• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process

    2022-05-16 07:12:20BoWang王博PengDing丁芃RuiZeFeng封瑞澤ShuRuiCao曹書睿HaoMiaoWei魏浩淼TongLiu劉桐XiaoYuLiu劉曉宇HaiOuLi李海鷗andZhiJin金智
    Chinese Physics B 2022年5期
    關(guān)鍵詞:王博海鷗

    Bo Wang(王博) Peng Ding(丁芃) Rui-Ze Feng(封瑞澤) Shu-Rui Cao(曹書睿)Hao-Miao Wei(魏浩淼) Tong Liu(劉桐) Xiao-Yu Liu(劉曉宇) Hai-Ou Li(李海鷗) and Zhi Jin(金智)

    1Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,China

    2High-Frequency High-Voltage Device and Integrated Circuits Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: InP,HEMT,maximum oscillation frequency(fMAX),double-recess,offset gate

    1. Introduction

    InP-based high electron mobility transistors(HEMTs)are regarded as the most promising candidates for millimeterwave integrated circuits (MMIC) and even terahertz monolithic integrated circuits (TMIC) because of their extremely excellent high-frequency, high-gain and low-noise characteristics.[1–4]They play key roles in radio-astronomy and deep-space communication. In recent years, the requirements for higher operation frequency and larger output power of TMIC result in a strong push of THz transistor technologies with high cut-off frequency(fT)and maximum oscillation frequency (fMAX).[4–9]ThefMAXof InP-based HEMTs were mainly improved by scaling down the gate length.[10]Laiet al. reported the first InP-based HEMT with afMAXexceeding 1 THz by reducing the gate length to 50 nm.[4]Meiet al. demonstrated 25 nm gate length InP-based HEMTs withfMAXof 1.5 THz and realized the first TMIC with 1 THz amplification.[8]However, the gate length is seriously limited by the available lithography technology. At present, it is difficult to increasefMAXby continuously reducing the gate length. Another way to improve thefMAXis to optimize parasitic effects. Various efforts have been made in this regard,such as reducing the source-to-drain spacing (LSD),[11]gateto-channel distance (tins),[12]as well as optimizing the gate recess,[9,13,14]and the gate stem height.[15,16]

    In this paper, we will report on a novel double-recessed offset gate process for improving thefMAXof InP-based HEMT instead of a gate scaling that would often be used to obtain high RF performance. A double-recess gate structure has been used previously in GaAs-based HEMTs to improve breakdown voltage, which in turn increases output power.[17]We form the double-recess gate structure by selectively etching the cap layers. Compared with the traditional doublerecess gate structure,the incompletely removed cap layer can effectively reduce the exposed area of the active region and inhibit the surface effects. By controlling the gate offset,the parasitic effects can be further optimized for improved performances. Single-recessed HEMTs, and double-recessed HEMTs with different gate offsets have been fabricated and characterized. In addition,the parasitic parameters of devices are extracted and analyzed by using the small-signal model,which explains the influence of the double-recessed offset gate process.

    2. Experiment

    The schematic cross-section of double-recessed InPbased HEMTs is shown in Fig. 1. The epitaxial layers of the devices were grown by gas source molecular beam epitaxy (GSMBE) on 3 inch semi-insulating InP(100) substrates. From bottom to top, the layers consist of a 500 nm In0.52Al0.48As buffer layer, a 15 nm In0.53Ga0.47As channel layer,a 3 nm unstrained ln0.52Al0.48As spacer layer, a Si delta doping layer with 5×1012cm-2doping concentration, an 8 nm unstrained ln0.52Al0.48As Schottky barrier layer, a 4 nm InP etch-stop layer for preventing over etching and a 15 nm/15 nm/10 nm Sidoped ln0.52Al0.48As/In0.53Ga0.47As/In0.65Ga0.35As composite contact layer with a concentration of 1×1019cm-3/1×1019cm-3/3×1019cm-3. The 10 nm strained and heavily doped In0.65Ga0.35As layer to reduce the actual metal-semiconductor contact resistance, a 15 nm heavily doped In0.53Ga0.47As layer, and a 15 nm heavily doped ln0.52Al0.48As layer to lower the potential barrier across the Schottky barrier layer in the source and drain access regions.[18,19]Hall measurements were made at the room temperature,showing a carrier mobility of over 10000 cm2/(V·s).

    Fig.1. Schematic cross-section of double-recessed InP-based HEMTs.

    The fabrication process of double-recessed InP HEMTs mainly contains five steps, including mesa isolation, ohmic contact formation,gate recesses,T-gates and connection pads.Firstly, isolating mesa was formed by utilizing phosphorus acid-based wet chemical etching. Next, the source and drain were spaced 2.4 μm through a lithography process,followed by Ti/Pt/Au (15 nm/15 nm/50 nm) evaporated to satisfy the requirement of Ohmic contact by electron beam evaporation without annealing.

    Afterward, the 0.8 μm first gate recess was defined by electronic beam lithography (EBL) with a ZEP520A e-beam resist layer, and the In0.65Ga0.35As/In0.53Ga0.47As cap layers were etched by a citric acid based solution with an etch selectivity of 20:1 to In0.52Al0.48As. The distance between the source and drain from the center of the first gate recess is 0.9 μm and 1.5 μm, respectively. The source-side recess length (Lrs) and the drain-side recess length (Lrd) are controlled by adjusting the position of the T-shaped gate to form symmetrical or asymmetric gate recess. T-gates were defined by EBL with a PMMA/Al/UVIII (200 nm/10 nm/800 nm) ebeam resist stack. The top UVIII was exposed by a small dose and wide line, then developed by TMAH and rinsed in DI water to determine the gate cap. And then the bottom PMMA was exposed by a big dose and narrow line,then developed by 1, 2-dimethylbenzene to define the gate foot. After that, the second gate recess was etched in the In0.52Al0.48As cap layer by a phosphate based solution, and a Ti/Pt/Au(25 nm/25 nm/300 nm)metal stack was evaporated and lifted off. Three different gate positions were used to observe the dependence of RF performance on gate offset. The gate was located at the first gate recess center, with an offset to the source or drain side. The gate length of all devices is 100 nm,as shown in Fig.2.Finally,the Ti/Au(15 nm/300 nm)connection pads were evaporated for on-wafer DC and RF characteristics measurements.

    Single- and double-recessed HEMTs were identically processed, except for additional recess etching. The detailed parameters of fabricated HEMTs are shown in Table 1. All devices were deposited by plasma-enhanced chemical vapor deposition(PECVD)with 20 nm Si3N4as a passivation layer.

    Fig.2. SEM photograph of the T-Gate and gate recesses of the HEMTs.

    Table 1. The detailed parameters of fabricated HEMTs.

    3. Results and discussion

    3.1. Double-recessed structure

    DC properties were characterized by using a HP4142 semiconductor parameter analyzer at the room temperature.Figure 3 shows theID–VDoutput characteristics and transfer characteristics of the single-recessed HEMTs (device A) and double-recessed HEMTs (device B). Due to the higher series resistances,such as the source and drain resistance(RsandRd)caused by the removal of more cap layer during the formation of the first gate recess, the double-recessed HEMTs exhibit lower maximum drain–source current (ID,max) and maximum extrinsic transconductance (gm,max) than the single-recessed HEMTs. Extrinsic transconductancegmis expressed by

    wheregm,intis the intrinsic transconductance of the HEMTs.It can be seen from Eq.(1)that the increase ofRswill lead to a significant decrease ofgm,max.

    The RF performance is characterized via an Agilent E8363B PNA vector network analyzer from 0.1 GHz to 40 GHz. Before measurement,the devices were de-embedded by using on-wafer open and short pad structures to exclude the parasitic effect. Figure 4 shows the H21and MAG/MSG versus frequency of the single-recessed HEMTs (device A)and double-recessed HEMTs (device B) at their respectivegm,maxpoints. Since the test frequency range was limited from 0.1 GHz to 40 GHz, thefTandfMAXwere obtained by extrapolating the curve of H21and MAG/MSG followed by a slope of-20 dB/dec, respectively. ThefTand thefMAXof single-recessed HEMTs are 296 GHz and 355 GHz, respectively,while thefTand thefMAXof double-recessed HEMTs are 261 GHz and 396 GHz,respectively. However,the device was still unstable (k <1) at the maximum test frequency of 40 GHz,and the actualfMAXwill be larger than that obtained by extrapolation. ThefTandfMAXare expressed by

    Fig.3. DC output(a)and transfer(b)characteristics of the single-and double-recessed HEMTs.

    wheregmiis the intrinsic transconductance,CgsandCgdare the parasitic capacitances from gate to source and gate to drain respectively,gdsis conductance between drain and source,Rgis the parasitic resistances of gate,Riis the intrinsic resistance in the channel region,andfT,intrepresents the cut-off frequency of the intrinsic part of HEMTs without parasitic resistance and capacitance.

    To analyze the effect of the gate recess structures on RF performance, we use a small-signal model to extract the parasitic parameters of the devices. The small-signal model parameters were tuned repeatedly until very good fitting ofSparameters was obtained within the test frequency,as shown in Fig.5. According to the method in Ref.[20],the relative error between theS-parameters of the small-signal model and the measuredS-parameters is extracted. In the range of 5 GHz–40 GHz,the average relative error is only 2.75%.

    Fig. 4. The H21 and MAG/MSG versus frequency of the single and double recessed HEMTs.

    Fig.5. Measured(symbols)and small-signal modeled(lines)RF gains(H21,U,MAG/MSG)and stability factor(k)of the single and double recessed HEMTs.

    Table 2. The parameters of the small-signal equivalent circuit of devices.

    Table 2 summarizes the small-signal modeling parameters of the single and double recessed HEMTs, and also includesfT,measfor comparison. The measured(fT,meas)and the modeledfT(fT,model)are very similar,increasing the credibility of our analysis. Equations(2)and(3)suggest thatCgs,Cgd,Rs, andRdare the key parasitic parameters that affectfTandfMAX.[21]The heavily doped In0.53Ga0.47As/In0.65Ga0.35As cap layers are partially removed in the etching process of the first gate recess, which significantly increases the series resistances (RsandRd), resulting in thefTof double-recessed HEMTs being lower than that of the single-recessed HEMTs.On the other hand, double-recessed HEMTs achieve greaterfMAXdue to the decrease inCgdandgds. The decrease ofgdsis attributed to the effective suppression of impact ionization by the double recess structure.[22]

    3.2. Gate offset in the first gate recess

    The performances of double-recessed HEMTs with different gate offsets are compared. The gates of devices B, C,and D are located in the middle of the first gate recess,toward the source or toward the drain,respectively. The drain-side recess length(Lrd)of devices B,C,and D are 0.35 μm,0.6 μm,0.1 μm, respectively, while the width of the first gate recess remained 2.4 μm.

    Figure 6 shows theID–VDoutput characteristics and transfer characteristics of the devices B, C, and D. WhenLrdincreased,namely,gate position shifted from drain side to source side in the first gate recess, bothID,maxandgm,maxincreased.Device C shows the highestID,maxof 1038 mA/mm andgm,maxof 1151.6 mS/mm.

    Fig. 6. DC output (a) and transfer (b) characteristics of devices B, C,and D.

    Figure 7 shows the H21and MAG/MSG versus frequency of devices B,C,and D atVG=-0.4 V andVD=1.4 V.As the gate position shifts from drain side to source side in the first gate recess,fTdecreases from 287 GHz to 258 GHz andfMAXincreases from 342 GHz to 425 GHz. To explain the variation of RF performance,the parameters are extracted based on the small-signal model,as shown in Table 3.

    Fig.7. The H21 and MAG/MSG versus frequency of devices B,C,and D.

    Table 3. The parameters of the small-signal equivalent circuit of devices.

    Fig.8. Dependence of Cgs(a),Cgd(b),Cgs+Cgd(c)and Cgd/Cgs(d)on Lrd for double-recessed HEMTs.

    Figure 8 shows some key parasitic parameters as the functions ofLrd. The parametersCgsandCgdwere extracted by Eqs.(4)and(5). TheCgsincreased andCgddecreased by extendingLrdfrom 0.1 μm to 0.6 μm, as shown in Fig. 8. Although the changes ofCgsandCgdwith the extension ofLrdare not the same, the increase ofCgs+Cgdwell explains the observed decrease offT. On the other hand, since the opposite changes ofCgsandCgdlead to the further reduction ofCgd/Cgs, the device C with the gate offset to the source side exhibits a maximumfMAXof 425 GHz. Compared with the single-recessed HEMTs (device A) withfMAXof 355 GHz,the increase offMAXis about 20%.

    Table 4 summarizes the reported performance of InP HEMT devices with a gate length of about 100 nm.Our device exhibits outstandingfMAXin devices with gate length over 100 nm by using double-recessed offset gate process technology. The device performances can be further improved by reducing the gate length or using InAs-rich channel materials in the future.

    Table 4. Compared with the published InP HEMT with a gate length of about 100 nm.

    4. Conclusion

    In summary we demonstrated a novel double-recessed offset gate process for InP HEMTs. The double-recessed HEMTs can effectively improvefMAXby reducinggdsandCgs. With the gate offset from the drain side to the source side,fMAXcan be further improved by suppressingCgd/Cgs. Finally,thefMAXof double double-recessed offset gate HEMTs is 20%higher than that of single-recessed HEMTs.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 61874036, 62174041, and 61434006),the Open Project of State Key Laboratory of ASIC and System (Grant No. KVH1233021), the Opening Foundation of the State Key Laboratory of Advanced Materials and Electronic Components(Grant No.FHR-JS-201909007),the Guangxi Innovation Research Team Project (Grant Nos. 2018GXNSFGA281004 and 2018GXNSFBA281152),the Guangxi Innovation Driven Development Special Fund Project(Grant No.AA19254015),and the Guangxi Key Laboratory of Precision Navigation Technology and Application Project(Grant Nos.DH201906,DH202020,and DH202001).

    猜你喜歡
    王博海鷗
    Electronic structure study of the charge-density-wave Kondo lattice CeTe3
    Circular dichroism spectra of α-lactose molecular measured by terahertz time-domain spectroscopy
    霸道海鷗誰能治
    冷凍斷裂帶儲層預測研究
    Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
    “海鷗”展翅 “美好”起飛
    山東國資(2021年12期)2021-03-12 10:04:30
    STRONG COMPARISON PRINCIPLES FOR SOME NONLINEAR DEGENERATE ELLIPTIC EQUATIONS?
    山東工藝美術(shù)學院作品賞析
    速讀·下旬(2017年4期)2017-06-20 17:51:03
    海鷗
    海鷗靚影
    欧美久久黑人一区二区| 欧美人与性动交α欧美精品济南到| 啦啦啦视频在线资源免费观看| 日日夜夜操网爽| 欧美精品亚洲一区二区| 精品一区二区三卡| 黑丝袜美女国产一区| 亚洲精品日韩在线中文字幕| 久久久精品94久久精品| 在线十欧美十亚洲十日本专区| 午夜福利视频精品| 热99re8久久精品国产| 国产一区二区 视频在线| 一边摸一边抽搐一进一出视频| 日韩一区二区三区影片| 国产91精品成人一区二区三区 | 老司机影院毛片| 亚洲熟女精品中文字幕| 免费av中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看 | 国产97色在线日韩免费| 亚洲av成人一区二区三| 91成人精品电影| 成人亚洲精品一区在线观看| 日本撒尿小便嘘嘘汇集6| 91精品国产国语对白视频| 国产成人欧美| 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看| 欧美中文综合在线视频| 一二三四在线观看免费中文在| 男女午夜视频在线观看| 免费观看人在逋| 日韩制服骚丝袜av| 色播在线永久视频| 无遮挡黄片免费观看| 午夜福利在线免费观看网站| 18禁裸乳无遮挡动漫免费视频| 两个人看的免费小视频| 女人被躁到高潮嗷嗷叫费观| 久久精品人人爽人人爽视色| bbb黄色大片| 国精品久久久久久国模美| 妹子高潮喷水视频| 亚洲精品国产精品久久久不卡| 国产精品偷伦视频观看了| 国产精品欧美亚洲77777| 在线 av 中文字幕| 国产精品久久久人人做人人爽| 大陆偷拍与自拍| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆av在线久日| 亚洲精品国产一区二区精华液| 精品久久久精品久久久| 国产日韩欧美在线精品| 久久久久久久久久久久大奶| 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 久久久久精品人妻al黑| 女警被强在线播放| 一本综合久久免费| 久久精品熟女亚洲av麻豆精品| 欧美日韩亚洲综合一区二区三区_| 精品国产乱码久久久久久小说| 丰满迷人的少妇在线观看| 精品少妇一区二区三区视频日本电影| 欧美午夜高清在线| 国产色视频综合| 黄片播放在线免费| 免费在线观看影片大全网站| 女性生殖器流出的白浆| 99热网站在线观看| 欧美日韩av久久| 悠悠久久av| 国产淫语在线视频| 最新的欧美精品一区二区| 国产精品免费大片| 在线 av 中文字幕| av线在线观看网站| 俄罗斯特黄特色一大片| 国产成人影院久久av| 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区 | 精品熟女少妇八av免费久了| 国产1区2区3区精品| 成年av动漫网址| 亚洲人成77777在线视频| 精品一区二区三区四区五区乱码| 在线观看舔阴道视频| 99久久人妻综合| 久久久国产精品麻豆| 午夜老司机福利片| 一本久久精品| 国产精品国产av在线观看| 18在线观看网站| 久久影院123| 亚洲精品在线美女| 日本精品一区二区三区蜜桃| 精品一区二区三区四区五区乱码| 中文字幕精品免费在线观看视频| 波多野结衣av一区二区av| 国产亚洲精品久久久久5区| 精品欧美一区二区三区在线| 日韩一区二区三区影片| 午夜福利免费观看在线| 久久久国产一区二区| 亚洲一区中文字幕在线| www.999成人在线观看| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区三 | 久久精品亚洲熟妇少妇任你| 国产深夜福利视频在线观看| 成年美女黄网站色视频大全免费| 亚洲国产欧美在线一区| 午夜两性在线视频| 亚洲成人免费av在线播放| 亚洲av日韩在线播放| 欧美另类一区| 久久久久久久国产电影| 纵有疾风起免费观看全集完整版| 久久午夜综合久久蜜桃| 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| 国产区一区二久久| 亚洲精品第二区| 精品乱码久久久久久99久播| 操出白浆在线播放| 一区二区三区乱码不卡18| 天天影视国产精品| 国产一区二区三区av在线| 亚洲 欧美一区二区三区| av线在线观看网站| 亚洲精品日韩在线中文字幕| 99九九在线精品视频| 国产精品麻豆人妻色哟哟久久| 日本a在线网址| 法律面前人人平等表现在哪些方面 | 国产精品.久久久| 亚洲伊人久久精品综合| 亚洲精品第二区| 捣出白浆h1v1| 91麻豆av在线| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| av网站在线播放免费| 侵犯人妻中文字幕一二三四区| 欧美午夜高清在线| 三级毛片av免费| 美国免费a级毛片| 一个人免费在线观看的高清视频 | 建设人人有责人人尽责人人享有的| 美女高潮喷水抽搐中文字幕| 在线av久久热| 又紧又爽又黄一区二区| 亚洲精品美女久久久久99蜜臀| 美女主播在线视频| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看| 成年人黄色毛片网站| 少妇猛男粗大的猛烈进出视频| 韩国精品一区二区三区| 最近最新免费中文字幕在线| netflix在线观看网站| 免费少妇av软件| 丝袜人妻中文字幕| 国产1区2区3区精品| 欧美在线黄色| 99香蕉大伊视频| 亚洲av片天天在线观看| 国产91精品成人一区二区三区 | av国产精品久久久久影院| 久久久久久人人人人人| 亚洲av欧美aⅴ国产| 久久综合国产亚洲精品| 美女午夜性视频免费| 亚洲精品久久久久久婷婷小说| 一级毛片女人18水好多| videos熟女内射| 啪啪无遮挡十八禁网站| 黄色毛片三级朝国网站| 亚洲视频免费观看视频| 国产欧美日韩综合在线一区二区| 精品福利观看| 国产精品一区二区在线观看99| 99热网站在线观看| 欧美亚洲日本最大视频资源| 欧美精品一区二区大全| 热re99久久国产66热| 亚洲国产看品久久| 亚洲国产av新网站| 亚洲中文字幕日韩| 最近最新中文字幕大全免费视频| av天堂久久9| 国产在线一区二区三区精| 亚洲黑人精品在线| 少妇猛男粗大的猛烈进出视频| 丝袜喷水一区| 最近中文字幕2019免费版| 三级毛片av免费| 九色亚洲精品在线播放| 丝袜美腿诱惑在线| av国产精品久久久久影院| 国产真人三级小视频在线观看| 亚洲av欧美aⅴ国产| 久久青草综合色| 欧美精品高潮呻吟av久久| 亚洲美女黄色视频免费看| 欧美乱码精品一区二区三区| 中文字幕人妻丝袜一区二区| 国产亚洲欧美精品永久| 韩国精品一区二区三区| 成年人黄色毛片网站| 老司机深夜福利视频在线观看 | 国产免费视频播放在线视频| 亚洲成人国产一区在线观看| 亚洲国产欧美在线一区| 日本五十路高清| 嫁个100分男人电影在线观看| 啦啦啦视频在线资源免费观看| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久人妻精品电影 | 久久 成人 亚洲| 男人添女人高潮全过程视频| 久久香蕉激情| 建设人人有责人人尽责人人享有的| 人人妻人人澡人人爽人人夜夜| 老司机午夜福利在线观看视频 | 极品少妇高潮喷水抽搐| 久久久国产成人免费| 曰老女人黄片| 亚洲九九香蕉| 日日摸夜夜添夜夜添小说| 亚洲国产看品久久| 亚洲国产av影院在线观看| 久久久久国产精品人妻一区二区| 叶爱在线成人免费视频播放| 久久 成人 亚洲| 午夜福利一区二区在线看| 性少妇av在线| 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看| 啦啦啦中文免费视频观看日本| 日本91视频免费播放| 国产一区二区三区av在线| 免费日韩欧美在线观看| 国产精品自产拍在线观看55亚洲 | www日本在线高清视频| 国产精品麻豆人妻色哟哟久久| 1024视频免费在线观看| 久久精品亚洲熟妇少妇任你| 国产在线视频一区二区| 久久久久久久久免费视频了| 精品亚洲成国产av| 国产成人一区二区三区免费视频网站| 亚洲精品第二区| 国产精品av久久久久免费| 91老司机精品| 日韩欧美一区视频在线观看| 亚洲综合色网址| 韩国精品一区二区三区| 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| 精品福利永久在线观看| 欧美国产精品va在线观看不卡| 一二三四社区在线视频社区8| 少妇的丰满在线观看| 12—13女人毛片做爰片一| 久久免费观看电影| 国产精品久久久久久精品电影小说| 国产在线视频一区二区| 色视频在线一区二区三区| 搡老岳熟女国产| 国产欧美日韩综合在线一区二区| 亚洲成人免费电影在线观看| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 两个人看的免费小视频| 宅男免费午夜| 男女国产视频网站| 考比视频在线观看| 国产精品免费大片| 午夜影院在线不卡| 久久久久视频综合| 少妇精品久久久久久久| 国产区一区二久久| 91成人精品电影| 欧美日本中文国产一区发布| 人妻久久中文字幕网| 日韩制服丝袜自拍偷拍| 如日韩欧美国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 在线精品无人区一区二区三| 淫妇啪啪啪对白视频 | 亚洲欧美成人综合另类久久久| 久久精品亚洲熟妇少妇任你| 免费观看av网站的网址| 91大片在线观看| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看 | 最新在线观看一区二区三区| 老熟女久久久| 亚洲欧美成人综合另类久久久| 一边摸一边做爽爽视频免费| 中国美女看黄片| 美女国产高潮福利片在线看| 国产免费福利视频在线观看| 午夜福利影视在线免费观看| 最近中文字幕2019免费版| 日日爽夜夜爽网站| 国产欧美日韩精品亚洲av| √禁漫天堂资源中文www| 欧美精品高潮呻吟av久久| 性少妇av在线| 丁香六月天网| 久久久久视频综合| 久久国产精品男人的天堂亚洲| 最黄视频免费看| 狂野欧美激情性bbbbbb| 一级片免费观看大全| 在线十欧美十亚洲十日本专区| 日韩熟女老妇一区二区性免费视频| 国产片内射在线| 日韩精品免费视频一区二区三区| 狂野欧美激情性xxxx| 精品人妻1区二区| 热99re8久久精品国产| 999精品在线视频| 91国产中文字幕| 一级黄色大片毛片| 午夜视频精品福利| 嫁个100分男人电影在线观看| 久久热在线av| 欧美黑人精品巨大| 国产片内射在线| 日韩电影二区| 熟女少妇亚洲综合色aaa.| videos熟女内射| 中国美女看黄片| 99九九在线精品视频| 久久久国产精品麻豆| 国产男女内射视频| 嫩草影视91久久| 久久久欧美国产精品| 婷婷丁香在线五月| h视频一区二区三区| 老司机福利观看| 日本欧美视频一区| 2018国产大陆天天弄谢| 久热这里只有精品99| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美在线一区| 美女午夜性视频免费| 国产精品亚洲av一区麻豆| 老熟妇仑乱视频hdxx| 后天国语完整版免费观看| 久久久久久免费高清国产稀缺| 亚洲激情五月婷婷啪啪| 中文字幕精品免费在线观看视频| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲综合一区二区三区_| 中文字幕av电影在线播放| 中文字幕人妻丝袜一区二区| 窝窝影院91人妻| 亚洲精品国产精品久久久不卡| 久久人人爽av亚洲精品天堂| 99精品欧美一区二区三区四区| 男女高潮啪啪啪动态图| 国产欧美日韩一区二区三 | 新久久久久国产一级毛片| 亚洲欧美成人综合另类久久久| 黄色 视频免费看| 亚洲熟女精品中文字幕| 亚洲专区中文字幕在线| 极品人妻少妇av视频| 亚洲精品一区蜜桃| 可以免费在线观看a视频的电影网站| 三上悠亚av全集在线观看| 国产极品粉嫩免费观看在线| 黑人巨大精品欧美一区二区蜜桃| 99热国产这里只有精品6| 亚洲国产成人一精品久久久| 国产一区二区在线观看av| 韩国精品一区二区三区| 欧美黄色淫秽网站| 午夜福利视频在线观看免费| 久久久久国产一级毛片高清牌| 午夜福利视频在线观看免费| 亚洲avbb在线观看| 他把我摸到了高潮在线观看 | 精品少妇一区二区三区视频日本电影| 麻豆av在线久日| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o| 久热爱精品视频在线9| 又大又爽又粗| 亚洲成人免费电影在线观看| av福利片在线| 男女午夜视频在线观看| 2018国产大陆天天弄谢| 蜜桃在线观看..| 亚洲情色 制服丝袜| 在线精品无人区一区二区三| 亚洲中文日韩欧美视频| 国产亚洲精品久久久久5区| 欧美国产精品va在线观看不卡| 久久人妻熟女aⅴ| 欧美国产精品va在线观看不卡| 天堂中文最新版在线下载| 欧美 亚洲 国产 日韩一| 大型av网站在线播放| 黄色视频在线播放观看不卡| 久久久久国内视频| 亚洲精品国产区一区二| 日韩制服骚丝袜av| 日韩视频在线欧美| 亚洲精品国产色婷婷电影| 国产伦理片在线播放av一区| 啦啦啦中文免费视频观看日本| 日本黄色日本黄色录像| 精品少妇内射三级| 肉色欧美久久久久久久蜜桃| 欧美精品亚洲一区二区| 国产精品成人在线| 伊人久久大香线蕉亚洲五| 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| 国产精品 欧美亚洲| 亚洲视频免费观看视频| 国精品久久久久久国模美| 免费高清在线观看日韩| 成年人午夜在线观看视频| 97人妻天天添夜夜摸| 交换朋友夫妻互换小说| 亚洲三区欧美一区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久大尺度免费视频| 99精品久久久久人妻精品| 男人舔女人的私密视频| 国产成人欧美在线观看 | 好男人电影高清在线观看| 99久久精品国产亚洲精品| 欧美97在线视频| 男女国产视频网站| 色精品久久人妻99蜜桃| 国产视频一区二区在线看| 波多野结衣一区麻豆| 乱人伦中国视频| 成年女人毛片免费观看观看9 | 老熟妇乱子伦视频在线观看 | 国产成人精品久久二区二区免费| 叶爱在线成人免费视频播放| 国产精品1区2区在线观看. | 91精品三级在线观看| 在线观看免费高清a一片| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区久久| 最近最新中文字幕大全免费视频| 狂野欧美激情性bbbbbb| 久久久国产成人免费| 精品人妻一区二区三区麻豆| 亚洲国产中文字幕在线视频| 亚洲久久久国产精品| 午夜福利视频精品| 男女下面插进去视频免费观看| 国产精品1区2区在线观看. | 日韩视频在线欧美| 亚洲国产精品一区三区| 国产精品.久久久| 亚洲精品国产av成人精品| 美女大奶头黄色视频| 亚洲精品国产区一区二| 久久久久久亚洲精品国产蜜桃av| 亚洲中文字幕日韩| 亚洲欧美成人综合另类久久久| 精品人妻一区二区三区麻豆| 国产精品欧美亚洲77777| 精品人妻熟女毛片av久久网站| 黄色怎么调成土黄色| 亚洲人成77777在线视频| a级毛片黄视频| 成人手机av| 久久精品国产a三级三级三级| 亚洲国产av新网站| 精品一品国产午夜福利视频| 精品国产乱子伦一区二区三区 | 老司机影院成人| 欧美亚洲 丝袜 人妻 在线| 91字幕亚洲| 婷婷丁香在线五月| 99国产精品免费福利视频| 午夜日韩欧美国产| 电影成人av| 成人av一区二区三区在线看 | 日韩欧美一区二区三区在线观看 | 别揉我奶头~嗯~啊~动态视频 | 午夜免费观看性视频| 丰满人妻熟妇乱又伦精品不卡| 国产又色又爽无遮挡免| 精品一区在线观看国产| 他把我摸到了高潮在线观看 | 在线亚洲精品国产二区图片欧美| 黄色片一级片一级黄色片| 精品国产一区二区三区四区第35| 精品一区在线观看国产| 午夜福利免费观看在线| 色婷婷久久久亚洲欧美| tocl精华| 巨乳人妻的诱惑在线观看| 久久国产精品人妻蜜桃| 叶爱在线成人免费视频播放| 国产精品国产三级国产专区5o| 精品国产乱码久久久久久小说| 91成人精品电影| 久久午夜综合久久蜜桃| 国产一区二区三区在线臀色熟女 | 在线观看人妻少妇| 久久影院123| 亚洲人成77777在线视频| 亚洲专区国产一区二区| 亚洲国产av新网站| 久久天堂一区二区三区四区| 精品卡一卡二卡四卡免费| 欧美精品一区二区大全| 18禁观看日本| 夫妻午夜视频| 国产亚洲欧美在线一区二区| 777久久人妻少妇嫩草av网站| 国产色视频综合| 日本91视频免费播放| 精品第一国产精品| 亚洲九九香蕉| 精品国产超薄肉色丝袜足j| 成人国产av品久久久| 亚洲av日韩精品久久久久久密| 欧美国产精品va在线观看不卡| 亚洲精品久久久久久婷婷小说| 亚洲全国av大片| www.精华液| 亚洲av日韩精品久久久久久密| 老司机影院成人| 99精品久久久久人妻精品| 亚洲国产看品久久| 久久国产亚洲av麻豆专区| 母亲3免费完整高清在线观看| 欧美亚洲日本最大视频资源| 久久久国产一区二区| www.av在线官网国产| 亚洲午夜精品一区,二区,三区| 后天国语完整版免费观看| 国产xxxxx性猛交| 一级毛片女人18水好多| 精品福利永久在线观看| 老熟女久久久| 精品第一国产精品| 亚洲欧美精品自产自拍| 免费在线观看影片大全网站| 国产男女内射视频| 午夜福利免费观看在线| 亚洲三区欧美一区| 精品欧美一区二区三区在线| 19禁男女啪啪无遮挡网站| 97人妻天天添夜夜摸| 久久这里只有精品19| 欧美老熟妇乱子伦牲交| 欧美性长视频在线观看| 日韩有码中文字幕| 精品人妻在线不人妻| 黑人操中国人逼视频| 国产成人影院久久av| 亚洲国产毛片av蜜桃av| 亚洲精品av麻豆狂野| 男女边摸边吃奶| 男女午夜视频在线观看| 久久久久久久精品精品| 母亲3免费完整高清在线观看| 午夜精品国产一区二区电影| 国产片内射在线| 91av网站免费观看| 老司机靠b影院| 国产精品免费大片| 成在线人永久免费视频| 亚洲精品国产区一区二| 午夜久久久在线观看| 免费高清在线观看日韩| 999久久久精品免费观看国产| 国产成人欧美在线观看 | 欧美午夜高清在线| 夜夜骑夜夜射夜夜干| 69精品国产乱码久久久| av视频免费观看在线观看| 在线观看舔阴道视频| 男人操女人黄网站| 久久久精品免费免费高清| 搡老熟女国产l中国老女人| 波多野结衣一区麻豆| 久久久精品免费免费高清| 亚洲精品国产av成人精品| 中文字幕人妻熟女乱码| 久久天堂一区二区三区四区| 不卡av一区二区三区| 三级毛片av免费| 美女高潮喷水抽搐中文字幕| 老熟妇乱子伦视频在线观看 | 国产精品久久久久久精品古装| 久久久久视频综合| 久久久国产精品麻豆| 啦啦啦啦在线视频资源| 亚洲欧洲日产国产| 亚洲九九香蕉| 久久久久久久国产电影|