• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-matching quantum key distribution with light source monitoring

    2022-05-16 07:08:32WenTingLi李文婷LeWang王樂(lè)WeiLi李威andShengMeiZhao趙生妹
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李威

    Wen-Ting Li(李文婷) Le Wang(王樂(lè)) Wei Li(李威) and Sheng-Mei Zhao(趙生妹)

    1Institute of Signal Processing Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Key Laboratory of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education,Nanjing 210003,China

    Keywords: phase-matching quantum key distribution,source fluctuation,light source monitoring

    1. Introduction

    Quantum key distribution (QKD) is the most successful application in quantum information science, and its security has been proved at the end of the last century.[1–3]It enables distant parties to achieve the secure key by harnessing the laws of quantum mechanics.[4,5]After the first QKD protocol was proposed in 1984,[4]QKD has made great progress in theory and practice,such as decoy-state QKD protocol,[6,7]measurement-device-independent (MDI) protocol,[8,9]and round-robin differential-phase-shift (RRDPS) protocol.[10,11]Usually, photons are used as information carriers in QKD’s implementations. However, the transmission loss of photons has become a major obstacle in practical applications, resulting in the linear key-rate bound (PLOB bound) for QKD system.[12]In fiber-based networks, the transmission rate(η)decreases exponentially with the communication distance,which limits the transmission distance of the practical QKD system.

    Marvelously,a quantum key distribution protocol,named twin field quantum key distribution (TF-QKD) protocol, was proposed in 2018[13]to surpass the PLOB bound[12]and make a quadratic improvement over phase-encoding MDI-QKD protocol.[14]It has attracted much attention recently.[15–21]For TF-QKD protocol,the security problem caused by phase randomization was its main disadvantage. And phase matching quantum key distribution (PM-QKD) protocol[22]was then proposed to resolve the security loophole by adding an extra test mode. PM-QKD protocol could not only exceed the linear key rate limit, but also resist all probe attacks due to the independence of the measurement device. Recently,Maet al.[23]have proposed the reference-frame-independent design for PM-QKD protocol,which can well solve the performance degradation of reference system caused by offset. However,the quantum state prepared at the source was assumed to be an ideal coherent state in the original PM-QKD protocol. Actually, this assumption is not guaranteed in practice, leading to practical secure issues.[24]In addition, there also exists a non-ideal source problem causing the photon number distribution(PND)of the light source to be unknown and the prepared state to no longer be an ideal coherent state.

    On the other hand, light source monitoring (LSM) was proposed to solve the non-ideal source problem by monitoring the photon number distribution (PND) of the non-ideal light source.[25]The monitored statistical parameters can then be used to recalibrate the PND of the light source to estimate the final secret key rate, resulting that the assumption of ideal source is not necessary in QKD process. LSM was successfully applied to MDI-QKD protocol to solve the nonideal source problem theoretically based on the “untagged bits”concept,[26]and then based on a photon number resolving(PNR).[27]LSM was also used for the sending-or-not-sending(SNS)protocol to demonstrate that the security of SNS protocol is still valid under a source with unknown PND.[28]

    In the paper, we propose a PM-QKD with light source monitoring protocol, named PM-QKD-LSM protocol. In the protocol,the non-ideal light source is used to generate the light beam by Alice and Bob independently. After phase and intensity modulation, the light beam is then split to two paths by a beam splitter (BS), where one is input to the LSM module to estimate the probabilities that the light pulse signals contain zero photon, one photon, or two photons, and the other is emitted to the measurement site,Charlie,for detection. By matching phases with each other during post-selection,the key information is encoded into the common phase, and then the key can be obtained through the success detection results.

    The advantages of the proposed PM-QKD-LSM protocol are:(1)it overcomes the problem of non-ideal light source and improves the security of the PM-QKD protocol;(2)its performance under the unknown PND condition (UPC) can almost keep the same as that of PM-QKD protocol under ideal source condition without source fluctuation; (3) it is more independent of the source fluctuation than the PM-QKD protocol;and(4)the performance is almost unchanged as that of PM-QKD protocol under asymmetric channel.

    The contribution of this paper is that we investigate the ability of LSM in solving the non-ideal light source problem in PM-QKD protocol,and discuss the performance of PM-QKDLSM protocol under different source fluctuation.Furthermore,we enrich the work on the performance of PM-QKD-LSM protocol with symmetrical or asymmetrical channel. The results are helpful for the design of the practical PM-QKD system.In addition,the results in the paper show that the protocol we proposed not only solves the problem of non-ideal light source at the light source side,which relaxes the requirements on the light source, but also improves the security of the PM-QKD protocol. The improvement can be addressed from the following two aspects. One is that the LSM module itself has the function of monitoring the probability of the number of photons in our proposed protocol, which can detect the PNS attack. The other one is that the LSM module can also be regarded as a monitoring unit to monitoring the arrival time of the pulses so as to resist the phase-remapping attack.

    The paper is organized as follows. In Section 2, we first present the PM-QKD-LSM protocol, then we use the LSM method to obtain the tight bounds of the parameters for the secret key rate, and discuss the performance of the proposed protocol under the source fluctuation. In Section 3,we present some numerical analysis results. Finally,we draw the conclusions in Section 4.

    2. PM-QKD-LSM protocol

    2.1. The protocol

    The schematic diagram of PM-QKD-LSM protocol is shown in Fig. 1, where the two communication parties, Alice and Bob,generate her(his)coherent state pulses,independently at first. Before sending their coherent state pulses to an untrusted measurement site,Charlie,Alice and Bob use a LSM module individually to estimate the tight bound of the photon number probabilities (PnL(μk),PnU(μk)) on her(his) PND of the light source. Here, the subscribe L (U) andndenote the lower(upper)bound and the photon number(n=0,1,2), respectively. Then, Charlie is expected to perform the interference detection. This interference measurement would match the phases of Alice and Bob’s signals. Conditioned on Charlie’s announcement,there is a correlation between the key information of Alice and Bob.

    Fig.1. The schematic diagram of PM-QKD-LSM protocol. SPD,a single photon detector; VOA, a variable optical attenuator; BS, the beam splitter; IM, intensity modulator; PM, phase modulator. The LSM module consists of a variable optical attenuator and a single photon detector(SPD-A/SPD-B).

    The proposed protocol can be described in detail as follows.

    (ii) Measurement Alice and Bob use the beam splitter(BS) to split the light beam into two paths. One is used for LSM module to estimate the photon number probabilities and the other is sent to the measurement site(Charlie)with transmittancesηa(ηb). By changing the attenuation coefficient(ηi)of the VOA in the LSM module,Alice(Bob)measures the probabilities(Pμk(ηi))that the SPD-A(SPD-B)not responds.Charlie is expected to perform the interference detection and record which detector(right detector or left detector)clicks. A successful detection is defined as that one and only one of the two detectors clicks,denoted byL-click andR-click.

    (vi) Key generation Alice and Bob repeat steps (i)–(v)until they have enough sifted keys. Afterwards, they perform an error correction and privacy amplification on the sifted key bits to get a fully secret key.

    2.2. The security analysis

    In this section,we discuss the security of PM-QKD-LSM protocol.

    As discussed above, PM-QKD-LSM protocol also includes state preparation,measurement,announcement,sifting,parameter estimation and key generation. The first difference between PM-QKD-LSM protocol and original PM-QKD protocol is the state preparation step. In original PM-QKD protocol,Alice(Bob)prepares the coherent state pulse and encodes the key information into the phases of the coherent states. It is assumed that the light source at Alice (Bob) side is a coherent state source with a average photon number which satisfies the Poisson distribution. However, the photon number distribution is unstable in the proposed PM-QKD-LSM protocol due to the non-ideal factors of the light source. Therefore, LSM module is adopted by Alice (Bob) to estimate the photon number probabilities. Obviously, the usage of LSM module does not affect the sooner measurement step, the following announcement and sifting. The second difference is the parameter estimation step, PM-QKD-LSM protocol adds the probability estimations of zero photon, one photon, and two photons precisely, which only has the relationship with the secure key rate, and is discussed in the following subsection. Hence,we only prove that the quantum state prepared in our protocol does not introduce the security problem.

    Hence,it is shown that the quantum state is formally consistent with that of PM-QKD protocol. Moreover,the security proof of PM-QKD protocol[22]can be fully applied to our proposed protocol.

    For the actual system security, the structure of system may introduce some security vulnerabilities. We discuss the security of the proposed protocol against the security vulnerabilities,individually,as follows.

    (i)PNS attack During the proposed protocol,the eavesdropper(Eve)has the chances to intervene and eavesdrop the signal by beam splitting attack(PNS).As PM-QKD protocol,we use the decoy state method in the proposed protocol,that is effectively against PNS attack. In addition, the LSM module used in the proposed protocol can estimate the probabilities of zero photon, single photon and two photon precisely, so that the PNS attack can be detected by Alice(Bob),and the security can be improved.

    (ii)Phase-remapping attack Ideally,the pulses undergo a phase modulation by the phase modulator.If Eve can change the arrival time of the pulses,then the pulses will pass through the phase modulator at different time, resulting in different encoded phases. This phase remapping process allows Eve to launch an intercept-and-resend attack. However, the LSM module can also be approximately regarded as a monitoring unit to monitor the arrival time of the pulses so as to resist this attack.

    (iii) Other practical issues A single photon detector(SPD),together with a variable attenuator,are used in our proposed protocol. The SPD may have a high dark count rate(DCR) when it works at room temperature, which may increase the time of monitoring the results. A high DCR and the increased monitoring time can introduce the overestimation of secret key rate. However,the SPD is set near the light source in our protocol and DCR=10-8?1(in our simulations),[25]which make the increased monitoring time ignored.Of course,the DCR of SPD may fluctuate in the actual environment,and other parameters,such as the detection efficiency of SPD,may drift. One can calibrate all parameters of the monitor in real time,[25]or present a range of parameter drifts and give a reasonable estimation of the lower bound of secret key rate (R)with the worst cases within the fluctuation range.

    2.3. Secret key rate of the protocol

    In PM-QKD-LSM protocol, three different coefficients(η0,η1andη2)are used to concisely estimate the photon number probabilities(PnL(μk),PnU(μk)),and they are controllable.The relation[29]betweenPμk(ηi)andPn(μk)can be described as

    2.4. Source fluctuation

    For a real-life QKD system,the PND of the light source’s signal is not fixed, that is, there is a problem of the light source fluctuation. Importantly, the performance of the PMQKD protocol is greatly degraded in this condition.Therefore,we further discuss the intensity fluctuation for PM-QKD-LSM protocol.

    Specifically, the signal emitted from the light source can be considered as a fluctuated coherent state which has an average photon number with Gaussian-distribution.[27,28]In PMQKD-LSM protocol, the signal after attenuation still has a Gaussian-distribution average photon numberμ, which has a probability distribution of

    whereσμk=σμ0,σis the fluctuation coefficient. With Eqs. (4)–(9), thePn(μk) can be estimated byPμk(ηi) under considering the source fluctuation.[31,32]

    3. Results with numerical simulation

    Table 1. Estimation result of{PnL(μk),PnU(μk)}in the LSM scheme.

    Then,we discuss the performance of the proposed protocol. The parameters are the same as those in Ref.[30],which are listed in Table 2.

    Figure 2 shows the secret key generation rate of the proposed protocol against transmission distance, together with that of original PM-QKD protocol. The results show that PM-QKD-LSM protocol can exceed PLOB bound when the transmission distance is greater than 212 km, and the performance of PM-QKD-LSM protocol (dashed curve) is close to that of the original PM-QKD protocol(solid curve).The ratios of secret key rate between PM-QKD-LSM protocol and PMQKD protocol are about 93.6%,93.0%,92.4%at the distance of 100 km, 200 km, 400 km, and the maximum transmission distances of PM-QKD-LSM protocol and PM-QKD protocol are 504 km and 507 km, respectively, where the maximum transmission distance is calculated asL=LA+LB.

    Table 2. The numerical simulation parameters.

    Fig. 2. The performance of PM-QKD-LSM protocol in comparison with that of PM-QKD protocol with the parameters set in Table 2. For 300 km transmission distance, the secret key rate for PM-QKD-LSM protocol is 2.23×10-6,while it is 2.41×10-6 for PM-QKD protocol.

    Fig. 3. The performance of the PM-QKD-LSM protocol with a nonideal and fluctuated light source compared to the PM-QKD protocol.σ: the fluctuation coefficient. For the PM-QKD-LSM protocol,a small fluctuation σ=1%(solid curve)and a large fluctuation σ=10%(dashdotted curve)are considered.For the PM-QKD protocol,a small fluctuation σ =1%(dashed curve)and a relatively large fluctuation σ =2%(dotted curve)are considered.

    After that,we discuss the performance of both PM-QKD protocol and PM-QKD-LSM protocol under the different fluctuation coefficientσ=σμk/μ0in Fig. 3. The values of intensities for the PM-QKD-LSM protocol and the PM-QKD protocol are optimized, and other simulation parameters are set the same as Table 2. It is shown that the PM-QKD-LSM protocol performs well in the practical systems. For the different fluctuation coefficientσ, the PM-QKD protocol has a obviously weaker performance, as its maximum transmission distance decreases to about 480 km for a small fluctuated light source(σ=1%),then decreases to about 460 km whenσup to 2%. However, for the PM-QKD-LSM protocol, its performances are almost unchanged under the fluctuated condition fromσ=1%toσ=10%.

    The above discussions are under the symmetric condition which satisfyLA=LB. Later, we discuss the performance of PM-QKD-LSM protocol under the asymmetric channel.Hence, we set the transmission distance to satisfyLB-LA=30 km andμA,μB ∈{0,μ/2,ν1/2},whereμ/2 is the signal intensity. Other simulation parameters are set the same as those in Table 2. Figure 5 shows the performance of the PM-QKDLSM protocol and the PM-QKD protocol under the asymmetric channel without source fluctuation,where the transmission distanceL=LB+LA. The results show that PM-QKD-LSM protocol can exceed PLOB bound when the transmission distance is greater than 275 km. The performance of PM-QKDLSM protocol (dashed curve) is almost same to that of PMQKD protocol (solid curve) for all the transmission distance.For 300 km transmission distance,the secret key rate for PMQKD-LSM protocol is 5.13×10-7,while it is 5.70×10-7for PM-QKD protocol,they are smaller than those under symmetric channel.

    Fig. 4. The performance of the PM-QKD-LSM protocol and that of PM-QKD with average intensity method under different source fluctuation. For two different methods,a small fluctuation σ =1%(red curve)and a large fluctuation σ =10%(blue curve)are considered. The solid curves denote the PM-QKD-LSM protocol and dash-dotted curves denote the PM-QKD protocol with average intensity.

    Fig. 5. The performance of the asymmetric PM-QKD-LSM protocol and the PM-QKD protocol without source fluctuate. The transmission distance is set to satisfy LB-LA =30 km, and the abscissa represents the total transmission distance(L=LB+LA).

    We further consider the effect of the light source fluctuation on the asymmetric channel. The fluctuation coefficients are set up toσ=1%andσ=5%,respectively,and the other simulation parameters are the same as those in symmetric case.The results in Fig.6 indicate that the PM-QKD-LSM protocol has a better performance in the case of source fluctuation,even the source fluctuation is 10 times greater than that of asymmetry PM-QKD protocol.

    In addition, we show the performance of the asymmetric PM-QKD-LSM protocol under different fluctuation coefficient versus the different Alice to Charlie transmission distance in Fig.7. The total transmission distance is set to 50 km,and the distance from Alice to Charlie is set from 5 km to 25 km. It can be seen from Fig. 7 that the performance of the asymmetric PM-QKD-LSM protocol with different source fluctuations are almost the same, which indicates the asymmetric PM-QKD-LSM protocol is also robust to the source fluctuation.that of PM-QKD protocol with source fluctuation. The symmetric and asymmetric PM-QKD-LSM protocol are robust to the source fluctuation. It is indicated that the PM-QKD-LSM protocol can still have a long transmission distance with the fluctuated source in practical QKD systems.

    Fig.6. The performance of the asymmetric PM-QKD-LSM protocol for different Alice to Charlie transmission distance under source fluctuation. The transmission distance is set to satisfy LB-LA=30 km,and the abscissa represents the total transmission distance (L=LB+LA). The fluctuation coefficient σ =1% (solid curve) and σ =5% (dashed curve) in the asymmetric PM-QKD-LSM protocol are set, respectively. The fluctuation coefficient σ =0.4%(dash-dotted curve)and σ =0.5%(dotted curve)in the asymmetric PM-QKD protocol are studied,respectively.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61871234 and 62001249) and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University(Grant No.KF201909).

    Fig.7. The performance of the asymmetric PM-QKD-LSM protocol under different fluctuation coefficient of light source. For the asymmetric channel, the fluctuation coefficient σ =0 (solid curve), a small fluctuation σ =1%(dashed curve)and a large fluctuation σ =5%(dash-dotted curve)are considered.

    4. Conclusion

    In this paper,we apply the LSM module to the PM-QKD protocol to solve the non-ideal source problem in practical QKD systems, where the LSM module is used to estimate the probabilities of zero photon,single photon and two photon precisely. We derive the more rigorous secret key rate under different source fluctuations.The results show that,whether in symmetric or asymmetric cases, the performance of the PMQKD-LSM protocol under UPC is almost the same as those of the PM-QKD protocol without source fluctuation. Moreover, PM-QKD-LSM protocol has a better performance than

    猜你喜歡
    李威
    晨讀
    夜讀(一)
    付明貞、趙蕾蕾、張揚(yáng)、李威作品
    把自媒體做到非洲去
    停止抱怨,你才能所向披靡
    把自媒體做到非洲去
    意林(2019年20期)2019-10-24 21:05:06
    女漢子的春天
    喜劇世界(2016年11期)2016-11-26 07:08:30
    協(xié)議幾經(jīng)變更 房子應(yīng)該歸誰(shuí)
    科長(zhǎng)的微博
    雜文選刊(2013年11期)2013-05-14 13:38:10
    李威作品
    亚洲国产av影院在线观看| 欧美成狂野欧美在线观看| 日韩制服骚丝袜av| 美女福利国产在线| 18禁观看日本| 亚洲视频免费观看视频| 欧美精品人与动牲交sv欧美| 成年女人毛片免费观看观看9 | bbb黄色大片| 香蕉国产在线看| 只有这里有精品99| 十八禁人妻一区二区| 1024视频免费在线观看| 视频在线观看一区二区三区| 久久精品亚洲av国产电影网| 美女大奶头黄色视频| 国产免费现黄频在线看| 高清黄色对白视频在线免费看| 两人在一起打扑克的视频| 丁香六月欧美| 国产成人欧美| 蜜桃在线观看..| 美女大奶头黄色视频| av又黄又爽大尺度在线免费看| 精品卡一卡二卡四卡免费| 久久久久久久大尺度免费视频| 精品一区二区三卡| 一级毛片黄色毛片免费观看视频| 久久这里只有精品19| 日本av手机在线免费观看| 欧美成人午夜精品| 午夜福利,免费看| 一级,二级,三级黄色视频| 午夜激情久久久久久久| a 毛片基地| 日本欧美视频一区| 美女大奶头黄色视频| 亚洲国产欧美在线一区| 精品福利观看| 欧美97在线视频| 你懂的网址亚洲精品在线观看| 国产成人av教育| 免费在线观看日本一区| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 免费人妻精品一区二区三区视频| 国产精品一区二区免费欧美 | 国产在线观看jvid| 免费观看人在逋| 日韩一卡2卡3卡4卡2021年| 高清不卡的av网站| 欧美亚洲日本最大视频资源| 欧美人与善性xxx| 在线观看免费日韩欧美大片| 久久99热这里只频精品6学生| 亚洲中文字幕日韩| 老汉色av国产亚洲站长工具| 国产欧美日韩综合在线一区二区| 高清不卡的av网站| 精品亚洲成a人片在线观看| 久久女婷五月综合色啪小说| 狂野欧美激情性xxxx| 一级毛片我不卡| 乱人伦中国视频| 色94色欧美一区二区| 黄色片一级片一级黄色片| 中文字幕av电影在线播放| 亚洲精品中文字幕在线视频| 亚洲中文av在线| 精品熟女少妇八av免费久了| 黄色毛片三级朝国网站| 久久人人97超碰香蕉20202| av有码第一页| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 韩国精品一区二区三区| 亚洲av美国av| 少妇被粗大的猛进出69影院| 精品国产乱码久久久久久小说| 亚洲一码二码三码区别大吗| 久久精品亚洲av国产电影网| 国产成人欧美在线观看 | 91老司机精品| 热re99久久国产66热| 亚洲欧美中文字幕日韩二区| 欧美日韩黄片免| 十八禁高潮呻吟视频| 久久久精品免费免费高清| cao死你这个sao货| 久久人人爽av亚洲精品天堂| 丝袜在线中文字幕| 欧美日韩综合久久久久久| 日本vs欧美在线观看视频| 色播在线永久视频| 国产免费又黄又爽又色| 亚洲av国产av综合av卡| 亚洲精品av麻豆狂野| 久久久久久久国产电影| 国产免费现黄频在线看| 91麻豆av在线| 激情视频va一区二区三区| 高清视频免费观看一区二区| 美女主播在线视频| 美国免费a级毛片| 午夜福利视频在线观看免费| 一级片免费观看大全| 欧美精品av麻豆av| 老司机靠b影院| 欧美日本中文国产一区发布| 母亲3免费完整高清在线观看| 免费观看av网站的网址| 自线自在国产av| 蜜桃在线观看..| 欧美精品一区二区大全| 成人国产av品久久久| 国产在线一区二区三区精| 少妇精品久久久久久久| 亚洲欧美色中文字幕在线| 新久久久久国产一级毛片| 精品亚洲成国产av| 国产一卡二卡三卡精品| 国产高清不卡午夜福利| 在线观看免费日韩欧美大片| 七月丁香在线播放| 亚洲欧洲精品一区二区精品久久久| 女性生殖器流出的白浆| 少妇裸体淫交视频免费看高清 | 国产成人精品久久二区二区91| 国产亚洲午夜精品一区二区久久| 美女视频免费永久观看网站| 色网站视频免费| 18禁裸乳无遮挡动漫免费视频| www日本在线高清视频| 精品视频人人做人人爽| 国产熟女午夜一区二区三区| 咕卡用的链子| 热99久久久久精品小说推荐| bbb黄色大片| 亚洲精品国产av成人精品| 美女中出高潮动态图| 亚洲精品日韩在线中文字幕| 大片免费播放器 马上看| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 国产亚洲一区二区精品| 啦啦啦 在线观看视频| 精品国产一区二区久久| 欧美日韩av久久| 国产伦理片在线播放av一区| 首页视频小说图片口味搜索 | 成年人黄色毛片网站| 亚洲 欧美一区二区三区| www.自偷自拍.com| 亚洲精品自拍成人| 精品高清国产在线一区| 久久狼人影院| 别揉我奶头~嗯~啊~动态视频 | 丝瓜视频免费看黄片| 久久中文字幕一级| 精品第一国产精品| 一个人免费看片子| 波多野结衣一区麻豆| 色播在线永久视频| 亚洲成人国产一区在线观看 | tube8黄色片| 国产精品久久久久久人妻精品电影 | 在线av久久热| 国产1区2区3区精品| 亚洲精品一卡2卡三卡4卡5卡 | 99国产精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 午夜免费男女啪啪视频观看| 肉色欧美久久久久久久蜜桃| 日本一区二区免费在线视频| 国产精品一区二区在线不卡| 免费日韩欧美在线观看| 97在线人人人人妻| 啦啦啦 在线观看视频| 在线观看免费日韩欧美大片| 男女边吃奶边做爰视频| 欧美精品啪啪一区二区三区 | 丝袜脚勾引网站| 久久av网站| 亚洲欧美成人综合另类久久久| 老司机深夜福利视频在线观看 | 国产日韩欧美视频二区| 少妇粗大呻吟视频| 尾随美女入室| 久久99一区二区三区| 亚洲av成人精品一二三区| 人人澡人人妻人| 麻豆乱淫一区二区| 久久精品aⅴ一区二区三区四区| 成年美女黄网站色视频大全免费| 少妇人妻 视频| 国精品久久久久久国模美| 国产精品一二三区在线看| 国产主播在线观看一区二区 | 不卡av一区二区三区| 十八禁高潮呻吟视频| 国产亚洲欧美在线一区二区| 亚洲激情五月婷婷啪啪| 日本猛色少妇xxxxx猛交久久| 一区二区三区乱码不卡18| 午夜日韩欧美国产| 一级毛片女人18水好多 | 久久精品人人爽人人爽视色| 99精品久久久久人妻精品| 国产av国产精品国产| 999久久久国产精品视频| 亚洲av日韩精品久久久久久密 | 国产成人欧美在线观看 | 日韩视频在线欧美| 国产精品亚洲av一区麻豆| 国产高清不卡午夜福利| 激情五月婷婷亚洲| 精品国产一区二区三区四区第35| 别揉我奶头~嗯~啊~动态视频 | netflix在线观看网站| 黄色 视频免费看| 国产日韩欧美在线精品| 成人亚洲欧美一区二区av| 日本午夜av视频| 国产97色在线日韩免费| 日日夜夜操网爽| 青青草视频在线视频观看| 一边摸一边抽搐一进一出视频| 日韩制服丝袜自拍偷拍| 美女高潮到喷水免费观看| 国产精品成人在线| 制服人妻中文乱码| 一区二区三区激情视频| 亚洲精品一二三| 欧美亚洲 丝袜 人妻 在线| 国产精品免费大片| 欧美性长视频在线观看| 国产精品久久久av美女十八| 一级毛片黄色毛片免费观看视频| 99久久精品国产亚洲精品| 热re99久久国产66热| 人人妻,人人澡人人爽秒播 | 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 精品国产一区二区三区久久久樱花| 男女国产视频网站| 在线观看一区二区三区激情| 日本午夜av视频| 亚洲一区中文字幕在线| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 国产在线观看jvid| 国产成人91sexporn| 99热全是精品| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区免费欧美 | 大话2 男鬼变身卡| 热re99久久国产66热| 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 国产一级毛片在线| 一区二区三区精品91| 免费在线观看视频国产中文字幕亚洲 | 国产一卡二卡三卡精品| 亚洲精品乱久久久久久| 99久久人妻综合| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀 | 一本一本久久a久久精品综合妖精| 18禁裸乳无遮挡动漫免费视频| 美女视频免费永久观看网站| 一级,二级,三级黄色视频| 人妻人人澡人人爽人人| 亚洲成色77777| 成人影院久久| 成年动漫av网址| 一区二区av电影网| 亚洲国产欧美日韩在线播放| 欧美日韩成人在线一区二区| 精品久久久精品久久久| av欧美777| 肉色欧美久久久久久久蜜桃| 国产亚洲精品第一综合不卡| 久久久国产精品麻豆| 在线观看免费日韩欧美大片| 首页视频小说图片口味搜索 | 精品亚洲成a人片在线观看| 99精国产麻豆久久婷婷| 色婷婷av一区二区三区视频| 精品国产国语对白av| 免费黄频网站在线观看国产| 51午夜福利影视在线观看| 国产精品免费大片| 秋霞在线观看毛片| 看免费成人av毛片| 亚洲av成人精品一二三区| 高清欧美精品videossex| 成年动漫av网址| videosex国产| 国产精品成人在线| 黄色怎么调成土黄色| 纯流量卡能插随身wifi吗| 国产日韩欧美在线精品| 久久精品国产亚洲av高清一级| 欧美日韩一级在线毛片| 亚洲,一卡二卡三卡| 熟女av电影| 免费久久久久久久精品成人欧美视频| 欧美av亚洲av综合av国产av| 亚洲欧洲国产日韩| 啦啦啦啦在线视频资源| 国产精品偷伦视频观看了| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影 | 超色免费av| 亚洲精品日本国产第一区| 人人妻人人澡人人爽人人夜夜| 制服人妻中文乱码| 亚洲成人国产一区在线观看 | 国产欧美日韩精品亚洲av| 欧美国产精品一级二级三级| 午夜福利乱码中文字幕| 日本猛色少妇xxxxx猛交久久| 一个人免费看片子| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 又大又黄又爽视频免费| 91字幕亚洲| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 1024视频免费在线观看| 少妇 在线观看| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频| 国产在线免费精品| 国产免费视频播放在线视频| 女性生殖器流出的白浆| 91精品伊人久久大香线蕉| 欧美日本中文国产一区发布| 亚洲 欧美一区二区三区| 尾随美女入室| 国产亚洲午夜精品一区二区久久| 少妇粗大呻吟视频| 看十八女毛片水多多多| 亚洲,欧美,日韩| 日韩一本色道免费dvd| 亚洲 欧美一区二区三区| 亚洲国产精品国产精品| 老鸭窝网址在线观看| 欧美大码av| 国产野战对白在线观看| 欧美xxⅹ黑人| 国产99久久九九免费精品| 三上悠亚av全集在线观看| 肉色欧美久久久久久久蜜桃| 久久ye,这里只有精品| 国产一级毛片在线| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 久久久久国产精品人妻一区二区| 人人妻人人爽人人添夜夜欢视频| 18禁黄网站禁片午夜丰满| 无限看片的www在线观看| 久久精品aⅴ一区二区三区四区| 亚洲av国产av综合av卡| 国产成人精品久久二区二区免费| 国产xxxxx性猛交| 大话2 男鬼变身卡| 色视频在线一区二区三区| 日本91视频免费播放| 这个男人来自地球电影免费观看| 中文字幕高清在线视频| 日韩欧美一区视频在线观看| 后天国语完整版免费观看| 夜夜骑夜夜射夜夜干| 久久久精品免费免费高清| 亚洲欧美成人综合另类久久久| 国产精品一区二区精品视频观看| 亚洲成人国产一区在线观看 | 久9热在线精品视频| 看免费av毛片| 午夜福利乱码中文字幕| 成人国产av品久久久| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 99re6热这里在线精品视频| 久久久国产一区二区| 欧美 日韩 精品 国产| 十八禁人妻一区二区| 亚洲精品国产av成人精品| 亚洲人成77777在线视频| 黄色怎么调成土黄色| 91麻豆精品激情在线观看国产 | 久久久国产精品麻豆| 国产精品秋霞免费鲁丝片| 老司机在亚洲福利影院| 19禁男女啪啪无遮挡网站| xxx大片免费视频| 久久人人爽人人片av| 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看 | 成年人免费黄色播放视频| 中文字幕色久视频| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 久久久久久久精品精品| 1024香蕉在线观看| 亚洲精品国产一区二区精华液| 午夜免费成人在线视频| 日韩伦理黄色片| 亚洲精品在线美女| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 人妻一区二区av| 国产人伦9x9x在线观看| 老熟女久久久| 久久久久网色| 美女中出高潮动态图| 日韩伦理黄色片| av不卡在线播放| 深夜精品福利| 男人操女人黄网站| 无限看片的www在线观看| 女性生殖器流出的白浆| 99九九在线精品视频| 精品国产一区二区三区久久久樱花| 亚洲av片天天在线观看| 你懂的网址亚洲精品在线观看| 老司机亚洲免费影院| cao死你这个sao货| 亚洲成人免费电影在线观看 | 男人舔女人的私密视频| 性少妇av在线| 天天影视国产精品| 欧美精品av麻豆av| 久久久精品免费免费高清| 国产高清videossex| 亚洲精品一二三| 日本av手机在线免费观看| 女人久久www免费人成看片| 亚洲国产最新在线播放| 亚洲七黄色美女视频| 亚洲欧美精品综合一区二区三区| 亚洲美女黄色视频免费看| 久久久久久久国产电影| 欧美在线黄色| 操出白浆在线播放| 午夜免费成人在线视频| 大码成人一级视频| 日韩欧美一区视频在线观看| 我的亚洲天堂| 大陆偷拍与自拍| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 国产黄频视频在线观看| 悠悠久久av| 一区二区av电影网| 无遮挡黄片免费观看| 国产亚洲午夜精品一区二区久久| 亚洲久久久国产精品| 精品少妇内射三级| 亚洲欧美精品自产自拍| 99热全是精品| 99热国产这里只有精品6| 女人高潮潮喷娇喘18禁视频| 国产成人啪精品午夜网站| 一本一本久久a久久精品综合妖精| 啦啦啦视频在线资源免费观看| 久久人妻福利社区极品人妻图片 | 成年人黄色毛片网站| 自线自在国产av| 成年女人毛片免费观看观看9 | 一级毛片 在线播放| 日韩精品免费视频一区二区三区| 欧美日韩视频高清一区二区三区二| 视频区欧美日本亚洲| 热99国产精品久久久久久7| 日韩一本色道免费dvd| 美女视频免费永久观看网站| 久久久久久亚洲精品国产蜜桃av| 少妇被粗大的猛进出69影院| 免费在线观看日本一区| 美女脱内裤让男人舔精品视频| 亚洲精品日本国产第一区| 只有这里有精品99| 精品人妻1区二区| 国产男女内射视频| 深夜精品福利| 人妻人人澡人人爽人人| 婷婷色麻豆天堂久久| 久久久久久久国产电影| 国产男人的电影天堂91| 高清视频免费观看一区二区| 91九色精品人成在线观看| 男的添女的下面高潮视频| 国产亚洲一区二区精品| 极品人妻少妇av视频| 在线观看免费视频网站a站| 久久热在线av| 夫妻性生交免费视频一级片| 亚洲欧美精品综合一区二区三区| 在线观看免费午夜福利视频| 日本欧美视频一区| 9色porny在线观看| 各种免费的搞黄视频| 国产欧美日韩一区二区三 | 夜夜骑夜夜射夜夜干| 亚洲一区二区三区欧美精品| 伊人久久大香线蕉亚洲五| av网站在线播放免费| 国产精品二区激情视频| 又黄又粗又硬又大视频| 亚洲五月婷婷丁香| 国产野战对白在线观看| 青春草亚洲视频在线观看| 看十八女毛片水多多多| 欧美日韩精品网址| 免费在线观看黄色视频的| 精品国产一区二区三区四区第35| 久久久久久久精品精品| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| 90打野战视频偷拍视频| 丝袜美腿诱惑在线| 大片免费播放器 马上看| 90打野战视频偷拍视频| 中文字幕高清在线视频| 视频区欧美日本亚洲| 中文字幕高清在线视频| 美女高潮到喷水免费观看| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看 | 精品国产一区二区三区久久久樱花| 亚洲国产欧美网| 19禁男女啪啪无遮挡网站| 国产免费视频播放在线视频| 女性生殖器流出的白浆| 大片免费播放器 马上看| 国产精品一区二区在线观看99| 大片免费播放器 马上看| 成在线人永久免费视频| 国语对白做爰xxxⅹ性视频网站| 久久人妻福利社区极品人妻图片 | 你懂的网址亚洲精品在线观看| 超碰成人久久| 国产免费福利视频在线观看| 国产精品久久久久久精品电影小说| 日韩人妻精品一区2区三区| 一级黄色大片毛片| 久久性视频一级片| 久久久久久人人人人人| 免费在线观看黄色视频的| 亚洲伊人色综图| 七月丁香在线播放| 人妻一区二区av| 免费在线观看视频国产中文字幕亚洲 | 国产精品成人在线| 欧美精品高潮呻吟av久久| 黑人欧美特级aaaaaa片| 51午夜福利影视在线观看| 黄色 视频免费看| 亚洲精品国产一区二区精华液| av有码第一页| 一级黄色大片毛片| 亚洲免费av在线视频| 国产精品二区激情视频| 老司机影院成人| 麻豆国产av国片精品| avwww免费| 丝袜美足系列| 超色免费av| 欧美av亚洲av综合av国产av| 久久青草综合色| 亚洲av日韩在线播放| 国产欧美日韩一区二区三区在线| 免费av中文字幕在线| 大陆偷拍与自拍| 热re99久久精品国产66热6| 日韩中文字幕视频在线看片| 看免费成人av毛片| 亚洲精品一卡2卡三卡4卡5卡 | 高清av免费在线| videosex国产| 日韩一区二区三区影片| 亚洲精品乱久久久久久| 黄色视频不卡| 亚洲精品第二区| 一本色道久久久久久精品综合| 欧美人与善性xxx| 亚洲国产精品成人久久小说| 亚洲国产av影院在线观看| 免费在线观看完整版高清| 老司机亚洲免费影院| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三 | 国产视频一区二区在线看| 女人精品久久久久毛片| 久久久久精品人妻al黑| 九色亚洲精品在线播放| 十分钟在线观看高清视频www| 欧美黑人欧美精品刺激| 亚洲精品日本国产第一区| 国产精品秋霞免费鲁丝片| 人妻一区二区av| 国产精品久久久久久精品电影小说| 亚洲国产av新网站| 欧美人与善性xxx| 精品福利观看| 最新在线观看一区二区三区 | svipshipincom国产片| 香蕉丝袜av| 午夜精品国产一区二区电影|