• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs

    2022-05-16 07:12:16ShuruiCao曹書(shū)睿RuizeFeng封瑞澤BoWang王博TongLiu劉桐
    Chinese Physics B 2022年5期
    關(guān)鍵詞:王博

    Shurui Cao(曹書(shū)睿) Ruize Feng(封瑞澤) Bo Wang(王博) Tong Liu(劉桐)

    Peng Ding(丁芃)1,2,?, and Zhi Jin(金智)1,2,?

    1High-Frequency High-Voltage Device and Integrated Circuits Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    2University of Chinese Academy of Sciences,Beijing 100029,China

    3Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords: InP HEMT,InGaAs/InAlAs,cut-off frequency(fT),maximum oscillation frequency(fmax),asymmetric gate recess

    1. Introduction

    Due to high frequency, high gain, low power consumption, and low noise performance, InP-based high electron mobility transistors (HEMTs) are one of the most promising semiconductor devices for millimeter-wave and terahertz monolithic integrated circuits.[1–5]The excellent performance is attributed to high carrier density, high electron velocity, and low gate leakage current. A cutoff frequency (fT)of over 700 GHz using 25-nm gate was reported in InPbased HEMTs[6]. A maximum oscillation frequency (fmax)of 1.5 THz and a terahertz IC operating at 1 THz using 25-nm gate InP-based HEMTs were demonstrated.[7]ThefTandfmaxof HEMTs were mainly improved by scaling down the gate length of devices.[8]On the other hand,it is of great significance to optimize parasitic effects in order to further improve performance.[9]By reducing the source-to-drain space,parasitic resistance was suppressed and RF performance was improved.[10,11]Modifying the gate recess is another effective way to improve high-frequency characteristics of InP-based HEMTs. The adoption of asymmetric gate recess was proved helpful to improvefmax.[12,13]On this basis,we would like to further investigate the impacts of asymmetric gate recess by varying the gate location in the recess.

    In this paper,we will report on how the gate offset in gate recess impacts the DC and RF characteristics of InP-based HEMTs instead of a gate scaling down that is often used to obtain high performance. We designed and fabricated a set of devices,of which the gate location was varying in the recess.Therefore,various forms of asymmetric gate recess were realized. A fixed source-to-drain space was maintained at 2.4 μm for the same periphery conditions. The gate was located at the recess center,with an offset toward source or drain side to form the whole gate structure. The gate recess lengthLrecessis expressed asLrs+Lg+Lrd,whereLrsis the source-side recess length,Lgis the gate length, andLrdis the drain-side recess length. It is easy to adjust the gate location through one step EBL after the recess is defined and form the asymmetry of gate recess. To draw a general conclusion,gate recesses were defined with three lengths, which were 0.4 μm, 0.6 μm, and 0.8 μm respectively. It was found that the gate away from drain side was effective in decreasing parasitic source resistance, output conductance and gate-to-drain capacitance, and hence improved transconductance andfmaxeven though an increase ofCgsis not ideal for a highfT.

    2. Device fabrication

    Figure 1 shows the cross-section schematic diagram of the device with a gate offset toward source side. Epitaxial layer structures of InP-based HEMTs were grown on a 3-inch(1 inch=2.54 cm)semi-insulating InP(100)substrate by gas source molecular beam epitaxy (GSMBE). The layers, from bottom to top, were composed of a 500-nm In0.52Al0.48As buffer layer, a 15-nm lattice matched In0.52Ga0.48As channel layer, a 3-nm In0.52Al0.48As spacer layer, an Si planar doping with a sheet carrier density of 5×1012cm-2,an 8-nm In0.52Al0.48As Schottky barrier layer, a 4-nm InP etch-stop layer, and a 15-nm/15-nm/10-nm heavily Si-doped In0.52Ga0.48As/In0.53Ga0.48As/In0.65Ga0.35As composite cap layer with a concentration of 1×1019cm-3/1×1019cm-3/3×1019cm-3. Hall measurement was carried out at room temperature. The two-dimensional electron gas (2DEG) carrier mobility was 12000 cm2/(V·s).

    Fig.1. Cross-section schematic diagram of the InP-based HEMT with a gate offset toward source.

    The fabrication process of InP-based HEMTs consisted of four main steps,namely mesa isolation,Ohmic contact formation, gate recess, and T-shaped gate process, which was similar to our previously reported devices.[14]At first isolated mesa was formed to define the area of a device by means of phosphorus acid based wet chemical etching down to buffer layer. Then source and drain were defined by lithography with a 2.4-μm space in between. Ohmic contacts were formed using electron beam evaporated Ti/Pt/Au(15 nm/15 nm/50 nm)without annealing. The ohmic contact resistivity was measured to be 0.023 Ω·mm and the specific contact resistivity to be 8.75×10-8Ω·cm2by transmission line method(TLM).[15]Afterward, SiO2was deposited by PECVD, which served as a hard mask for gate recess and improved adherence of photoresist. A novel gate recess process was proposed,where the gate recess was defined by electron beam lithography with a ZEP520A e-beam resist independently of the gate electrode. SiO2mask was etched by reactive ion etching (RIE).For extending investigation, the gate recesses were designed with three different lengths, which were 0.4 μm, 0.6 μm,and 0.8 μm respectively. The gate recess, as a whole, was closer to the source side in order to achieve a higher breakdown voltage. This was followed by T-shaped gate lithography. The gate was defined by EBL with a ZEP/PMGI/ZEP(200 nm/500 nm/200 nm)tri-layer e-beam resist.Here the gate could be located at the recess center,or with an offset toward source/drain, which corresponded to the variation ofLrsandLrd. After pattern definition,wet chemical etching was used to form the gate recess and Ti/Pt/Au(3 nm/15 nm/300 nm)stack layers were evaporated and lifted off to form the T-shaped gate in sequence. Finally the SiO2hard mask was removed,the devices were passivated by a 20-nm SiNxlayer,and Ti/Au(15 nm/30 nm)connection pads were evaporated for on-wafer characterization.The SEM images of the devices are shown in Fig.2.

    Fig.2. SEM images of InP HEMTs with gate offsets in gate recess: (a)top view of InP HEMT; (b) gate offset toward source; (c) gate in the middle of recess;(d)gate offset toward drain.

    3. Result and discussion

    In a narrow recess the absolute value of gate offset was relatively small while in a wider recess the offset was larger.The offsets from recess center were±0.05 μm,±0.15 μm,and±0.25 μm for recess lengths of 0.4 μm,0.6 μm,and 0.8 μm,respectively. In this case,Lrswas kept at 0.15 μm for gate offset toward source andLrdwas kept at 0.15 μm for gate offset toward drain. The values of gate offsets were normalized as-1, 0, and 1 to represent the offset toward source, in the middle,and toward drain,respectively.

    3.1. DC characteristics

    On-wafer DC measurement was carried out by a HP4155A semiconductor parameter analyzer at room temperature. The gate–source voltage(Vgs)was swept from-1.0 V to 0.2 V at a step of +0.1 V, and the drain–source voltage (Vds) was from 0 V to 1.5 V. The threshold voltage was about-0.6 V. These devices exhibited a maximum saturated drain currentIds,maxof 763.9 mA/mm atVGS= 0.2 V andVgs=1.5 V,which was achieved in a device of 0.4-μm recess length.The maximum extrinsic transconductance,gm,max,was high up to 1120 mS/mm atVGS=-0.25 V.

    Devices with a wider gate recess,where the absolute gate offset was larger,indicated clear changes ofIdsandgm. WhenLrsdecreased, namely gate location shifted from drain side to source side, bothIds,maxandgm,maxincreased. Figure 3 plots theIds–Vdscurves of 0.8-μm-recess devices with different gate offsets, and theIds,maxincreased by over 15% from 541 mA/mm to 621 mA/mm. Another benefit could be found that a longerLrdlead to effective suppression of impact ionization when a largeVdswas applied. ForVgs=-0.4 V, the drain current of positive-offset device exceeded that of zerooffset device atVdsover 1.2 V, illustrating a weaker impact ionization in longer distance between gate and drain. Besides,gm,maxincreased by 17%from 864 mA/mm to 1016 mA/mm,as is shown in Fig. 4. Extrinsic transconductancegmcan be expressed as

    wheregmiis the intrinsic transconductance removing the influence of parasitic parameters, andRsis the parasitic source resistance. Since recess resistanceRrecessis 2.3 times larger than that of cap layerRcap,[12]a smallerLrsin the access region between gate and source led to a smallerRsthat improved extrinsic transconductance. The voltage drop onRswas reduced, and consequently more proportion ofVgsdropped on the Schottky barrier capacitor for gate control.connection pads.fTwas obtained by extrapolating H21curve to unit gain by a slope of-20 dB/decade. Moreover, due to the noisy characteristics of unilateral gain(U)which indicated insufficient estimation offmaxvariation,MAG/MSG was used to extrapolatefmax,[13–16]as is shown in Fig.5. SincefTandfmaxhad a positive correlation withgmi,VdsandVgswere biased at 1.5 V and-0.2 V,respectively,which were associated with the maximumgmiin our devices.As can be seen in Fig.6,fmaxranged from 374 GHz to 584 GHz whilefTranged from 167 GHz to 225 GHz, and there was a trade-off between the two parameters.The highestfTwas obtained from the positive gate-offset device with 0.4-μm gate recess while the highestfmaxwas obtained from the negative gate-offset device with 0.8-μm gate recess.

    Fig.3. Output characteristics of 0.8-μm-recess HEMTs.

    Fig.5. Extrapolation of fT and fmax from measured data.

    Fig.4. Transfer characteristics of 0.8-μm-recess HEMTs.

    Moreover,for all devices of different gate recess lengths,gmshowed a maximum value when gate was located with an offset toward source. And the correspondingIdstend to be a larger value due to better gate control.

    3.2. RF characteristics

    RF characteristics were measured on wafer by Agilent E8363B PNA vector network analyzer from 0.1 GHz to 40 GHz at a step of 0.1 GHz. Open-short patterns were fabricated on the same wafer forSparameter deembedding of

    Fig.6. fT and fmax of HEMTs with gate offsets in gate recess(solid: fmax,dashed: fT).

    The results were similar for devices with three different gate recess lengths. When the normalized gate offset varied from 1 to-1, which literally meant that the gate location moved from drain side to source side,fTdecreased,andfmaxincreased. It can be seen from Fig.6 that in wide recesses,the ratio offTandfmaxchange became more obvious.fTandfmaxcan be expressed as

    wheregmiis the intrinsic transconductance,Cgsis the gate–source capacitance,Cgdis the gate–drain capacitance,gdsis the output conductance,Rsis the source resistance,Rdis the drain resistance,Rgis the gate resistance, andRiis the intrinsic resistance in the channel region.[16]fT,intrepresents the cut-off frequency of the intrinsic part of HEMTs without parasitic resistance and capacitance. Parameters of the small-signal equivalent circuit model were extracted and compared based on Rorsman’s method[17]and our previous research.[18–20]Figure 7 illustrates the changes in key parameters, and Table 1 lists some related small-signal model parameters of 0.8-μm-recess devices. The small-signal model was then simulated with extracted parameter values. Figure 8 shows a good fitting result of our small-signal model compared with the measured data after de-embedding,which indicated effectiveness and accuracy of our extracted parameters.

    Table 1. Parameters of small-signal model for InP HEMTs of 0.8-μm gate recess.

    Table 2. Benchmarks of fmax in InGaAs/InAlAs HEMTs.

    Fig.7. Extracted small-signal parameters of HEMTs with different gate offsets: (a)gate–source capacitance;(b)gate–drain capacitance;(c)output conductance.

    For a given gate recess,whereLrs+Lrdwas a constant,the variation of gate offset from drain side to source side meant a smallerLrsand a largerLrd.CgsandCgdwhich were related to the corresponding space consequently changed,resulting inCgsincrease andCgddecrease. Thegdsdecrease was also attributed to the extension ofLrd.[13]Here the electric field between gate and drain was smoothed, and thus impact ionization in the channel was suppressed. This was consistent with the phenomenon observed in DC measurement.

    AlthoughCgsandCgdchanged in a contrary way,the absolute value ofCgswas still much larger than that ofCgd. As a result,Cgs+Cgdin total increased, contributing to the decrease offT. As forfmax, although it was proportional tofT,Cgd/Cgsfurther decreased due to the contrary change,leading to the reduction in the denominator of thefmaxformula by a greater ratio. Moreover, according to Eq. (4), the reduction ofgdsandRswas helpful in increasingfmaxas well. As is plotted in Fig. 5, a highfmaxof approximately 1.1 THz was achieved from extrapolation of Mason’s unilateral gain,U,to 0 dB when aVgsof-0.2 V and aVdsof 1.5 V were applied to the HEMT.

    Table 2 shows the benchmarks offmaxin published papers.[13,21–24]In some cases,fmaxexceeding 1 THz was obtained by scalingLgto less than 50 nm. Meanwhile,the InPbased HEMT reported in this paper reached afmaxof approximately 1.1 THz althoughLgwas relatively large at 100 nm.

    In a multi-function MMIC, devices of various performance are needed. For instance, an analog module requires highfTwhile a power amplifier requires highfmax. Thus,the device requirements can be satisfied by simply adjusting the gate location in gate recess. Furthermore,by adding the modification of gate recess length,various transistor performances are available over a larger range.

    Fig. 8. Small-signal model versus de-embedded S parameters of InP-based HEMTs (red line: small-signal model; blue dot: de-embedded measured S parameters).

    4. Conclusion

    In this paper, we investigated a set of 100-nm InP-based HEMTs with gate offsets in the gate recess. A novel technology was proposed for independent definition of gate recess and T-shaped gate. As a result,a maximumIdsof 769 mA/mm andgmof 1120 mS/mm were obtained. When the gate offset varied from toward drain side to toward source side,Idsandgmincreased. The reduction ofRsimproved extrinsic transconductance and decreased the voltage drop split fromVgs. In the meantime,fTdecreased whilefmaxincreased. Afmaxof 1096 GHz was obtained in a 0.8-μm-recess HEMT with a gate offset toward source side. This was attributed to the increase ofCgs, along with the reduction ofCgd,gds, andRs. This work provides simple and flexible device parameter selection for HEMTs of different usage over a large frequency range.

    Acknowledgment

    Project supported by the National Nature Science Foundation of China(Grant No.61434006).

    猜你喜歡
    王博
    Electronic structure study of the charge-density-wave Kondo lattice CeTe3
    Circular dichroism spectra of α-lactose molecular measured by terahertz time-domain spectroscopy
    冷凍斷裂帶儲(chǔ)層預(yù)測(cè)研究
    Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
    民航空中交通管制進(jìn)近程序間隔安全性評(píng)估模型
    科學(xué)家(2022年4期)2022-05-10 03:47:14
    Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
    Experimental study on dynamic stall control based on AC-DBD actuation
    嫁妻換前程,一樁好買(mǎi)賣(mài)兩個(gè)糊涂蛋
    STRONG COMPARISON PRINCIPLES FOR SOME NONLINEAR DEGENERATE ELLIPTIC EQUATIONS?
    山東工藝美術(shù)學(xué)院作品賞析
    速讀·下旬(2017年4期)2017-06-20 17:51:03
    亚洲成av片中文字幕在线观看 | 亚洲中文av在线| 成年女人在线观看亚洲视频| 久久久久久久国产电影| 日本欧美国产在线视频| a 毛片基地| 午夜老司机福利剧场| 国产69精品久久久久777片| 精品一区二区三卡| 熟女电影av网| 精品一区二区免费观看| videossex国产| 18禁动态无遮挡网站| av线在线观看网站| 久久久国产精品麻豆| 中文字幕另类日韩欧美亚洲嫩草| 精品人妻偷拍中文字幕| 夫妻午夜视频| 久久人人爽人人片av| 日韩一区二区视频免费看| 日本黄大片高清| 国产成人91sexporn| 最近最新中文字幕免费大全7| 在线观看免费高清a一片| 欧美3d第一页| 日本黄色日本黄色录像| av免费观看日本| 国产精品一区二区在线不卡| 国产亚洲一区二区精品| 热99久久久久精品小说推荐| 亚洲第一区二区三区不卡| 大香蕉久久成人网| 国产成人精品久久久久久| 91成人精品电影| 精品国产一区二区三区四区第35| 18+在线观看网站| 日本免费在线观看一区| 久久久亚洲精品成人影院| 香蕉丝袜av| 天堂中文最新版在线下载| 成人毛片60女人毛片免费| 免费看不卡的av| 在线观看免费视频网站a站| 亚洲精华国产精华液的使用体验| 亚洲,欧美精品.| 中国美白少妇内射xxxbb| 国产探花极品一区二区| 精品酒店卫生间| 日韩熟女老妇一区二区性免费视频| 波野结衣二区三区在线| 欧美精品一区二区大全| 国产福利在线免费观看视频| 春色校园在线视频观看| 久久国内精品自在自线图片| 9191精品国产免费久久| 亚洲欧美日韩卡通动漫| 久久精品久久精品一区二区三区| 卡戴珊不雅视频在线播放| 精品一区二区三区视频在线| 国语对白做爰xxxⅹ性视频网站| 午夜91福利影院| 亚洲国产色片| 久久99热6这里只有精品| 亚洲成人一二三区av| 久久精品国产亚洲av天美| 精品人妻一区二区三区麻豆| 欧美老熟妇乱子伦牲交| 国产极品天堂在线| 天美传媒精品一区二区| 在线观看免费日韩欧美大片| 日日爽夜夜爽网站| 精品亚洲成a人片在线观看| videosex国产| 桃花免费在线播放| 午夜福利视频精品| av在线app专区| 九草在线视频观看| 日本wwww免费看| 亚洲欧美日韩卡通动漫| 国产亚洲精品第一综合不卡 | 国产成人av激情在线播放| 性色av一级| 宅男免费午夜| 丝袜人妻中文字幕| 亚洲精品久久午夜乱码| 免费黄网站久久成人精品| 久久亚洲国产成人精品v| 精品人妻偷拍中文字幕| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 宅男免费午夜| 中文字幕人妻熟女乱码| 国产精品久久久久久av不卡| 天天躁夜夜躁狠狠躁躁| 在线天堂最新版资源| 菩萨蛮人人尽说江南好唐韦庄| 精品国产国语对白av| 久久精品国产亚洲av天美| 久久久久久久久久人人人人人人| 成人国语在线视频| www日本在线高清视频| 国产色婷婷99| 亚洲精品日韩在线中文字幕| 两个人看的免费小视频| 国产欧美日韩一区二区三区在线| 成人亚洲欧美一区二区av| 久久这里只有精品19| 啦啦啦中文免费视频观看日本| 黄色 视频免费看| 亚洲国产日韩一区二区| 亚洲国产av新网站| 黄色怎么调成土黄色| 在线 av 中文字幕| 国产国语露脸激情在线看| 男人添女人高潮全过程视频| kizo精华| 肉色欧美久久久久久久蜜桃| 免费在线观看黄色视频的| 一级毛片电影观看| 美女福利国产在线| 国产在视频线精品| 热re99久久精品国产66热6| 美女视频免费永久观看网站| 少妇精品久久久久久久| av有码第一页| 日韩av不卡免费在线播放| 桃花免费在线播放| av国产精品久久久久影院| 少妇 在线观看| av线在线观看网站| 热99久久久久精品小说推荐| 成人亚洲欧美一区二区av| av免费观看日本| 丰满乱子伦码专区| 老司机亚洲免费影院| 国产深夜福利视频在线观看| 精品少妇黑人巨大在线播放| 精品人妻偷拍中文字幕| 18禁裸乳无遮挡动漫免费视频| 中文字幕av电影在线播放| a级毛色黄片| 日韩电影二区| 在线天堂最新版资源| 视频区图区小说| 高清av免费在线| 日本欧美国产在线视频| 成年av动漫网址| 日韩一区二区视频免费看| 欧美精品人与动牲交sv欧美| xxx大片免费视频| 婷婷色综合www| 亚洲美女搞黄在线观看| 十八禁网站网址无遮挡| 男女免费视频国产| 日韩av不卡免费在线播放| www.色视频.com| 桃花免费在线播放| 久久久久久久精品精品| 又黄又粗又硬又大视频| 国产日韩欧美视频二区| 丝瓜视频免费看黄片| 久久婷婷青草| 日韩成人伦理影院| 亚洲av日韩在线播放| 如日韩欧美国产精品一区二区三区| av片东京热男人的天堂| 亚洲欧洲精品一区二区精品久久久 | 香蕉丝袜av| 日韩人妻精品一区2区三区| 久久99精品国语久久久| 三级国产精品片| 999精品在线视频| 国产亚洲av片在线观看秒播厂| 午夜免费男女啪啪视频观看| 99视频精品全部免费 在线| 两性夫妻黄色片 | 最后的刺客免费高清国语| 国产色婷婷99| 欧美日韩精品成人综合77777| 99九九在线精品视频| 欧美97在线视频| 男女下面插进去视频免费观看 | 国产白丝娇喘喷水9色精品| 亚洲国产精品专区欧美| 丝袜脚勾引网站| 亚洲欧美成人精品一区二区| 99热网站在线观看| a 毛片基地| 国产成人一区二区在线| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 亚洲av福利一区| 亚洲国产色片| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 黄色毛片三级朝国网站| 老司机亚洲免费影院| 免费久久久久久久精品成人欧美视频 | 久久久久精品久久久久真实原创| 久久午夜综合久久蜜桃| 亚洲精品日本国产第一区| 亚洲国产精品国产精品| 国产精品.久久久| 精品国产一区二区久久| 国产免费一区二区三区四区乱码| 国产无遮挡羞羞视频在线观看| 捣出白浆h1v1| 波多野结衣一区麻豆| 久久久精品94久久精品| 秋霞在线观看毛片| 秋霞伦理黄片| 国产永久视频网站| 男女边吃奶边做爰视频| 91精品国产国语对白视频| 韩国高清视频一区二区三区| 日本91视频免费播放| 国产伦理片在线播放av一区| 日韩av不卡免费在线播放| 一级片'在线观看视频| 日韩欧美精品免费久久| 黑人巨大精品欧美一区二区蜜桃 | 久久久久精品性色| 久久久国产精品麻豆| 大片电影免费在线观看免费| 国产爽快片一区二区三区| 免费观看av网站的网址| 校园人妻丝袜中文字幕| 一区二区日韩欧美中文字幕 | 国产 精品1| 不卡视频在线观看欧美| 午夜久久久在线观看| 欧美成人精品欧美一级黄| 中文字幕另类日韩欧美亚洲嫩草| 青春草亚洲视频在线观看| 久久久久久人妻| 交换朋友夫妻互换小说| 嫩草影院入口| 国产在线视频一区二区| 国产精品国产三级国产av玫瑰| 99热全是精品| 夫妻性生交免费视频一级片| 国产成人av激情在线播放| 男女午夜视频在线观看 | 午夜精品国产一区二区电影| 满18在线观看网站| 男男h啪啪无遮挡| 免费人成在线观看视频色| 中文欧美无线码| 成人无遮挡网站| 国产又色又爽无遮挡免| 国产精品国产三级国产av玫瑰| 青春草国产在线视频| 亚洲av电影在线进入| 有码 亚洲区| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 国产一区亚洲一区在线观看| 久久精品久久精品一区二区三区| 哪个播放器可以免费观看大片| 伦理电影免费视频| 欧美日韩av久久| 亚洲丝袜综合中文字幕| 波野结衣二区三区在线| 中国三级夫妇交换| 亚洲欧美一区二区三区国产| 国产在线视频一区二区| 亚洲一级一片aⅴ在线观看| 亚洲人与动物交配视频| 日韩精品免费视频一区二区三区 | 国产精品国产三级国产av玫瑰| 亚洲四区av| av视频免费观看在线观看| 交换朋友夫妻互换小说| 国产极品粉嫩免费观看在线| 国国产精品蜜臀av免费| 我要看黄色一级片免费的| 精品亚洲成a人片在线观看| 免费av不卡在线播放| 中文字幕人妻熟女乱码| 一二三四中文在线观看免费高清| 日日啪夜夜爽| 欧美日韩视频精品一区| 水蜜桃什么品种好| 香蕉丝袜av| 天美传媒精品一区二区| 久久精品aⅴ一区二区三区四区 | 日韩av免费高清视频| 精品99又大又爽又粗少妇毛片| 一级,二级,三级黄色视频| 久久精品国产综合久久久 | av电影中文网址| 亚洲,欧美,日韩| 色哟哟·www| 精品亚洲乱码少妇综合久久| 欧美人与性动交α欧美精品济南到 | 欧美性感艳星| h视频一区二区三区| 国产极品粉嫩免费观看在线| 免费看av在线观看网站| 男女下面插进去视频免费观看 | 狠狠婷婷综合久久久久久88av| 美女xxoo啪啪120秒动态图| tube8黄色片| 最黄视频免费看| 国产黄色视频一区二区在线观看| 日本-黄色视频高清免费观看| 免费观看性生交大片5| 精品视频人人做人人爽| 亚洲精品色激情综合| 中文字幕免费在线视频6| 亚洲av中文av极速乱| 国产精品久久久久成人av| 久久精品国产亚洲av涩爱| 国产精品三级大全| 日韩视频在线欧美| 一级毛片 在线播放| 婷婷色av中文字幕| 免费高清在线观看视频在线观看| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说| 国精品久久久久久国模美| 免费看不卡的av| 大片电影免费在线观看免费| videos熟女内射| 欧美人与性动交α欧美精品济南到 | 丝袜在线中文字幕| 这个男人来自地球电影免费观看 | 国精品久久久久久国模美| 久久这里有精品视频免费| 七月丁香在线播放| 亚洲精品一区蜜桃| 日本午夜av视频| 国产老妇伦熟女老妇高清| 日韩电影二区| 亚洲av在线观看美女高潮| 亚洲国产看品久久| 90打野战视频偷拍视频| 国产成人精品婷婷| 国产欧美日韩一区二区三区在线| 天天躁夜夜躁狠狠久久av| 亚洲av电影在线观看一区二区三区| 美女视频免费永久观看网站| 天天躁夜夜躁狠狠久久av| 综合色丁香网| 婷婷成人精品国产| 看免费成人av毛片| 亚洲一级一片aⅴ在线观看| 久久久久国产精品人妻一区二区| 黄色一级大片看看| xxx大片免费视频| 亚洲国产欧美日韩在线播放| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 99热国产这里只有精品6| 婷婷色av中文字幕| 国产精品无大码| 日韩一区二区三区影片| 大香蕉久久成人网| 国产精品久久久久久久久免| 看非洲黑人一级黄片| 久久久久久人人人人人| 最新中文字幕久久久久| 九九爱精品视频在线观看| 国产国语露脸激情在线看| 亚洲精品国产av蜜桃| 免费观看a级毛片全部| 国产在视频线精品| 国产成人精品福利久久| av又黄又爽大尺度在线免费看| 国产精品无大码| 国产成人aa在线观看| 亚洲成色77777| 好男人视频免费观看在线| 男女无遮挡免费网站观看| 欧美日韩视频精品一区| 久久久久久人人人人人| 国产精品 国内视频| 五月天丁香电影| 日本黄色日本黄色录像| 在线观看三级黄色| 青春草视频在线免费观看| 国产精品一国产av| 黄色 视频免费看| 亚洲av日韩在线播放| 黄色毛片三级朝国网站| 久久久久久久久久久免费av| 精品第一国产精品| 精品亚洲成国产av| 国产精品人妻久久久影院| 亚洲精品中文字幕在线视频| 如日韩欧美国产精品一区二区三区| 一级毛片我不卡| 亚洲精华国产精华液的使用体验| 黄色怎么调成土黄色| 日韩精品免费视频一区二区三区 | 男人爽女人下面视频在线观看| 女人久久www免费人成看片| 一二三四中文在线观看免费高清| 免费看不卡的av| 国产精品国产三级国产av玫瑰| 久久精品国产a三级三级三级| 久久99精品国语久久久| 青春草国产在线视频| 中文字幕另类日韩欧美亚洲嫩草| 下体分泌物呈黄色| 国产精品久久久久久久电影| 男人爽女人下面视频在线观看| 90打野战视频偷拍视频| 大香蕉97超碰在线| 久久久久久久久久久久大奶| 欧美国产精品va在线观看不卡| 久久99一区二区三区| 亚洲欧美日韩卡通动漫| 99国产综合亚洲精品| 又大又黄又爽视频免费| 麻豆精品久久久久久蜜桃| 国产 一区精品| 2021少妇久久久久久久久久久| 欧美精品一区二区大全| 中文字幕精品免费在线观看视频 | 免费大片18禁| 大香蕉久久网| 久久午夜综合久久蜜桃| 大香蕉久久网| 人妻人人澡人人爽人人| 女性生殖器流出的白浆| 成人无遮挡网站| 欧美日本中文国产一区发布| 国产精品久久久久久av不卡| 免费看光身美女| 人人澡人人妻人| 国产淫语在线视频| 免费大片18禁| 考比视频在线观看| 亚洲欧洲日产国产| 国产乱人偷精品视频| 一本色道久久久久久精品综合| 在线观看www视频免费| 波多野结衣一区麻豆| 97精品久久久久久久久久精品| 超色免费av| 欧美日韩av久久| 久久久久国产网址| 免费观看性生交大片5| 免费人成在线观看视频色| 制服人妻中文乱码| 久久久精品免费免费高清| 久久人人爽av亚洲精品天堂| 蜜桃在线观看..| 天美传媒精品一区二区| 久久av网站| 美女福利国产在线| 亚洲国产精品999| 夫妻午夜视频| 国产淫语在线视频| 一边亲一边摸免费视频| 激情视频va一区二区三区| 精品人妻偷拍中文字幕| 99九九在线精品视频| 永久免费av网站大全| 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 国产亚洲欧美精品永久| 亚洲av免费高清在线观看| 美女中出高潮动态图| 国产黄频视频在线观看| 99视频精品全部免费 在线| 超色免费av| 在线观看免费高清a一片| 久久精品aⅴ一区二区三区四区 | 男女边吃奶边做爰视频| 亚洲精品中文字幕在线视频| 亚洲精品久久久久久婷婷小说| 多毛熟女@视频| 亚洲图色成人| 国产一区二区激情短视频 | 国产男人的电影天堂91| 国内精品宾馆在线| 老女人水多毛片| 欧美日韩综合久久久久久| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 黑丝袜美女国产一区| 亚洲精品色激情综合| 久久久精品区二区三区| 国产极品天堂在线| 好男人视频免费观看在线| 亚洲国产看品久久| 欧美日韩一区二区视频在线观看视频在线| 丰满乱子伦码专区| 女人被躁到高潮嗷嗷叫费观| 人体艺术视频欧美日本| 视频区图区小说| 热re99久久国产66热| 少妇熟女欧美另类| 久久国产精品男人的天堂亚洲 | 国产免费福利视频在线观看| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 午夜日本视频在线| 啦啦啦中文免费视频观看日本| 新久久久久国产一级毛片| 国产熟女欧美一区二区| 午夜久久久在线观看| 国产精品蜜桃在线观看| 最近中文字幕2019免费版| 日韩大片免费观看网站| 国产欧美日韩一区二区三区在线| 欧美日韩一区二区视频在线观看视频在线| 男女边吃奶边做爰视频| av线在线观看网站| 18禁裸乳无遮挡动漫免费视频| 乱人伦中国视频| 亚洲天堂av无毛| 午夜福利视频在线观看免费| 亚洲国产av新网站| 久久久欧美国产精品| 国产亚洲最大av| 亚洲国产看品久久| 欧美日韩视频高清一区二区三区二| 免费在线观看完整版高清| 中文字幕av电影在线播放| 久久精品国产亚洲av涩爱| 国产精品免费大片| 成年人免费黄色播放视频| 人人妻人人添人人爽欧美一区卜| 亚洲成人av在线免费| 丝袜美足系列| 欧美精品人与动牲交sv欧美| 亚洲欧美中文字幕日韩二区| 一级毛片黄色毛片免费观看视频| 9191精品国产免费久久| 精品国产露脸久久av麻豆| 亚洲欧美日韩另类电影网站| 超色免费av| 高清在线视频一区二区三区| 亚洲欧洲国产日韩| 久久精品aⅴ一区二区三区四区 | 国产精品国产三级专区第一集| 欧美日韩av久久| 亚洲av成人精品一二三区| 欧美成人午夜免费资源| 欧美另类一区| 久热这里只有精品99| 午夜激情久久久久久久| 亚洲中文av在线| 大片免费播放器 马上看| 婷婷色麻豆天堂久久| 在线免费观看不下载黄p国产| 人人妻人人澡人人看| 成年av动漫网址| 男女高潮啪啪啪动态图| 少妇的逼水好多| 精品久久久精品久久久| 香蕉国产在线看| 如何舔出高潮| 高清av免费在线| 成人午夜精彩视频在线观看| 午夜福利视频精品| 90打野战视频偷拍视频| 欧美成人午夜精品| 免费人妻精品一区二区三区视频| 欧美精品高潮呻吟av久久| 国产亚洲欧美精品永久| videosex国产| 黑人猛操日本美女一级片| 十八禁高潮呻吟视频| 日日撸夜夜添| 中国国产av一级| 51国产日韩欧美| 看免费成人av毛片| 国产综合精华液| 免费大片黄手机在线观看| 成人影院久久| 亚洲丝袜综合中文字幕| 亚洲欧洲精品一区二区精品久久久 | 波多野结衣一区麻豆| 在现免费观看毛片| 国产色婷婷99| 国产视频首页在线观看| 午夜福利视频在线观看免费| 久久这里只有精品19| 极品少妇高潮喷水抽搐| 九草在线视频观看| 夫妻午夜视频| 男人舔女人的私密视频| 国产一区二区激情短视频 | 2021少妇久久久久久久久久久| 人人妻人人爽人人添夜夜欢视频| 777米奇影视久久| 久久久久久人人人人人| 国产精品秋霞免费鲁丝片| 人妻系列 视频| 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| av有码第一页| 两个人看的免费小视频| 成人综合一区亚洲| 亚洲国产精品专区欧美| 在线观看一区二区三区激情| 国产麻豆69| 亚洲国产欧美日韩在线播放| 日韩制服骚丝袜av| 女人被躁到高潮嗷嗷叫费观| 在线观看免费视频网站a站| 亚洲三级黄色毛片| 男女边摸边吃奶| av电影中文网址| videos熟女内射| 精品久久蜜臀av无| 内地一区二区视频在线| 两性夫妻黄色片 | av国产久精品久网站免费入址| 国产精品不卡视频一区二区|