損有關(guān)。

    4)腐蝕測(cè)試結(jié)果顯示,在頂層引入N摻雜量較少的改性層有利于提高非晶碳涂層的耐蝕性。摻N量為11.9%的樣品具有最高的自腐蝕電位(0.382 V)和最低的腐蝕電流密度(0.178 μA/cm2)。但是,隨著頂層N含量繼續(xù)增大,耐蝕性迅速惡化,自腐蝕電位由0.382 V顯著降低至0.142 V,腐蝕電流密度由0.178 μA/cm2顯著增大至0.719 μA/cm2。這是由于N含量由11.9%升高到23.8%時(shí),表面孔隙缺陷增多(孔隙率從~0.4%上升至~1.4%),加速腐蝕溶液滲透所致。

    [1] 王穎, 韓光, 張英香. 深海海洋工程裝備技術(shù)發(fā)展現(xiàn)狀及趨勢(shì)[J]. 艦船科學(xué)技術(shù), 2010, 32(10): 108-113, 124.

    WANG Ying, HAN Guang, ZHANG Ying-xiang. The Development of Deep Water Ocean Engineering Equipments and Technology[J]. Ship Science and Technology, 2010, 32(10): 108-113, 124.

    [2] ARMADA S, TILSET B G, PILZ M, et al. Sealing HVOF Thermally Sprayed WC-CoCr Coatings by Sol-Gel Met-hods[J]. Journal of Thermal Spray Technology, 2011, 20(4): 918-926.

    [3] 周國(guó)平. 海洋工程裝備關(guān)鍵技術(shù)和支撐技術(shù)分析[J]. 船舶與海洋工程, 2012, 28(1): 15-20, 37.

    ZHOU Guo-ping. Key Technologies and Supporting Tech-nologies of Offshore Engineering Equipment[J]. Naval Ar-c--hitecture and Ocean Engineering, 2012, 28(1): 15-20, 37.

    [4] 董從林, 白秀琴, 嚴(yán)新平, 等. 海洋環(huán)境下的材料摩擦學(xué)研究進(jìn)展與展望[J]. 摩擦學(xué)學(xué)報(bào), 2013, 33(3): 311-320.

    DONG Cong-lin, BAI Xiu-qin, YAN Xin-ping, et al. Research Status and Advances on Tribological Study of Materials under Ocean Environment[J]. Tribology, 2013, 33(3): 311-320.

    [5] 王偉, 文懷興, 陳威. 海水環(huán)境下材料摩擦學(xué)行為研究現(xiàn)狀[J]. 材料導(dǎo)報(bào), 2017, 31(11): 51-58.

    WANG Wei, WEN Huai-xing, CHEN Wei. Research Status on Tribological Behaviors of Materials under Seawater Environment[J]. Materials Review, 2017, 31(11): 51-58.

    [6] ARSLAN E, TOTIK Y, EFEOGLU I. The Investigation of the Tribocorrosion Properties of DLC Coatings Deposited on Ti6Al4V Alloys by CFUBMS[J]. Progress in Organic Coatings, 2012, 74(4): 768-771.

    [7] 李淑鈺, 劉應(yīng)瑞, 郭鵬, 等. 海洋環(huán)境下物理氣相沉積氮/碳基抗磨蝕涂層的研究進(jìn)展[J]. 表面技術(shù), 2021, 50(7): 44-56.

    LI Shu-yu, LIU Ying-rui, GUO Peng, et al. Research Progress of Nitrogen/Carbon-Based Anti-Tribocorrosion Coatings by Physical Vapor Deposition for Marine Appli-cations[J]. Surface Technology, 2021, 50(7): 44-56.

    [8] LIU Zhe, CHU Zhen-hua, CHEN Xue-guang, et al. Elec-trochemical Impedance Studies on Tribocorrosion Behavior of Plasma-Sprayed Al2O3Coatings[J]. Journal of Thermal Spray Technology, 2015, 24(5): 878-884.

    [9] 徐麗萍, 毛杰, 張吉阜, 等. 表面工程技術(shù)在海洋工程裝備中的應(yīng)用[J]. 中國(guó)材料進(jìn)展, 2014, 33(1): 1-8, 31.

    XU Li-ping, MAO Jie, ZHANG Ji-fu, et al. Applications of Surface Engineering Technology in Marine Enginee-ring Equipment[J]. Materials China, 2014, 33(1): 1-8, 31.

    [10] WU Zhi-wei, ZHOU Fei, MA Qiang, et al. Tribological and Electrochemical Properties of Cr-Si-C-N Coatings in Artificial Seawater[J]. RSC Advances, 2016, 6(80): 76724- 76735.

    [11] TOTOLIN V, PEJAKOVI? V, CSANYI T, et al. Surface Engineering of Ti6Al4V Surfaces for Enhanced Tribocor-rosion Performance in Artificial Seawater[J]. Materials & Design, 2016, 104: 10-18.

    [12] WEI Jing, GUO Peng, LIU Lin-lin, et al. Corrosion Resistance of Amorphous Carbon Film in 3.5wt% NaCl Solution for Marine Application[J]. Electrochimica Acta, 2020, 346: 136282.

    [13] WEI Jing, GUO Peng, LIU Lin-lin, et al. Tailored Electro-chemical Behavior of Ta-C Film by Glancing Angle Dep-o--sition[J]. Applied Surface Science, 2020, 516: 146115.

    [14] LI Lei, GUO Peng, LIU Lin-lin, et al. Structural Design of Cr/dLC Films for High Tribological Performance in Artificial Seawater: Cr/dLC Ratio and Multilayer Struc-ture[J]. Journal of Materials Science & Technology, 2018, 34(8): 1273-1280.

    [15] RADI P A, VIEIRA A, MANFROI L, et al. Tribocorro-sion and Corrosion Behavior of Stainless Steel Coated with DLC Films in Ethanol with Different Concentrations of Water[J]. Ceramics International, 2019, 45(7): 9686-9693.

    [16] LI Xiao-wei, KE Pei-ling, LEE K R, et al. Molecular Dynamics Simulation for the Influence of Incident Angles of Energetic Carbon Atoms on the Structure and Proper-ties of Diamond-Like Carbon Films[J]. Thin Solid Films, 2014, 552: 136-140.

    [17] LI Xiao-wei, GUO Peng, SUN Li-li, et al. Ti/Al Co- Doping Induced Residual Stress Reduction and Bond Structure Evolution of Amorphous Carbon Films: An Exp-erimental and Ab Initio Study[J]. Carbon, 2017, 111: 467-475.

    [18] LI Xiao-wei, ZHANG Dong, LEE K R, et al. Effect of Metal Doping on Structural Characteristics of Amorphous Carbon System: A First-Principles Study[J]. Thin Solid Films, 2016, 607: 67-72.

    [19] LI Xiao-wei, KE Pei-ling, WANG Ai-ying. Probing the Stress Reduction Mechanism of Diamond-Like Carbon Films by Incorporating Ti, Cr, or W Carbide-Forming Metals: Ab Initio Molecular Dynamics Simulation[J]. The Journal of Physical Chemistry C, 2015, 119(11): 6086-6093.

    [20] SUI J H, ZHANG Z G, CAI W. Surface Characteristics and Electrochemical Corrosion Behavior of Fluorinated Diamond-Like Carbon (F-DLC) Films on the NiTi Alloys[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(15): 2475-2479.

    [21] DHANDAPANI V S, THANGAVEL E, ARUMUGAM M, et al. Effect of Ag Content on the Microstructure, Tribological and Corrosion Properties of Amorphous CarbonCoatings on 316L SS[J]. Surface and Coatings Technology, 2014, 240: 128-136.

    [22] ZHANG Ming-jiong, WU Gui-zhi, LU Zhi-bin, et al. Cor-ro-sion and Wear Behaviors of Si-DLC Films Coated on Inner Surface of SS304 Pipes by Hollow Cathode PECVD [J]. Surface Topography: Metrology and Properties, 2018, 6(3): 034010.

    [23] XU Xiao-wei, ZHOU Yong, LIU Lin-lin, et al. Corrosion Behavior of Diamond-Like Carbon Film Induced by Al/Ti Co-Doping[J]. Applied Surface Science, 2020, 509: 144877.

    [24] XU Xiao-wei, GUO Peng, ZUO Xiao, et al. Under-stan-ding the Effect of Al/Ti Ratio on the Tribocorrosion Per-formance of Al/Ti Co-Doped Diamond-Like Carbon Films for Marine Applications[J]. Surface and Coatings Techno-logy, 2020, 402: 126347.

    [25] 王永欣, 王立平, 薛群基. 金屬摻雜高硬度類石墨薄膜結(jié)構(gòu)及其摩擦學(xué)性能研究[J]. 摩擦學(xué)學(xué)報(bào), 2011, 31(1): 72-77.

    WANG Yong-xin, WANG Li-ping, XUE Qun-ji. Micros-tructure and Tribological Performances of Highly Hard Graphite-Like Carbon Films Doped with Different Metals [J]. Tribology, 2011, 31(1): 72-77.

    [26] RAY S C, PONG W F, PAPAKONSTANTINOU P. Iron, Nitrogen and Silicon Doped Diamond Like Carbon (DLC) Thin Films: A Comparative Study[J]. Thin Solid Films, 2016, 610: 42-47.

    [27] 楊滿中, 彭繼華, 韋宇沖. 低氮摻雜對(duì)含氫類金剛石結(jié)構(gòu)和力學(xué)性能的影響[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2019, 51(5): 38-43.

    YANG Man-zhong, PENG Ji-hua, WEI Yu-chong. Effect of Low Nitrogen Doping on the Microstructure and Mec-hanical Properties of Hydrogenated Diamond-Like Carbon Films[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 38-43.

    [28] 薛群基, 王立平. 類金剛石碳基薄膜材料[M]. 北京: 科學(xué)出版社, 2012.

    XUE Qun-ji, WANG Li-ping. Diamond Like Carbon Films [M]. Beijing: Science Press, 2012.

    [29] WEI Jing, GUO Peng, LI Hao, et al. Insights on High Temperature Friction Mechanism of Multilayer Ta-C Films [J]. Journal of Materials Science & Technology, 2022, 97: 29-37.

    [30] 李蕾, 郭鵬, 劉林林, 等. 金屬過渡層類型對(duì)非晶碳膜結(jié)構(gòu)性能的影響[J]. 無(wú)機(jī)材料學(xué)報(bào), 2018, 33(3): 331-338.

    LI Lei, GUO Peng, LIU Lin-lin, et al. Metal Buffer Layer on Structure, Mechanical and Tribological Property of GLC Films[J]. Journal of Inorganic Materials, 2018, 33(3): 331-338.

    [31] LI Lei, LIU Lin-lin, LI Xiao-wei, et al. Enhanced Tribo-corrosion Performance of Cr/GLC Multilayered Films for Marine Protective Application[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 13187-13198.

    [32] NAKAO S, YUKIMURA K, NAKANO S, et al. DLC Coating by HiPIMS: The Influence of Substrate Bias Voltage[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 1819-1829.

    [33] GUO Peng, LI Xiao-wei, SUN Li-li, et al. Stress Reduc-tion Mechanism of Diamond-Like Carbon Films Incorpo-rated with Different Cu Contents[J]. Thin Solid Films, 2017, 640: 45-51.

    [34] DíAZ J, PAOLICELLI G, FERRER S, et al. Separation of the sp3and sp2Components in the C1s Photoemission Spectra of Amorphous Carbon Films[J]. Physical Review B, Condensed Matter, 1996, 54(11): 8064-8069.

    [35] MOHAGHEGHPOUR E, RAJABI M, GHOLAMIPOUR R, et al. Correlation Study of Structural, Optical and Electrical Properties of Amorphous Carbon Thin Films Prepared by Ion Beam Sputtering Deposition Technique [J]. Applied Surface Science, 2016, 360: 52-58.

    [36] KRAUSER J, NIX A K, GEHRKE H G, et al. Con-ductivity Enhancement of Ion Tracks in Tetrahedral Amorphous Carbon by Doping with N, B, Cu and Fe[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 272: 280-283.

    [37] ITO A M, TAKAYAMA A, SAITO S, et al. Formation and Classification of Amorphous Carbon by Molecular Dyna-mics Simulation[J]. Japanese Journal of Applied Physics, 2013, 52(1): 104.

    [38] LI H X, XU T, CHEN J M, et al. The Effect of Applied Dc Bias Voltage on the Properties of A-C: H Films Pre-pared in a Dual Dc-Rf Plasma System[J]. Applied Surface Science, 2004, 227(1-4): 364-372.

    [39] FERRARI A C, ROBERTSON J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon[J]. Physical Review B, 2000, 61(20): 14095-14107.

    [40] ARENAL R, LIU A C Y. Clustering of Aromatic Rings in Near-Frictionless Hydrogenated Amorphous Carbon Films Probed Using Multiwavelength Raman Spectroscopy[J]. Applied Physics Letters, 2007, 91(21): 211903.

    [41] REN Ping, ZHANG Kan, HE Xin, et al. Toughness Enha-n-cement and Tribochemistry of the Nb-Ag-N Films Act-u-a-ted by Solute Ag[J]. Acta Materialia, 2017, 137: 1-11.

    [42] ZHANG Shi-dong, YAN Mu-fu, YANG Yang, et al. Exce-l-lent Mechanical, Tribological and Anti-Corrosive Perfor-mance of Novel Ti-DLC Nanocomposite Thin Films Pre-pa-red via Magnetron Sputtering Method[J]. Carbon, 2019, 151: 136-147.

    [43] LI Ling-ling, BAI Wen-qi, WANG Xiu-li, et al. Mecha-nical Properties and in Vitro and in Vivo Biocompatibility of A-C/a-C:Ti Nanomultilayer Films on Ti6Al4V Alloy as Medical Implants[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 15933-15942.

    [44] REN Ping, WEN Mao, ZHANG Kan, et al. Self-Asse-m-b-ly of TaC@Ta Core-Shell-Like Nanocomposite Film via Solid- State Dewetting: Toward Superior Wear and Corrosion Resistance[J]. Acta Materialia, 2018, 160: 72-84.

    [45] CHEN Xin-jie, DU Yao, CHUNG Y W. Commentary on Using/and3/2as Proxies for Fracture Toughness of Hard Coatings[J]. Thin Solid Films, 2019, 688: 137265.

    [46] LIN Jian-liang, WEI Rong-hua, BITSIS D C, et al. Deve-lopment and Evaluation of Low Friction TiSiCN Nano-composite Coatings for Piston Ring Applications[J]. Surface and Coatings Technology, 2016, 298: 121-131.

    [47] YANG Yang, YAN M F, ZHANG Y X, et al. Catalytic Growth of Diamond-Like Carbon on Fe3C-Containing Carburized Layer through a Single-Step Plasma-Assisted Carburizing Process[J]. Carbon, 2017, 122: 1-8.

    [48] CHOI J, NAKAO S, KIM J, et al. Corrosion Protection of DLC Coatings on Magnesium Alloy[J]. Diamond and Re-la-ted Materials, 2007, 16(4-7): 1361-1364.

    [49] LIU C, BI Q, LEYLAND A, et al. An Electrochemical Impedance Spectroscopy Study of the Corrosion Beha-viour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II: EIS Interpretation of Corrosion Beha-viour[J]. Corrosion Science, 2003, 45(6): 1257-1273.

    [50] AHN S H, LEE J H, KIM H G, et al. A Study on the Quantitative Determination of Through-Coating Porosity in PVD-Grown Coatings[J]. Applied Surface Science, 2004, 233(1-4): 105-114.

    Effect of Nitrogen Surface Modification on Tribology and Corrosion Behavior of Amorphous Carbon Coating

    1,2,3,1,2,1,1,1,2,1,2

    (1. a. Key Laboratory of Marine Materials and Related Technologies, b. Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Yongwei Group Co., Ltd., Zhejiang Ningbo 315033, China)

    N-doped surface modification was carried out on the surface of intrinsic hydrogen free amorphous carbon coating, and the evolution law of its friction properties and seawater corrosion behavior was studied, which provided a new idea for the application of marine protective amorphous carbon coating. Amorphous carbon coating was prepared by DC magnetron sputtering on solid graphite target, and n-doped surface modification was carried out on the top layer. Change the Ar/N2gas flow ratio to control the N content in the top layer, adjust the deposition time and control the coating thickness. SEM was used to characterize the coating thickness and cross-section morphology, XPS and Raman spectra were used to characterize the N-doping content and carbon bond structure of the coating, respectively. The mechanical properties and dynamic friction coefficient of the coating were measured by continuous stiffness mode nano indentation instrument and ball disc friction tester. Gamry electrochemical workstation with three electrode system was used to measure the electrochemical properties of the coating, such as potentiodynamic polarization curve and electrochemical AC impedance spectroscopy.

    amorphous carbon; friction; corrosion; magnetron sputtering; nitrogen doping; surface modification

    TG172

    A

    1001-3660(2022)05-0061-09

    10.16490/j.cnki.issn.1001-3660.2022.05.007

    2021–09–29;

    2022–01–11

    2021-09-29;

    2022-01-11

    中國(guó)科學(xué)院A類戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDA22010303);中國(guó)科學(xué)院-韓國(guó)國(guó)家科技理事會(huì)協(xié)議項(xiàng)目(174433KYSB20200021);王寬誠(chéng)率先人才計(jì)劃盧嘉錫國(guó)際團(tuán)隊(duì)(GJTD-2019-13);中科院創(chuàng)新團(tuán)隊(duì)(292020000008)

    A-class Pilot of the Chinese Academy of Sciences (XDA22010303); CAS-NST Joint Research Project (174433KYSB20200021); K. C. Wong Education Foundation (GJTD-2019-13); CAS Interdisciplinary Innovation Team (292020000008)

    李昊(1993—),男,博士研究生,主要研究方向?yàn)楹Kh(huán)境中碳基涂層的磨蝕性能。

    LI Hao (1993-), Male, Doctoral student, Research focus: tribocorrosion properties of carbon-based coatings in seawater.

    汪愛英(1975—),女,博士,研究員,主要研究方向?yàn)楸砻鎻?qiáng)化涂層材料與功能改性。

    WANG Ai-ying (1975-), Female, Doctor, Researcher, Research focus: strengthening and functional modification for surface coating materials.

    李昊, 鄭賀, 李淑鈺, 等. 氮表面改性非晶碳基涂層的摩擦及腐蝕行為[J]. 表面技術(shù), 2022, 51(5): 61-69.

    LI Hao, ZHENG He, LI Shu-yu, et al. Effect of Nitrogen Surface Modification on Tribology and Corrosion Behavior of Amorphous Carbon Coating[J]. Surface Technology, 2022, 51(5): 61-69.

    責(zé)任編輯:萬(wàn)長(zhǎng)清

    猜你喜歡
    非晶耐蝕性頂層
    汽車頂層上的乘客
    文苑(2019年24期)2020-01-06 12:06:58
    磷對(duì)鋅-鎳合金耐蝕性的影響
    非晶Ni-P合金鍍層的制備及應(yīng)力腐蝕研究
    AZ31B鎂合金復(fù)合鍍鎳層的制備及其耐蝕性研究
    頂層設(shè)計(jì)
    超級(jí)奧氏體不銹鋼254SMo焊接接頭耐蝕性能
    焊接(2016年9期)2016-02-27 13:05:20
    非晶硼磷玻璃包覆Li[Li0.2Co0.13Ni0.13Mn0.54]O2正極材料的研究
    加快頂層設(shè)計(jì)
    塊體非晶合金及其應(yīng)用
    健康卡“卡”在頂層沒聯(lián)網(wǎng)
    潼关县| 清新县| 永德县| 开鲁县| 依安县| 马鞍山市| 子洲县| 和田市| 司法| 成安县| 大厂| 吉安县| 临潭县| 沙河市| 长垣县| 米林县| 黑龙江省| 马龙县| 克拉玛依市| 九寨沟县| 西乡县| 米脂县| 广丰县| 吉首市| 雅安市| 宁国市| 天祝| 方正县| 仙游县| 赤峰市| 邵阳县| 临泽县| 高要市| 西城区| 大兴区| 江口县| 宁波市| 寻乌县| 西峡县| 剑河县| 固原市|