王惟浩,宋旭嬌,馬 浩
網(wǎng)絡(luò)藥理學(xué)聯(lián)合分子對接技術(shù)探究固腸止瀉丸治療潰瘍性結(jié)腸炎的作用機(jī)制
王惟浩1,宋旭嬌1,*馬 浩2
(1.宜春學(xué)院化學(xué)與生物工程學(xué)院,江西,宜春 336000;2.宜春學(xué)院美容醫(yī)學(xué)院,江西,宜春 336000)
網(wǎng)絡(luò)藥理學(xué)聯(lián)合分子對接技術(shù)探析固腸止瀉丸治療潰瘍性結(jié)腸炎(UC)的藥效物質(zhì)基礎(chǔ)及其潛在作用機(jī)制。在TCMSP數(shù)據(jù)庫收集固腸止瀉丸各中藥成分及對應(yīng)靶點(diǎn),并于疾病靶點(diǎn)取交集,獲取潛在有效成分及治療靶點(diǎn)。利用String數(shù)據(jù)庫構(gòu)建治療靶點(diǎn)間蛋白互作網(wǎng)絡(luò),計(jì)算相關(guān)拓?fù)鋵W(xué)參數(shù),獲得關(guān)鍵基因。將治療靶點(diǎn)導(dǎo)入David數(shù)據(jù)庫進(jìn)性GO富集與KEGG富集分析。通過Auto Dock1.1.2軟件對核心成分與關(guān)鍵基因進(jìn)性分子對接驗(yàn)證。篩選出50個(gè)有效成分,其中槲皮素、山奈酚與小檗堿可能是參與治療作用的關(guān)鍵成分;涉及16個(gè)治療靶點(diǎn),其中包括5個(gè)關(guān)鍵基因PTGS2、IL-1β、MMP9、CXCL8和ICAM1。GO生物過程30個(gè),細(xì)胞成分6個(gè),分子功能7個(gè)。涉及對炎癥的反應(yīng)等生物進(jìn)程;細(xì)胞外域空間等細(xì)胞成分以及趨化因子活性等分子功能。與潰瘍性結(jié)腸炎相關(guān)的KEGG通路共5條,包括Toll-樣受體信號(hào)通路、TNF信號(hào)通路等。分子對接結(jié)果表明固腸止瀉丸核心成分可以對上述核心靶點(diǎn)發(fā)揮調(diào)節(jié)作用。固腸止瀉丸通過多成分、多靶點(diǎn)調(diào)控腸道免疫功能,發(fā)揮抗炎、抗氧化應(yīng)激等作用,是其治療UC的重要機(jī)制。
網(wǎng)絡(luò)藥理學(xué);分子對接;固腸止瀉丸;潰瘍性結(jié)腸炎;活性成分
潰瘍性結(jié)腸炎是一種常見慢性炎性疾病,以腹痛、腹瀉及便血主要臨床癥狀。近年來,潰瘍性結(jié)腸炎在發(fā)展中國家的發(fā)病率呈急劇上升趨勢。由于其復(fù)雜病理生理機(jī)制,涉及宿主遺傳、免疫、腸道菌群失調(diào)等,臨床治療較為棘手[1]。目前治療UC的主要藥物有5-氨基水楊酸、糖皮質(zhì)激素和生物制劑,取得了一定的療效,但遠(yuǎn)期療效不甚理想。
在祖國傳統(tǒng)醫(yī)學(xué)中,潰瘍性結(jié)腸炎歸屬于“腸澼”、“泄瀉”等范疇[2]。固腸止瀉丸源于治療UC經(jīng)典名方香連丸與烏梅丸,由黃連、木香、烏梅肉、罌粟殼、干姜、延胡索六位中藥組成,具有調(diào)節(jié)肝脾,固腸止瀉的作用?,F(xiàn)代藥理學(xué)研究表明固腸止瀉丸能顯著改善UC大鼠的結(jié)腸出血、減輕水腫與增生,降低結(jié)腸組織內(nèi)炎癥因子的表達(dá),對UC具有一定治療作用[3-4]。但由于中藥成分復(fù)雜多樣,靶點(diǎn)眾多,并且復(fù)方成分之間相互作用,一直是中醫(yī)藥研究領(lǐng)域的的挑戰(zhàn)[5-8]。
近年來,隨著生物大數(shù)據(jù)日趨完善以及高通量測序技術(shù)的不斷發(fā)展,其在中藥領(lǐng)域的研究逐漸深入。通過整合生物的基因數(shù)據(jù),構(gòu)建“藥物-靶點(diǎn)-疾病”網(wǎng)絡(luò),這有助于中藥復(fù)方成分進(jìn)行多靶點(diǎn),多機(jī)制的系統(tǒng)化探究[9-12]。分子對接技術(shù)能模擬化合物與靶蛋白結(jié)合,從一定程度上反映出兩者間結(jié)合活性強(qiáng)弱。聯(lián)合上述兩者方法對于探討固腸止瀉丸的藥效基礎(chǔ)和作用靶點(diǎn),揭示其復(fù)雜作用機(jī)制以及為現(xiàn)代化中藥研究提供一定的方法學(xué)參考[13-14]。
表1 本研究使用的據(jù)庫及分析平臺(tái)
Table 1 Involved database and related analysis platform in the study
編號(hào)名稱網(wǎng)址版本 1TCMSP數(shù)據(jù)庫[5]https://tcmspw.com/tcmsp.php2.3 2GeneCards數(shù)據(jù)庫[6]https://www.genecards.org/5.1 3Uniprot數(shù)據(jù)庫[7]https://www.uniprot.org/2021.2.21 4GEO數(shù)據(jù)庫[8]https://www.ncbi.nlm.nih.gov/geo/2020.11.16 5Cytoscapehttps://cytoscape.org/3.7.2 6David數(shù)據(jù)庫[9]http://kobas.cbi.pku.edu.cn/6.8 7STRING數(shù)據(jù)庫[10]https://string-db.org/11.0 8微生信云平臺(tái)http://www.bioinformatics.com.cn/2020.12 9Hiplot云平臺(tái)[11]https://hiplot.com.cn/0.1.0. beta 6 10RCSB數(shù)據(jù)庫[12]https://www.rcsb.org2020.11.24 11AutoDock Tools[13]http://autodock.scripps.edu/1.5.6 12AutoDock Vina[14]http://vina.scripps.edu/1.1.2 13Pymolhttps://pymol.org/2/2.4.1
圖1 本研究流程圖
在GEO數(shù)據(jù)庫,以“ulcerative colitis”為關(guān)鍵詞進(jìn)行檢索。通過篩選,獲取GSE107499與GSE87466兩個(gè)UC患者數(shù)據(jù)集,分別包括UC炎癥組織75例與87例;正常結(jié)腸組織44例與21例。利用GEO數(shù)據(jù)庫自帶GEO2R分析功能,以log2(fold change)的絕對值>1.5和FDR<0.01為篩選條件獲取正常組對比UC組的差異表達(dá)基因,負(fù)數(shù)代表下調(diào),正數(shù)代表上調(diào),通過Hiplot在線工具繪制火山圖。在GeneCards數(shù)據(jù)庫,以“ulcerative colitis”為關(guān)鍵詞,“Score>10”為篩選條件,獲取與UC相關(guān)基因。最后將上述三者交集作為本次疾病靶點(diǎn)。
在TCMSP數(shù)據(jù)庫檢索黃連、木香、烏梅肉、罌粟殼、干姜、延胡索共6位中藥,以口服生物利用度(Oral Bioavailability,OB)≥30%和類藥性(Drug likeness,DL)≥0.18為篩選條件,獲取各中藥的化學(xué)成分及相應(yīng)靶點(diǎn),利用Uniprot數(shù)據(jù)庫對各靶點(diǎn)進(jìn)行標(biāo)準(zhǔn)化處理。繼而與1.2疾病靶點(diǎn)相互映射作為治療靶點(diǎn),剔除不含交集靶點(diǎn)的化學(xué)成分,最終得到固腸止瀉丸治療UC的活性成分。
將1.3的治療靶點(diǎn)導(dǎo)入String11.0數(shù)據(jù)平臺(tái),設(shè)置為默認(rèn)參數(shù),結(jié)果通過Cytoscape3.7.2構(gòu)建治療靶點(diǎn)PPI網(wǎng)絡(luò)并計(jì)算各靶點(diǎn)度值(Degree)、中介中心性(Betweenness centrality)、接近中心性(Closeness centrality)。利用cytoHubba插件中最大團(tuán)中心性算法(MCC)獲取核心靶點(diǎn),依據(jù)重要程度排序。
將1.3獲取治療靶點(diǎn)導(dǎo)入David6.8數(shù)據(jù)庫,以“P-Value<0.05”為條件,篩選GO富集中的生物過程、細(xì)胞組分、分子功能以及與UC相關(guān)的KEGG信號(hào)通路。最終結(jié)果以富集圖和氣泡圖展示。最后,利用Cytoscape繪制“活性成分-靶點(diǎn)-KEGG通路-疾病”多維網(wǎng)絡(luò)。
計(jì)算“活性成分-靶點(diǎn)-KEGG通路-疾病”網(wǎng)絡(luò)各節(jié)點(diǎn)Degree值,篩選出排名前三位的化合物槲皮素、山奈酚以及小檗堿,這可能是固腸止瀉丸治療UC的關(guān)鍵成分,并與1.4中得分最高的5個(gè)核心靶點(diǎn)進(jìn)行分子對接驗(yàn)證。從PDB蛋白結(jié)構(gòu)數(shù)據(jù)庫獲取核心靶蛋白結(jié)構(gòu),利用AutoDock Tools軟件處理靶蛋白與小分子配體。通過AutoDock Vina進(jìn)行分子對接,利用Pymol軟件實(shí)現(xiàn)數(shù)據(jù)可視化。
結(jié)果顯示GSE107499數(shù)據(jù)集得到405個(gè)差異基因,其中上調(diào)77個(gè),下調(diào)328個(gè)。GSE87466數(shù)據(jù)集獲得468個(gè)差異基因,其中上調(diào)161個(gè),下調(diào)307個(gè),結(jié)果繪制火山圖(圖2a,2b)。在GeneCards數(shù)據(jù)庫共獲得368個(gè)基因。通過韋恩圖將上述三者取交集,最終獲取UC疾病靶點(diǎn)51個(gè)(圖2c)。
圖2 UC相關(guān)靶點(diǎn)結(jié)果
通過檢索TCMSP數(shù)據(jù)庫,獲取固腸止瀉丸各中藥的主要成分及對應(yīng)靶點(diǎn),共得到221個(gè)藥物靶點(diǎn)。將藥物靶點(diǎn)與2.1中疾病靶點(diǎn)取交集,剔除不含交集靶點(diǎn)的藥物成分,最終獲得黃連活性成分9個(gè),烏梅5個(gè),干姜2個(gè),木香3個(gè),罌粟殼8個(gè),延胡索30個(gè)。其中槲皮素(Quercetin)是烏梅、黃連,延胡索共有活性成分;豆甾醇(Stigmasterol)是烏梅、延胡索、木香共有活性成分;小檗堿(Berberine)、R型氫化小檗堿((R)-Canadine)、巴馬?。≒almatine)以及黃連堿(Coptisine)是黃連、延胡索共有活性成分;β-谷甾醇(beta-Sitosterol)是烏梅、干姜共有活性成分。
如圖3所示,將2.2獲取的藥物靶點(diǎn)與2.1獲取的疾病靶點(diǎn)取交集,共15個(gè)靶點(diǎn),并將結(jié)果上傳至String11.0數(shù)據(jù)庫,得到蛋白質(zhì)互作網(wǎng)絡(luò)(PPI)。在PPI網(wǎng)絡(luò)中共有15個(gè)節(jié)點(diǎn),75條邊。該網(wǎng)絡(luò)平均Degree值10.53,平均BC值0.02,平均CC值0.82。利用cytoHubba插件對15個(gè)治療靶點(diǎn)進(jìn)行打分,評分前五位的靶點(diǎn)有前列腺素內(nèi)過氧化物合酶2()、白介素-1β()、基質(zhì)金屬酶9()、趨化因子8()、細(xì)胞間黏附分子-1()。這可能是固腸止瀉丸治療UC的核心基因。
圖3 固腸止瀉丸-UC治療靶點(diǎn)PPI網(wǎng)絡(luò)及核心基因
如圖4a,本次GO功能涉及炎性反應(yīng)、趨化因子相互作用、對脂多糖的反應(yīng)等生物學(xué)進(jìn)展;涉及細(xì)胞外域空間、細(xì)胞核周等細(xì)胞組分;參與蛋白質(zhì)結(jié)合、趨化因子活性等分子功能。結(jié)合參考文獻(xiàn),獲取與UC密切相關(guān)的KEGG通路5條,如圖4b所示,分別是TNF信號(hào)通路、NF-κB信號(hào)通路、Toll-like信號(hào)通路、NOD-like信號(hào)通路以及細(xì)胞因子受體相互作用。此外,如圖4c所示通過Cytoscape軟件構(gòu)建“活性成分-靶點(diǎn)-KEGG通路-疾病”多維網(wǎng)絡(luò),該網(wǎng)絡(luò)71個(gè)節(jié)點(diǎn)、124條邊;其中活性成分按度值排在前三位的化合物,槲皮素、山奈酚、小檗堿,這可能是固腸止瀉丸治療UC的關(guān)鍵成分。
圖4 富集分析以及“活性成分-靶點(diǎn)-KEGG通路-疾病”多維網(wǎng)絡(luò)
在RCSB數(shù)據(jù)庫中檢索并獲取5個(gè)核心靶點(diǎn)的蛋白結(jié)構(gòu)(PDB格式),在TCMSP數(shù)據(jù)庫中獲取核心活性成分槲皮素、山奈酚、小檗堿化合物結(jié)構(gòu)(mol2格式)。應(yīng)用AutoDock Vina 1.1.2軟件進(jìn)行分子對接驗(yàn)證。一般認(rèn)為分子間結(jié)合能越低,受體與配體親和力越高,構(gòu)象越穩(wěn)定。結(jié)合能(affinity,kcal/mol)小于-4.25 kcal/mol表示配體分子與受體蛋白之間有一定的結(jié)合活性;小于-5.0 kcal/mol表明配體分子與受體蛋白之間有較好的結(jié)合活性;小于-7 kcal/mol表明配體分子與受體蛋白具有強(qiáng)烈的結(jié)合活性。如表2所示本次研究顯示核心成分與關(guān)鍵靶點(diǎn)蛋白結(jié)合活性均<-5 kcal/mol,具有良好的結(jié)合活性。如圖5所示,部分結(jié)果予以可視化顯示。
表2 分子對接結(jié)果
Table 2 The results of molecular docking
編號(hào)核心靶蛋白PDB編碼小分子配體對接能量(kcal/mol) 1PTGS21PXX原有配體-3.5 槲皮素-5.1 山奈酚-5.8 小檗堿-5.0 2IL-1B1RWN原有配體-4.2 槲皮素-5.5 山奈酚-6.0 小檗堿-5.1 3MMP94HMA原有配體-4.4 槲皮素-7.1 山奈酚-6.6 小檗堿-5.0 4CXCL81QE6原有配體-2.3 槲皮素-5.4 山奈酚-5.4 小檗堿-6.1 5ICAM-11IAM原有配體-3.5 槲皮素-5.4 山奈酚-5.1 小檗堿-8.1
圖 5 分子對接結(jié)果3D圖
在本次研究中涉及3個(gè)核心成分,分別是槲皮素、山奈酚以及小檗堿。槲皮素是一種天然的黃酮類化合物,具有廣泛的抗炎、抗氧化應(yīng)激以及免疫調(diào)節(jié)藥理作用。Najafzadeh M等[15]研究表明槲皮素有效降低UC模型的T淋巴細(xì)胞氧化應(yīng)激水平,減輕細(xì)胞內(nèi)DNA凋亡,從而實(shí)現(xiàn)對腸道組織的保護(hù)功能。Dicarlo M等[16]研究顯示槲皮素能降低TNF-α與重組蛋白LCN-2表達(dá),上調(diào)抗炎因子血紅素加氧酶 1(HMOX1)表達(dá),從而實(shí)現(xiàn)治療UC的作用。山奈酚具有強(qiáng)大的抗炎、抗氧化作用。Park MY等研究證實(shí)山奈酚能減輕硫酸葡聚糖硫酸鈉(DSS)誘導(dǎo)的UC小鼠血漿中一氧化氮(NO)、前列腺素(PGE)水平[17],提高對腸道杯狀細(xì)胞保護(hù)功能,改善腸道細(xì)胞氧化應(yīng)激損傷。Bian等[18]研究發(fā)現(xiàn)在LPS誘導(dǎo)的腸道血管內(nèi)皮細(xì)胞的炎癥模型,能顯著降低炎癥介質(zhì)如TNF-α、ICAM-1濃度,并對TLR4/NF-κB通路具有負(fù)向調(diào)節(jié)作用。亦有研究顯示山奈酚能作用于Wnt信號(hào)通路,調(diào)節(jié)Axin蛋白表達(dá),維持腸道隱窩結(jié)構(gòu),增加腸道屏障功能[19]。小檗堿常用于腹瀉、細(xì)菌性痢疾等胃腸疾病的治療。何濤宏等[20]研究顯示UC大鼠給予小檗堿,與模型組相比,炎癥因子TNF-α、IL-1β水平顯著降低,提高腸道緊密蛋白o(hù)ccludin表達(dá),這說明小檗堿能有效抑制UC大鼠結(jié)腸炎癥和緩解病理損傷。
通過對15個(gè)預(yù)測治療靶點(diǎn)構(gòu)建PPI網(wǎng)絡(luò),計(jì)算其拓?fù)鋵W(xué)參數(shù),獲得5個(gè)關(guān)鍵基因分別是和。基因參與調(diào)控環(huán)加氧酶-2的生成,其廣泛存在于腸道上皮組織,能將細(xì)胞膜中釋放的花生四烯酸代謝為炎性產(chǎn)物前列腺素的關(guān)鍵酶,促進(jìn)炎癥反應(yīng),并影響腸道屏障功能穩(wěn)定性。經(jīng)典抗UC藥物美沙拉嗪亦是通過抑制的活化進(jìn)而發(fā)揮治療作用[21-22]。炎癥因子IL-1β在UC患者結(jié)腸組織與血清中濃度明升高;其水平與疾病嚴(yán)重程度呈正相關(guān);且能激活Th17細(xì)胞信號(hào)通路,并釋放干擾素γ加重腸黏膜損傷[23]?;蚍e極參與炎癥性腸病患者的病理生理過程,能影響粘膜細(xì)胞之間的緊密連接,增加腸粘膜通透性并加重粘膜屏障功能的損害;同時(shí)刺激結(jié)腸細(xì)胞產(chǎn)生TNF-α,加劇腸道炎性損傷[24-25]。此外,MMP 9蛋白表達(dá)可以作為UC活動(dòng)期生化指標(biāo),與病人的預(yù)后密切相關(guān)[26]。趨化因子8()基因參與白介素-8的表達(dá),促進(jìn)中性粒細(xì)胞向患處遷移。Walana等[27]研究發(fā)現(xiàn)應(yīng)用拮抗劑G31P治療DSS誘導(dǎo)的UC小鼠時(shí),可以降低促炎因子水平,對患處起到保護(hù)作用。細(xì)胞間黏附分子-1()基因在正常結(jié)腸組織中表達(dá)極低。當(dāng)結(jié)腸受到炎性損傷時(shí),能持續(xù)激活該信號(hào)通路,同時(shí)NF-κB的活化能促進(jìn)的表達(dá),造成炎癥的級(jí)聯(lián)與擴(kuò)散[28]。研究表明通過靶向抑制表達(dá),有望成為新型UC治療手段[29]。
本次KEGG分析表明預(yù)測的治療靶點(diǎn)主要集中在TNF信號(hào)通路、NF-κB信號(hào)通路、Toll-like以及NOD-like等信號(hào)通路。腸道上皮細(xì)胞參與維持粘膜屏障功能與介導(dǎo)免疫應(yīng)答。研究表明UC患者的上皮細(xì)胞凋亡明顯增加,此過程與TNF信號(hào)通路密切相關(guān)[30]。通過活化T細(xì)胞,誘導(dǎo)產(chǎn)生TNF-α,并參與腸道內(nèi)皮血管的水腫,腸道免疫細(xì)胞激活釋放炎癥因子以及促進(jìn)細(xì)胞的凋亡[31]。Toll-like信號(hào)通路作為經(jīng)典模式識(shí)別受體,參與細(xì)菌、病毒等感染的免疫應(yīng)答過程。TLR4過度表達(dá)能促進(jìn)提升促炎因子水平,導(dǎo)致炎癥的級(jí)聯(lián)與擴(kuò)散[32-33]。刁凌云等[34]研究顯示UC活動(dòng)期患者TLR2、TLR4表達(dá)水平顯著上調(diào),且與疾病嚴(yán)重程度呈正相關(guān)性,作為診斷UC和預(yù)后指標(biāo)具有一定的參考意義。NOD-like信號(hào)通路是一種胞內(nèi)模式識(shí)別受體,能被多種內(nèi)源性以及外源性刺激因子活化,進(jìn)而形成NLRP3炎癥小體。NLRP3炎癥小體與UC的進(jìn)展密切相關(guān)。不僅促進(jìn)炎癥因子IL1β、IL-18的表達(dá),參與細(xì)胞焦亡。同時(shí)激活下游MAPK以及NF-κB信號(hào)通路,增加促炎因子IL-6表達(dá)同時(shí)減少抑炎因子IL-10,并誘導(dǎo)細(xì)胞凋亡等多種功能。NLRP3過度活化能夠影響腸道菌群正常組分,UC患者腸道內(nèi)益生菌含量下降,加劇腸道損傷[35]。此外,NOD-like信號(hào)通路與Toll-like信號(hào)通路,均可激活下游NF-κB通路,釋放炎癥因子如IL-1β及TNF-α等[36-37]。
本研究運(yùn)用網(wǎng)絡(luò)藥理學(xué)以及分子對接技術(shù)系統(tǒng)分析固腸止瀉丸治療UC的潛在作用機(jī)制,其中槲皮素、小檗堿、山奈酚等活性成分可能通過、、等基因靶點(diǎn)及TNF、NF-κB和Toll-like等信號(hào)通路發(fā)揮免疫調(diào)理、抑炎、抗氧化應(yīng)激等多種作用。但鑒于網(wǎng)絡(luò)藥理學(xué)的局限性以及當(dāng)前中藥數(shù)據(jù)庫信息尚不完整,固腸止瀉丸實(shí)際干預(yù)UC結(jié)果可能存在一定偏倚。未來仍需進(jìn)一步探究固腸止瀉丸“多成分-多靶點(diǎn)-多通路”作用機(jī)制。
[1] 沈洪,唐志鵬,唐旭東,等. 消化系統(tǒng)常見病潰瘍性結(jié)腸炎中醫(yī)診療指南:基層醫(yī)生版[J].中華中醫(yī)藥雜志,2019,34(9):4155-4160.
[2] 李卓原,劉劍,劉聰聰,等.中西醫(yī)治療潰瘍性結(jié)腸炎的研究進(jìn)展[J].中國肛腸病雜志,2020,40(12): 72-74.
[3] 楊勇,周源,趙娟,等. 固腸止瀉丸干預(yù)潰瘍性結(jié)腸炎模型大鼠的實(shí)驗(yàn)研究[J].世界最新醫(yī)學(xué)信息文摘,2018,18(65): 3-5.
[4] 張小麗,范引科,姜姍姍,等. 固腸止瀉丸治療免疫及醋酸致豚鼠潰瘍性結(jié)腸炎的實(shí)驗(yàn)研究[J].西北藥學(xué)雜志,2010,25(03): 198-199.
[5] Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminformatics, 2014, 6(1): 13.
[6] Zhang W, Bojorquez-Gomez A, Velez DO, et al. A global transcriptional network connecting noncod ing mutations to changes in tumor gene expression[J]. Nat Genet, 2018, 50(4): 613-620.
[7] 羅靜初.UniProt蛋白質(zhì)數(shù)據(jù)庫簡介[J].生物信息,2019,17(3): 131-144.
[8] Barrett T, Wilhite S E, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets -update[J]. Nucleic Acids Res 2013,41: D991-D995.
[9] Huang D W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J].Nature Protoc,2009,4(1): 44-57.
[10] Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction. networks of proteins, globally integrated and scored[J]. Nucleic Acids Research, 2011,39(suppl 1):561-568.
[11] Hiplot: a community-driven bioinformatics data visualization platform[M]. Openbiox Community,2020.
[12] Burley SK, Berman HM, Bhikadiya C, et al. RCSB Protein Data Bank: biological macro molecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy[J]. Nucleic Acids Research, 2019, 47: 464-474.
[13] Word JM, Lovell, SC, Richardson, JS, et al. Asparagine and glutamine: using hydrogen atom contacts in the choice of sidechain amide orientation[J]. J Mol Biol, 1999, 285: 1733-1745.
[14] O Trott, A J Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading[J]. Journal of Computational Chemis try, 2010: 455-461.
[15] Najafzadeh M, Reynolds PD, Baumgartner A, et al. Flavonoids inhibit the genotoxicity of hydrogen peroxide (H(2)O(2)) and of the food mutagen 2-amino-3-Methylimadazo (IQ) in lympho -cytes from patients with inflammatory bowel disease (IBD) [J]. Mutagenesis, 2009, 24(5):405-11.
[16]Dicarlo M, Teti G, Verna G, et al. Quercetin Exposure Suppresses the Inflammatory Pathway in Intestinal Organoids from Winnie Mice[J]. Int J Mol Sci, 2019, 20(22): 5771.
[17]Park MY, Ji GE, Sung MK. Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice [J]. Dig Dis Sci, 2012, 57(2): 355-63.
[18] Bian Y, Liu P, Zhong J, et al. Kaempferol inhibits multiple pathways involved in the secretion of inflammatory mediators from LPS?induced rat intestinal microvascular endothelial cells Mol Med Rep, 2019, 19(3): 1958-1964.
[19] Sharma AR, Nam JS. Kaempferol stimulates WNT/β-cateninsignaling pathway to induce diffe rentiation of osteoblasts[J].J Nutr Biochem,2019,74:108228.
[20]何濤宏,陳敏,郝亮亮,等.鹽酸小檗堿對潰瘍性結(jié)腸炎大鼠炎癥的影響[J].中國臨床藥理學(xué)雜志,2020,36(21): 3461-3464.
[21] Zamuner SR, Warrier N, Buret AG, et al. Cyclooxygenase 2 mediates post-inflammatory colonic secretory and barrier dysfunction[J]. Gut, 2003, 52(12): 1714-20.
[22] Wiercinska-Drapa?o A, Flisiak R, Prokopowicz D. Effects of ulcerative colitis activity on plasma and mucosal prostaglandin E2 concentration[J]. Prostaglandins Other Lipid Mediat, 1999, 58: 159-165.
[23] Mao L, Kitani A, Strober W, et al. The role of NLRP3 and IL-1β in the pathogenesis of inflammat ory bowel disease[J]. Front Immunol, 2018, 9(5):2566.
[24] Bai X, Bai G, Tang L, et al. Changes in MMP-2, MMP-9, inflammation, blood coagulation and intestinal mucosal permeability in patients with active ulcerative colitis[J]. Exp Ther Med, 2020, 20(1): 269-274.
[25] Neurath M. Current and emerging therapeutic targets for IBD[J].Nat Rev Gastroenterol Hepatol, 2017, 14(11): 688.
[26] Kreijne JE, van der Giessen J, Verhaar AP, et al. Fecal matrix metalloproteinase-9 measure-ment for optimizing detection of disease activity in inflammatory bowel disease[J]. J Clin Gastroen -terol, 2019, 53(5):395-397.
[27] Walana W, Ye Y, Li M, et al. IL-8 antagonist, CXCL8(3-72)K11R/G31P coupled with probiotic exhibit variably enhanced therapeutic potential in ameliorating ulcerative colitis[J]. Biomed Pharma -cother, 2018, 103: 253-261.
[28] Bendjelloul F, Rossmann P, Maly P, et al. Detection of ICAM-1 in experimentally induced colitis of ICAM-1-deficient and wild-type mice: an immunohistochemical study[J]. Histochem J., 2000, 32(12): 703-709.
[29] Reinisch W, Hung K, Hassan-Zahraee M, et al. Targeting Endothelial Ligands: ICAM-1/alicaforsen, MAdCAM-1[J]. J Crohns Colitis, 2018, 12(suppl 2): S669-S677.
[30] Seidelin JB, Nielsen OH. Epithelial apoptosis:cause or consequenceof ulcerative colitis? [J].Scand J Gastroenterol, 2009, 44 (12): 1429-1434.
[31] Zelová H, Ho?ek J.TNF-α signalling and inflammation: interactions between old acquain-tances[J]. Inflamm Res, 2013, 62(7): 641-51.
[32] 徐曉云,李冬斌,李彬. TLR4、NF-κB p65、IL-8 在潰瘍性結(jié)腸炎中的表達(dá)[J].疑難病雜志,2012,11(3):181-183。
[33] Kordjazy N, Haj-Mirzaian A, Rohani MM. Role of toll-like receptors in inflammatory Bowel disease[J]. Pharmacol Res,2018,129:204-215.
[34] 刁凌云,皇金萍,陳洋,等. TLRs及其下游炎性因子在潰瘍性結(jié)腸炎早期診斷及預(yù)后評估中的價(jià)值分析[J].川北醫(yī)學(xué)院學(xué)報(bào),2021,36(12): 1546-1551.
[35] Zhen Y, Zhang H. NLRP3 inflammasome and inflammatorybowel disease[J]. Front immunol, 2019, 10:276.
[36] 李躍文,劉志強(qiáng),王博龍等. 四磨湯治療功能性胃腸病機(jī)制的網(wǎng)絡(luò)藥理學(xué)分析[J].井岡山大學(xué)學(xué)報(bào):自然科學(xué)版,2020,41(3): 90-95.
[37] Karimi S, Tabataba-Vakili S, Ebrahimi-Daryani N, et al. Inflammatory biomarkers response to two dosages of vitamin D supplementation in patients with ulcerative colitis: A randomized, double-blind, placebo-controlled pilot study[J]. Clin Nutr ESPEN,2020, 36(2):76-81..
MECHANISM EXPLORATION OF GUCHANG ZHIXIE PILLS ACTING ON ULCERATIVE COLITIS BASED ON NETWORK PHARMACOLOGY-MOLECULAR DOCKING TECHNOLOGY
WANG Wei-hao1, SONG Xu-jiao1,*MA Hao2
(1. School of Chemical and Biological Engineering, Yichun University, Yichun, Jiangxi 336000, China;2. School of Aesthetic Medical , Yichun University, Yichun, Jiangxi 336000, China)
To explore the pharmacodynamic material basis and underlying mechanisms of Guchang Zhixie pills in the treatment of ulcerative colitis by network pharmacology combined with molecular docking.The traditional Chinese medicine components and corresponding targets of Guchang Zhixie pills were collected in TCMSP database, and the disease targets were intersected to obtain the potentially effective components and therapeutic targets. The protein interaction network between therapeutic targets was constructed by using String database, the relevant topological parameters were calculated, and then the key genes were obtained. The therapeutic targets were introduced into David database for progressive GO enrichment and KEGG enrichment analysis. The progressive molecular docking of the core components and key genes was verified by Auto Dock1.1.2 software.50 active components were screened, quercetin, kaempferol and berberine may be the key components involved in the treatment, involving 16 therapeutic targets, including 5 key genesandThere were 30 biological processes, 6 cellular components and 7 molecular functions of GO, which are involved in biological processes such as response to inflammation, cellular components such as extracellular space and molecular functions such as chemokine activity. There were 5 KEGG pathways related to ulcerative colitis, including Toll-like receptor signal pathway, TNF signal pathway and so on. The results of molecular docking showed that the core components of Guchang Zhixie pills could regulate the above core targets.Guchang Zhixie pills regulate intestinal immune function through multi-components and multi-targets and plays a key role in anti-inflammatory and antioxidant stress, which is an important mechanism in the treatment of UC.
network pharmacology; molecular docking; Guchang Zhixie pills; ulcerative colitis; active compound
1674-8085(2022)03-0086-08
R256.3
A
10.3969/j.issn.1674-8085.2022.03.014
2021-04-23;
2022-01-20
江西省研究生創(chuàng)新專項(xiàng)項(xiàng)目(YC2020-S647);宜春學(xué)院博士科研啟動(dòng)基金項(xiàng)目(113-3350100050)
王惟浩(1988-),男,河北保定人,碩士生,主要從事網(wǎng)絡(luò)藥理學(xué)研究(Email:453889388@qq.com);
*馬 浩(1986-),男,山東淄博人,講師,博士,碩士生導(dǎo)師,主要從事臨床藥學(xué)及藥理學(xué)研究(Email:promisingmh@163.com).