• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-matching quantum key distribution with light source monitoring

    2022-05-16 07:08:32WenTingLi李文婷LeWang王樂(lè)WeiLi李威andShengMeiZhao趙生妹
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李威

    Wen-Ting Li(李文婷) Le Wang(王樂(lè)) Wei Li(李威) and Sheng-Mei Zhao(趙生妹)

    1Institute of Signal Processing Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Key Laboratory of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education,Nanjing 210003,China

    Keywords: phase-matching quantum key distribution,source fluctuation,light source monitoring

    1. Introduction

    Quantum key distribution (QKD) is the most successful application in quantum information science, and its security has been proved at the end of the last century.[1–3]It enables distant parties to achieve the secure key by harnessing the laws of quantum mechanics.[4,5]After the first QKD protocol was proposed in 1984,[4]QKD has made great progress in theory and practice,such as decoy-state QKD protocol,[6,7]measurement-device-independent (MDI) protocol,[8,9]and round-robin differential-phase-shift (RRDPS) protocol.[10,11]Usually, photons are used as information carriers in QKD’s implementations. However, the transmission loss of photons has become a major obstacle in practical applications, resulting in the linear key-rate bound (PLOB bound) for QKD system.[12]In fiber-based networks, the transmission rate(η)decreases exponentially with the communication distance,which limits the transmission distance of the practical QKD system.

    Marvelously,a quantum key distribution protocol,named twin field quantum key distribution (TF-QKD) protocol, was proposed in 2018[13]to surpass the PLOB bound[12]and make a quadratic improvement over phase-encoding MDI-QKD protocol.[14]It has attracted much attention recently.[15–21]For TF-QKD protocol,the security problem caused by phase randomization was its main disadvantage. And phase matching quantum key distribution (PM-QKD) protocol[22]was then proposed to resolve the security loophole by adding an extra test mode. PM-QKD protocol could not only exceed the linear key rate limit, but also resist all probe attacks due to the independence of the measurement device. Recently,Maet al.[23]have proposed the reference-frame-independent design for PM-QKD protocol,which can well solve the performance degradation of reference system caused by offset. However,the quantum state prepared at the source was assumed to be an ideal coherent state in the original PM-QKD protocol. Actually, this assumption is not guaranteed in practice, leading to practical secure issues.[24]In addition, there also exists a non-ideal source problem causing the photon number distribution(PND)of the light source to be unknown and the prepared state to no longer be an ideal coherent state.

    On the other hand, light source monitoring (LSM) was proposed to solve the non-ideal source problem by monitoring the photon number distribution (PND) of the non-ideal light source.[25]The monitored statistical parameters can then be used to recalibrate the PND of the light source to estimate the final secret key rate, resulting that the assumption of ideal source is not necessary in QKD process. LSM was successfully applied to MDI-QKD protocol to solve the nonideal source problem theoretically based on the “untagged bits”concept,[26]and then based on a photon number resolving(PNR).[27]LSM was also used for the sending-or-not-sending(SNS)protocol to demonstrate that the security of SNS protocol is still valid under a source with unknown PND.[28]

    In the paper, we propose a PM-QKD with light source monitoring protocol, named PM-QKD-LSM protocol. In the protocol,the non-ideal light source is used to generate the light beam by Alice and Bob independently. After phase and intensity modulation, the light beam is then split to two paths by a beam splitter (BS), where one is input to the LSM module to estimate the probabilities that the light pulse signals contain zero photon, one photon, or two photons, and the other is emitted to the measurement site,Charlie,for detection. By matching phases with each other during post-selection,the key information is encoded into the common phase, and then the key can be obtained through the success detection results.

    The advantages of the proposed PM-QKD-LSM protocol are:(1)it overcomes the problem of non-ideal light source and improves the security of the PM-QKD protocol;(2)its performance under the unknown PND condition (UPC) can almost keep the same as that of PM-QKD protocol under ideal source condition without source fluctuation; (3) it is more independent of the source fluctuation than the PM-QKD protocol;and(4)the performance is almost unchanged as that of PM-QKD protocol under asymmetric channel.

    The contribution of this paper is that we investigate the ability of LSM in solving the non-ideal light source problem in PM-QKD protocol,and discuss the performance of PM-QKDLSM protocol under different source fluctuation.Furthermore,we enrich the work on the performance of PM-QKD-LSM protocol with symmetrical or asymmetrical channel. The results are helpful for the design of the practical PM-QKD system.In addition,the results in the paper show that the protocol we proposed not only solves the problem of non-ideal light source at the light source side,which relaxes the requirements on the light source, but also improves the security of the PM-QKD protocol. The improvement can be addressed from the following two aspects. One is that the LSM module itself has the function of monitoring the probability of the number of photons in our proposed protocol, which can detect the PNS attack. The other one is that the LSM module can also be regarded as a monitoring unit to monitoring the arrival time of the pulses so as to resist the phase-remapping attack.

    The paper is organized as follows. In Section 2, we first present the PM-QKD-LSM protocol, then we use the LSM method to obtain the tight bounds of the parameters for the secret key rate, and discuss the performance of the proposed protocol under the source fluctuation. In Section 3,we present some numerical analysis results. Finally,we draw the conclusions in Section 4.

    2. PM-QKD-LSM protocol

    2.1. The protocol

    The schematic diagram of PM-QKD-LSM protocol is shown in Fig. 1, where the two communication parties, Alice and Bob,generate her(his)coherent state pulses,independently at first. Before sending their coherent state pulses to an untrusted measurement site,Charlie,Alice and Bob use a LSM module individually to estimate the tight bound of the photon number probabilities (PnL(μk),PnU(μk)) on her(his) PND of the light source. Here, the subscribe L (U) andndenote the lower(upper)bound and the photon number(n=0,1,2), respectively. Then, Charlie is expected to perform the interference detection. This interference measurement would match the phases of Alice and Bob’s signals. Conditioned on Charlie’s announcement,there is a correlation between the key information of Alice and Bob.

    Fig.1. The schematic diagram of PM-QKD-LSM protocol. SPD,a single photon detector; VOA, a variable optical attenuator; BS, the beam splitter; IM, intensity modulator; PM, phase modulator. The LSM module consists of a variable optical attenuator and a single photon detector(SPD-A/SPD-B).

    The proposed protocol can be described in detail as follows.

    (ii) Measurement Alice and Bob use the beam splitter(BS) to split the light beam into two paths. One is used for LSM module to estimate the photon number probabilities and the other is sent to the measurement site(Charlie)with transmittancesηa(ηb). By changing the attenuation coefficient(ηi)of the VOA in the LSM module,Alice(Bob)measures the probabilities(Pμk(ηi))that the SPD-A(SPD-B)not responds.Charlie is expected to perform the interference detection and record which detector(right detector or left detector)clicks. A successful detection is defined as that one and only one of the two detectors clicks,denoted byL-click andR-click.

    (vi) Key generation Alice and Bob repeat steps (i)–(v)until they have enough sifted keys. Afterwards, they perform an error correction and privacy amplification on the sifted key bits to get a fully secret key.

    2.2. The security analysis

    In this section,we discuss the security of PM-QKD-LSM protocol.

    As discussed above, PM-QKD-LSM protocol also includes state preparation,measurement,announcement,sifting,parameter estimation and key generation. The first difference between PM-QKD-LSM protocol and original PM-QKD protocol is the state preparation step. In original PM-QKD protocol,Alice(Bob)prepares the coherent state pulse and encodes the key information into the phases of the coherent states. It is assumed that the light source at Alice (Bob) side is a coherent state source with a average photon number which satisfies the Poisson distribution. However, the photon number distribution is unstable in the proposed PM-QKD-LSM protocol due to the non-ideal factors of the light source. Therefore, LSM module is adopted by Alice (Bob) to estimate the photon number probabilities. Obviously, the usage of LSM module does not affect the sooner measurement step, the following announcement and sifting. The second difference is the parameter estimation step, PM-QKD-LSM protocol adds the probability estimations of zero photon, one photon, and two photons precisely, which only has the relationship with the secure key rate, and is discussed in the following subsection. Hence,we only prove that the quantum state prepared in our protocol does not introduce the security problem.

    Hence,it is shown that the quantum state is formally consistent with that of PM-QKD protocol. Moreover,the security proof of PM-QKD protocol[22]can be fully applied to our proposed protocol.

    For the actual system security, the structure of system may introduce some security vulnerabilities. We discuss the security of the proposed protocol against the security vulnerabilities,individually,as follows.

    (i)PNS attack During the proposed protocol,the eavesdropper(Eve)has the chances to intervene and eavesdrop the signal by beam splitting attack(PNS).As PM-QKD protocol,we use the decoy state method in the proposed protocol,that is effectively against PNS attack. In addition, the LSM module used in the proposed protocol can estimate the probabilities of zero photon, single photon and two photon precisely, so that the PNS attack can be detected by Alice(Bob),and the security can be improved.

    (ii)Phase-remapping attack Ideally,the pulses undergo a phase modulation by the phase modulator.If Eve can change the arrival time of the pulses,then the pulses will pass through the phase modulator at different time, resulting in different encoded phases. This phase remapping process allows Eve to launch an intercept-and-resend attack. However, the LSM module can also be approximately regarded as a monitoring unit to monitor the arrival time of the pulses so as to resist this attack.

    (iii) Other practical issues A single photon detector(SPD),together with a variable attenuator,are used in our proposed protocol. The SPD may have a high dark count rate(DCR) when it works at room temperature, which may increase the time of monitoring the results. A high DCR and the increased monitoring time can introduce the overestimation of secret key rate. However,the SPD is set near the light source in our protocol and DCR=10-8?1(in our simulations),[25]which make the increased monitoring time ignored.Of course,the DCR of SPD may fluctuate in the actual environment,and other parameters,such as the detection efficiency of SPD,may drift. One can calibrate all parameters of the monitor in real time,[25]or present a range of parameter drifts and give a reasonable estimation of the lower bound of secret key rate (R)with the worst cases within the fluctuation range.

    2.3. Secret key rate of the protocol

    In PM-QKD-LSM protocol, three different coefficients(η0,η1andη2)are used to concisely estimate the photon number probabilities(PnL(μk),PnU(μk)),and they are controllable.The relation[29]betweenPμk(ηi)andPn(μk)can be described as

    2.4. Source fluctuation

    For a real-life QKD system,the PND of the light source’s signal is not fixed, that is, there is a problem of the light source fluctuation. Importantly, the performance of the PMQKD protocol is greatly degraded in this condition.Therefore,we further discuss the intensity fluctuation for PM-QKD-LSM protocol.

    Specifically, the signal emitted from the light source can be considered as a fluctuated coherent state which has an average photon number with Gaussian-distribution.[27,28]In PMQKD-LSM protocol, the signal after attenuation still has a Gaussian-distribution average photon numberμ, which has a probability distribution of

    whereσμk=σμ0,σis the fluctuation coefficient. With Eqs. (4)–(9), thePn(μk) can be estimated byPμk(ηi) under considering the source fluctuation.[31,32]

    3. Results with numerical simulation

    Table 1. Estimation result of{PnL(μk),PnU(μk)}in the LSM scheme.

    Then,we discuss the performance of the proposed protocol. The parameters are the same as those in Ref.[30],which are listed in Table 2.

    Figure 2 shows the secret key generation rate of the proposed protocol against transmission distance, together with that of original PM-QKD protocol. The results show that PM-QKD-LSM protocol can exceed PLOB bound when the transmission distance is greater than 212 km, and the performance of PM-QKD-LSM protocol (dashed curve) is close to that of the original PM-QKD protocol(solid curve).The ratios of secret key rate between PM-QKD-LSM protocol and PMQKD protocol are about 93.6%,93.0%,92.4%at the distance of 100 km, 200 km, 400 km, and the maximum transmission distances of PM-QKD-LSM protocol and PM-QKD protocol are 504 km and 507 km, respectively, where the maximum transmission distance is calculated asL=LA+LB.

    Table 2. The numerical simulation parameters.

    Fig. 2. The performance of PM-QKD-LSM protocol in comparison with that of PM-QKD protocol with the parameters set in Table 2. For 300 km transmission distance, the secret key rate for PM-QKD-LSM protocol is 2.23×10-6,while it is 2.41×10-6 for PM-QKD protocol.

    Fig. 3. The performance of the PM-QKD-LSM protocol with a nonideal and fluctuated light source compared to the PM-QKD protocol.σ: the fluctuation coefficient. For the PM-QKD-LSM protocol,a small fluctuation σ=1%(solid curve)and a large fluctuation σ=10%(dashdotted curve)are considered.For the PM-QKD protocol,a small fluctuation σ =1%(dashed curve)and a relatively large fluctuation σ =2%(dotted curve)are considered.

    After that,we discuss the performance of both PM-QKD protocol and PM-QKD-LSM protocol under the different fluctuation coefficientσ=σμk/μ0in Fig. 3. The values of intensities for the PM-QKD-LSM protocol and the PM-QKD protocol are optimized, and other simulation parameters are set the same as Table 2. It is shown that the PM-QKD-LSM protocol performs well in the practical systems. For the different fluctuation coefficientσ, the PM-QKD protocol has a obviously weaker performance, as its maximum transmission distance decreases to about 480 km for a small fluctuated light source(σ=1%),then decreases to about 460 km whenσup to 2%. However, for the PM-QKD-LSM protocol, its performances are almost unchanged under the fluctuated condition fromσ=1%toσ=10%.

    The above discussions are under the symmetric condition which satisfyLA=LB. Later, we discuss the performance of PM-QKD-LSM protocol under the asymmetric channel.Hence, we set the transmission distance to satisfyLB-LA=30 km andμA,μB ∈{0,μ/2,ν1/2},whereμ/2 is the signal intensity. Other simulation parameters are set the same as those in Table 2. Figure 5 shows the performance of the PM-QKDLSM protocol and the PM-QKD protocol under the asymmetric channel without source fluctuation,where the transmission distanceL=LB+LA. The results show that PM-QKD-LSM protocol can exceed PLOB bound when the transmission distance is greater than 275 km. The performance of PM-QKDLSM protocol (dashed curve) is almost same to that of PMQKD protocol (solid curve) for all the transmission distance.For 300 km transmission distance,the secret key rate for PMQKD-LSM protocol is 5.13×10-7,while it is 5.70×10-7for PM-QKD protocol,they are smaller than those under symmetric channel.

    Fig. 4. The performance of the PM-QKD-LSM protocol and that of PM-QKD with average intensity method under different source fluctuation. For two different methods,a small fluctuation σ =1%(red curve)and a large fluctuation σ =10%(blue curve)are considered. The solid curves denote the PM-QKD-LSM protocol and dash-dotted curves denote the PM-QKD protocol with average intensity.

    Fig. 5. The performance of the asymmetric PM-QKD-LSM protocol and the PM-QKD protocol without source fluctuate. The transmission distance is set to satisfy LB-LA =30 km, and the abscissa represents the total transmission distance(L=LB+LA).

    We further consider the effect of the light source fluctuation on the asymmetric channel. The fluctuation coefficients are set up toσ=1%andσ=5%,respectively,and the other simulation parameters are the same as those in symmetric case.The results in Fig.6 indicate that the PM-QKD-LSM protocol has a better performance in the case of source fluctuation,even the source fluctuation is 10 times greater than that of asymmetry PM-QKD protocol.

    In addition, we show the performance of the asymmetric PM-QKD-LSM protocol under different fluctuation coefficient versus the different Alice to Charlie transmission distance in Fig.7. The total transmission distance is set to 50 km,and the distance from Alice to Charlie is set from 5 km to 25 km. It can be seen from Fig. 7 that the performance of the asymmetric PM-QKD-LSM protocol with different source fluctuations are almost the same, which indicates the asymmetric PM-QKD-LSM protocol is also robust to the source fluctuation.that of PM-QKD protocol with source fluctuation. The symmetric and asymmetric PM-QKD-LSM protocol are robust to the source fluctuation. It is indicated that the PM-QKD-LSM protocol can still have a long transmission distance with the fluctuated source in practical QKD systems.

    Fig.6. The performance of the asymmetric PM-QKD-LSM protocol for different Alice to Charlie transmission distance under source fluctuation. The transmission distance is set to satisfy LB-LA=30 km,and the abscissa represents the total transmission distance (L=LB+LA). The fluctuation coefficient σ =1% (solid curve) and σ =5% (dashed curve) in the asymmetric PM-QKD-LSM protocol are set, respectively. The fluctuation coefficient σ =0.4%(dash-dotted curve)and σ =0.5%(dotted curve)in the asymmetric PM-QKD protocol are studied,respectively.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61871234 and 62001249) and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University(Grant No.KF201909).

    Fig.7. The performance of the asymmetric PM-QKD-LSM protocol under different fluctuation coefficient of light source. For the asymmetric channel, the fluctuation coefficient σ =0 (solid curve), a small fluctuation σ =1%(dashed curve)and a large fluctuation σ =5%(dash-dotted curve)are considered.

    4. Conclusion

    In this paper,we apply the LSM module to the PM-QKD protocol to solve the non-ideal source problem in practical QKD systems, where the LSM module is used to estimate the probabilities of zero photon,single photon and two photon precisely. We derive the more rigorous secret key rate under different source fluctuations.The results show that,whether in symmetric or asymmetric cases, the performance of the PMQKD-LSM protocol under UPC is almost the same as those of the PM-QKD protocol without source fluctuation. Moreover, PM-QKD-LSM protocol has a better performance than

    猜你喜歡
    李威
    晨讀
    夜讀(一)
    付明貞、趙蕾蕾、張揚(yáng)、李威作品
    把自媒體做到非洲去
    停止抱怨,你才能所向披靡
    把自媒體做到非洲去
    意林(2019年20期)2019-10-24 21:05:06
    女漢子的春天
    喜劇世界(2016年11期)2016-11-26 07:08:30
    協(xié)議幾經(jīng)變更 房子應(yīng)該歸誰(shuí)
    科長(zhǎng)的微博
    雜文選刊(2013年11期)2013-05-14 13:38:10
    李威作品
    白带黄色成豆腐渣| 观看美女的网站| 汤姆久久久久久久影院中文字幕 | 精品一区二区三区视频在线| 美女国产视频在线观看| 亚洲人成网站在线观看播放| av女优亚洲男人天堂| 亚洲av成人av| 高清毛片免费看| 久久精品国产亚洲网站| 青春草视频在线免费观看| 能在线免费观看的黄片| 日韩成人伦理影院| 最近最新中文字幕免费大全7| 日日摸夜夜添夜夜添av毛片| 国产69精品久久久久777片| 亚洲aⅴ乱码一区二区在线播放| 日韩伦理黄色片| 插逼视频在线观看| 久久久久久久亚洲中文字幕| 国产片特级美女逼逼视频| or卡值多少钱| 人人妻人人澡欧美一区二区| 亚洲最大成人中文| 久久久久久久久久久丰满| 最近2019中文字幕mv第一页| 午夜亚洲福利在线播放| 日韩精品有码人妻一区| 不卡视频在线观看欧美| 国产视频内射| 少妇裸体淫交视频免费看高清| 婷婷色麻豆天堂久久| 看黄色毛片网站| 日韩 亚洲 欧美在线| 国产成人精品婷婷| 神马国产精品三级电影在线观看| 白带黄色成豆腐渣| 久久精品国产亚洲av天美| 久久久色成人| 日韩成人av中文字幕在线观看| 又大又黄又爽视频免费| 在线a可以看的网站| 免费人成在线观看视频色| 美女高潮的动态| 毛片女人毛片| 一级a做视频免费观看| 亚洲成人精品中文字幕电影| 亚洲av日韩在线播放| 精品酒店卫生间| 国产激情偷乱视频一区二区| 日日啪夜夜爽| 非洲黑人性xxxx精品又粗又长| 一二三四中文在线观看免费高清| 99久久精品热视频| 国产乱人视频| 国产亚洲精品av在线| 日日啪夜夜撸| 人人妻人人澡欧美一区二区| 亚洲av.av天堂| av国产免费在线观看| 91久久精品电影网| 九草在线视频观看| 男女那种视频在线观看| 如何舔出高潮| 国内精品宾馆在线| 日日摸夜夜添夜夜爱| freevideosex欧美| 老司机影院毛片| 可以在线观看毛片的网站| 亚洲一区高清亚洲精品| 禁无遮挡网站| 搡老乐熟女国产| 美女黄网站色视频| 免费观看a级毛片全部| av网站免费在线观看视频 | 夫妻性生交免费视频一级片| 特级一级黄色大片| 99久久精品一区二区三区| 99热这里只有是精品50| 免费黄网站久久成人精品| 久久草成人影院| 久久精品夜色国产| 国产老妇伦熟女老妇高清| 午夜老司机福利剧场| 卡戴珊不雅视频在线播放| a级毛片免费高清观看在线播放| 亚洲aⅴ乱码一区二区在线播放| 久久综合国产亚洲精品| 亚洲伊人久久精品综合| 深夜a级毛片| 国产av在哪里看| 亚洲精品久久久久久婷婷小说| 男女边摸边吃奶| 日韩一本色道免费dvd| ponron亚洲| 国产免费福利视频在线观看| 老司机影院毛片| av天堂中文字幕网| 欧美激情久久久久久爽电影| 精品久久久久久久人妻蜜臀av| 联通29元200g的流量卡| 欧美潮喷喷水| 国产欧美日韩精品一区二区| 免费观看精品视频网站| 国产色婷婷99| 国产日韩欧美在线精品| 十八禁国产超污无遮挡网站| 亚洲不卡免费看| 日日啪夜夜爽| 精品久久久久久久久久久久久| 国产精品国产三级国产专区5o| 久久午夜福利片| 91在线精品国自产拍蜜月| 国产亚洲91精品色在线| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区黑人 | 国产一区亚洲一区在线观看| 国产一区二区在线观看日韩| 亚洲精品日韩在线中文字幕| av福利片在线观看| 免费无遮挡裸体视频| 色5月婷婷丁香| 一级爰片在线观看| 国产在线一区二区三区精| 亚洲国产成人一精品久久久| 免费在线观看成人毛片| 少妇人妻精品综合一区二区| 一本久久精品| 欧美xxxx黑人xx丫x性爽| 六月丁香七月| 久久精品久久精品一区二区三区| 91久久精品国产一区二区成人| 99九九线精品视频在线观看视频| 国产成人免费观看mmmm| 日韩中字成人| 午夜免费观看性视频| 嘟嘟电影网在线观看| 国产亚洲午夜精品一区二区久久 | 可以在线观看毛片的网站| 高清在线视频一区二区三区| 日本黄色片子视频| 亚洲人与动物交配视频| 成人性生交大片免费视频hd| 亚洲最大成人手机在线| 毛片一级片免费看久久久久| 久久99热这里只频精品6学生| 亚洲最大成人av| 狂野欧美激情性xxxx在线观看| 久久久久久国产a免费观看| 一边亲一边摸免费视频| 97超视频在线观看视频| 色吧在线观看| 五月玫瑰六月丁香| 高清av免费在线| 久久久久久国产a免费观看| 少妇的逼好多水| 青春草亚洲视频在线观看| 噜噜噜噜噜久久久久久91| 亚洲精品久久午夜乱码| 日日摸夜夜添夜夜爱| 国产精品久久久久久av不卡| 少妇猛男粗大的猛烈进出视频 | 国产亚洲最大av| 国产一区二区亚洲精品在线观看| 国产亚洲91精品色在线| 国产黄a三级三级三级人| 高清av免费在线| 男人舔女人下体高潮全视频| 街头女战士在线观看网站| av在线观看视频网站免费| 欧美日韩综合久久久久久| 免费观看av网站的网址| 亚洲av日韩在线播放| 男的添女的下面高潮视频| 寂寞人妻少妇视频99o| 你懂的网址亚洲精品在线观看| 免费无遮挡裸体视频| 亚洲精品自拍成人| 美女大奶头视频| 欧美xxⅹ黑人| 日本免费在线观看一区| 亚洲国产高清在线一区二区三| 黄色配什么色好看| 女人久久www免费人成看片| 大香蕉久久网| 国产毛片a区久久久久| 国产毛片a区久久久久| 精品不卡国产一区二区三区| 波野结衣二区三区在线| 人妻制服诱惑在线中文字幕| 国产成人精品福利久久| 精品不卡国产一区二区三区| 我的老师免费观看完整版| 91久久精品电影网| 2021天堂中文幕一二区在线观| 国产一区二区三区av在线| 久久国产乱子免费精品| 日韩中字成人| 日本wwww免费看| 最近最新中文字幕免费大全7| 欧美精品国产亚洲| 狂野欧美激情性xxxx在线观看| 亚洲最大成人av| 国产精品女同一区二区软件| 一区二区三区四区激情视频| 97热精品久久久久久| 最近手机中文字幕大全| 成人av在线播放网站| 狂野欧美白嫩少妇大欣赏| 欧美3d第一页| 亚洲不卡免费看| 国产淫语在线视频| 久久久久久久久中文| 亚洲av中文字字幕乱码综合| 一级爰片在线观看| 熟妇人妻不卡中文字幕| 国产亚洲91精品色在线| 成年人午夜在线观看视频 | 亚洲精品456在线播放app| 熟女人妻精品中文字幕| 久久午夜福利片| av女优亚洲男人天堂| 好男人在线观看高清免费视频| 少妇熟女欧美另类| 免费黄色在线免费观看| 亚洲精品第二区| 女的被弄到高潮叫床怎么办| 成人亚洲精品av一区二区| 色尼玛亚洲综合影院| 联通29元200g的流量卡| 亚洲精品国产成人久久av| 亚洲av一区综合| 能在线免费看毛片的网站| 午夜激情欧美在线| 亚洲av不卡在线观看| 国产在视频线在精品| 一级毛片aaaaaa免费看小| 免费人成在线观看视频色| 波多野结衣巨乳人妻| 成人高潮视频无遮挡免费网站| 亚洲成人av在线免费| 亚洲精品自拍成人| 久久精品久久久久久噜噜老黄| 久久久久久国产a免费观看| 美女内射精品一级片tv| 在线免费观看不下载黄p国产| 欧美成人精品欧美一级黄| 亚洲在线自拍视频| 国产伦在线观看视频一区| 男的添女的下面高潮视频| 国产一区二区在线观看日韩| 日韩av免费高清视频| 久久久久久久午夜电影| 亚洲婷婷狠狠爱综合网| 非洲黑人性xxxx精品又粗又长| 中文字幕人妻熟人妻熟丝袜美| 中文资源天堂在线| 国产成人精品久久久久久| 精华霜和精华液先用哪个| 97在线视频观看| 国产精品久久久久久av不卡| 精品欧美国产一区二区三| 麻豆av噜噜一区二区三区| 国产在线一区二区三区精| 小蜜桃在线观看免费完整版高清| 日日摸夜夜添夜夜添av毛片| 国产精品久久久久久久电影| 精品人妻偷拍中文字幕| 91aial.com中文字幕在线观看| 久久久久精品久久久久真实原创| 国产一区亚洲一区在线观看| 天美传媒精品一区二区| 精品欧美国产一区二区三| 麻豆乱淫一区二区| 亚洲精品一区蜜桃| 大又大粗又爽又黄少妇毛片口| 日日摸夜夜添夜夜添av毛片| 亚洲色图av天堂| 日韩精品青青久久久久久| 最新中文字幕久久久久| 国产精品爽爽va在线观看网站| 麻豆成人午夜福利视频| 日韩欧美国产在线观看| 中文字幕久久专区| 亚洲色图av天堂| 亚洲精品自拍成人| 亚洲欧美成人综合另类久久久| 成人漫画全彩无遮挡| 国产精品熟女久久久久浪| 欧美极品一区二区三区四区| 看黄色毛片网站| 欧美三级亚洲精品| 国产不卡一卡二| 一个人免费在线观看电影| 国产精品一区www在线观看| 乱码一卡2卡4卡精品| 看十八女毛片水多多多| 亚洲熟女精品中文字幕| 精品久久国产蜜桃| 好男人在线观看高清免费视频| av线在线观看网站| 国产探花极品一区二区| ponron亚洲| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 免费看日本二区| 夜夜爽夜夜爽视频| 三级男女做爰猛烈吃奶摸视频| 免费观看a级毛片全部| 久久久精品94久久精品| 18禁在线无遮挡免费观看视频| 在线免费观看不下载黄p国产| 精品一区二区三卡| 老司机影院毛片| 国产一区二区在线观看日韩| 亚洲欧洲日产国产| 亚洲欧美中文字幕日韩二区| 精品人妻一区二区三区麻豆| 波野结衣二区三区在线| 黄片wwwwww| av在线天堂中文字幕| 午夜激情福利司机影院| 国产激情偷乱视频一区二区| 三级国产精品欧美在线观看| 我的女老师完整版在线观看| 成人无遮挡网站| 欧美成人精品欧美一级黄| 日韩一区二区视频免费看| 最近中文字幕2019免费版| av国产免费在线观看| av一本久久久久| 午夜福利视频1000在线观看| 亚洲av在线观看美女高潮| 网址你懂的国产日韩在线| 97人妻精品一区二区三区麻豆| 嫩草影院精品99| 非洲黑人性xxxx精品又粗又长| 一级爰片在线观看| 欧美最新免费一区二区三区| 美女主播在线视频| 舔av片在线| 国产精品一区www在线观看| 夜夜爽夜夜爽视频| 亚洲欧美一区二区三区黑人 | 能在线免费观看的黄片| 老女人水多毛片| 色5月婷婷丁香| 久久久亚洲精品成人影院| 亚洲国产欧美人成| 国产老妇伦熟女老妇高清| 久久久久久久国产电影| 免费看光身美女| 午夜福利在线观看免费完整高清在| 久久国产乱子免费精品| 亚洲最大成人av| 国产精品美女特级片免费视频播放器| 99热这里只有是精品50| 欧美日韩一区二区视频在线观看视频在线 | 3wmmmm亚洲av在线观看| 超碰av人人做人人爽久久| 国产精品一区www在线观看| 欧美97在线视频| 日韩欧美 国产精品| 一级片'在线观看视频| 一本久久精品| 又黄又爽又刺激的免费视频.| 国产精品久久久久久久电影| 一级毛片 在线播放| 精品欧美国产一区二区三| 十八禁国产超污无遮挡网站| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 亚洲精品一区蜜桃| 久久久久久久久久久免费av| 日韩中字成人| 午夜福利在线观看吧| 高清在线视频一区二区三区| 男女啪啪激烈高潮av片| av国产久精品久网站免费入址| 久久亚洲国产成人精品v| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 91久久精品国产一区二区成人| 日韩欧美一区视频在线观看 | 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 在线观看一区二区三区| 日本黄色片子视频| 男的添女的下面高潮视频| 国产高清有码在线观看视频| 91狼人影院| 我要看日韩黄色一级片| 欧美一级a爱片免费观看看| 最近最新中文字幕免费大全7| 亚洲精品乱码久久久v下载方式| 免费观看a级毛片全部| 国产亚洲一区二区精品| 22中文网久久字幕| 亚洲国产精品成人久久小说| 一级毛片黄色毛片免费观看视频| 大片免费播放器 马上看| 亚洲精品一二三| 亚洲av免费在线观看| 国产美女午夜福利| 国产精品一区二区性色av| 性插视频无遮挡在线免费观看| 免费看光身美女| 免费大片18禁| 色5月婷婷丁香| 亚洲欧洲日产国产| 欧美一级a爱片免费观看看| 免费av毛片视频| 亚洲国产成人一精品久久久| 2022亚洲国产成人精品| 97精品久久久久久久久久精品| 精品一区二区三区人妻视频| av国产久精品久网站免费入址| 国产精品99久久久久久久久| 国产精品精品国产色婷婷| 亚洲在线观看片| 亚洲综合色惰| 午夜福利成人在线免费观看| 亚洲经典国产精华液单| 色5月婷婷丁香| 男人舔奶头视频| 日韩成人av中文字幕在线观看| 极品教师在线视频| 伦理电影大哥的女人| 黑人高潮一二区| 99热这里只有是精品在线观看| 亚洲经典国产精华液单| 天堂√8在线中文| 亚洲一区高清亚洲精品| h日本视频在线播放| 欧美精品国产亚洲| 女人被狂操c到高潮| 男的添女的下面高潮视频| 亚洲欧美日韩卡通动漫| 国产一区有黄有色的免费视频 | 亚洲成人av在线免费| 久久久国产一区二区| 人妻少妇偷人精品九色| 九草在线视频观看| 国产精品人妻久久久影院| 久久精品久久久久久久性| 国产成人精品福利久久| 丰满人妻一区二区三区视频av| 中文乱码字字幕精品一区二区三区 | 久久久欧美国产精品| 国产淫语在线视频| 亚洲av中文av极速乱| 六月丁香七月| a级一级毛片免费在线观看| 26uuu在线亚洲综合色| 国产片特级美女逼逼视频| 欧美高清成人免费视频www| 男人舔女人下体高潮全视频| 简卡轻食公司| 免费无遮挡裸体视频| 有码 亚洲区| 欧美高清性xxxxhd video| 22中文网久久字幕| 成人漫画全彩无遮挡| 老女人水多毛片| 街头女战士在线观看网站| 一级毛片我不卡| 91精品一卡2卡3卡4卡| 国产精品久久久久久精品电影| 国产麻豆成人av免费视频| www.av在线官网国产| 麻豆国产97在线/欧美| 成人特级av手机在线观看| 午夜精品国产一区二区电影 | 中文字幕亚洲精品专区| 国产免费福利视频在线观看| 日韩成人av中文字幕在线观看| 又黄又爽又刺激的免费视频.| 国产极品天堂在线| 国产在视频线精品| 日日摸夜夜添夜夜添av毛片| 丰满人妻一区二区三区视频av| 韩国高清视频一区二区三区| 欧美日韩综合久久久久久| 国产高清国产精品国产三级 | 亚洲怡红院男人天堂| 三级毛片av免费| 日本免费在线观看一区| 国国产精品蜜臀av免费| 欧美成人午夜免费资源| 午夜福利在线在线| 午夜免费激情av| 国产毛片a区久久久久| 国产精品三级大全| 尤物成人国产欧美一区二区三区| av网站免费在线观看视频 | 又爽又黄无遮挡网站| 国产免费福利视频在线观看| 少妇猛男粗大的猛烈进出视频 | 日韩欧美一区视频在线观看 | 如何舔出高潮| 精品国产露脸久久av麻豆 | 少妇熟女欧美另类| 免费观看av网站的网址| 最近中文字幕高清免费大全6| 国产探花在线观看一区二区| 久久久成人免费电影| 国产v大片淫在线免费观看| freevideosex欧美| 国产精品熟女久久久久浪| www.av在线官网国产| 欧美一区二区亚洲| 夜夜爽夜夜爽视频| 99热网站在线观看| 极品教师在线视频| 亚洲精品自拍成人| 99久国产av精品国产电影| 国产黄片美女视频| 青青草视频在线视频观看| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 亚洲av成人精品一区久久| 亚洲一级一片aⅴ在线观看| 美女高潮的动态| 男女啪啪激烈高潮av片| 禁无遮挡网站| 国产白丝娇喘喷水9色精品| 99九九线精品视频在线观看视频| 极品少妇高潮喷水抽搐| 国产精品一区二区性色av| 少妇的逼好多水| 18禁裸乳无遮挡免费网站照片| 国产v大片淫在线免费观看| 中国美白少妇内射xxxbb| 亚洲精品自拍成人| 国国产精品蜜臀av免费| 国内精品宾馆在线| 国产亚洲精品av在线| 国国产精品蜜臀av免费| 中文字幕人妻熟人妻熟丝袜美| 久久这里只有精品中国| 亚洲成人一二三区av| 午夜日本视频在线| 国产淫片久久久久久久久| 久久久久久久久久人人人人人人| 99九九线精品视频在线观看视频| 日韩视频在线欧美| 美女黄网站色视频| 亚洲av在线观看美女高潮| 深夜a级毛片| 久久久久性生活片| 天天躁夜夜躁狠狠久久av| 午夜精品在线福利| 一个人看的www免费观看视频| 国精品久久久久久国模美| 日韩在线高清观看一区二区三区| 色综合亚洲欧美另类图片| 晚上一个人看的免费电影| 亚洲欧美精品专区久久| 国产精品熟女久久久久浪| 人体艺术视频欧美日本| 两个人视频免费观看高清| 亚洲,欧美,日韩| 美女xxoo啪啪120秒动态图| 欧美高清成人免费视频www| 一级a做视频免费观看| 欧美丝袜亚洲另类| 国产乱人视频| 国产精品嫩草影院av在线观看| 人体艺术视频欧美日本| 欧美激情在线99| 久久鲁丝午夜福利片| 日本爱情动作片www.在线观看| 国产精品99久久久久久久久| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 国产视频首页在线观看| 91精品一卡2卡3卡4卡| 成人漫画全彩无遮挡| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 精品久久久久久久人妻蜜臀av| 久久久久久国产a免费观看| 亚洲丝袜综合中文字幕| 夫妻午夜视频| 久久久久久久久中文| 亚洲av电影在线观看一区二区三区 | 性插视频无遮挡在线免费观看| 99久久九九国产精品国产免费| 成人午夜高清在线视频| 99久久九九国产精品国产免费| 一区二区三区四区激情视频| 白带黄色成豆腐渣| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 一本久久精品| 麻豆久久精品国产亚洲av| 久久久久精品性色| 肉色欧美久久久久久久蜜桃 | 亚洲高清免费不卡视频| 老司机影院毛片| 性色avwww在线观看| 精品国产露脸久久av麻豆 | 亚洲精品一区蜜桃| 日韩制服骚丝袜av| 观看免费一级毛片| 亚洲综合色惰| 欧美一级a爱片免费观看看| 夫妻午夜视频| 亚洲无线观看免费| 久久99热这里只频精品6学生| 国产成人精品福利久久| 欧美成人a在线观看| 国产精品久久久久久久电影| 国产人妻一区二区三区在|