• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake?

    2021-09-28 02:18:44ZhaohuiCheng程朝暉BinLei雷彬XigangLuo羅習(xí)剛JianjunYing應(yīng)劍俊ZhenyuWang王震宇TaoWu吳濤andXianhuiChen陳仙輝
    Chinese Physics B 2021年9期
    關(guān)鍵詞:吳濤朝暉

    Zhaohui Cheng(程朝暉),Bin Lei(雷彬),Xigang Luo(羅習(xí)剛),2,Jianjun Ying(應(yīng)劍俊),3,Zhenyu Wang(王震宇),3,Tao Wu(吳濤),2,3,5,?,and Xianhui Chen(陳仙輝),2,3,4,5

    1CAS Key Laboratory of Strongly-coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    4CAS Center for Excellence in Quantum Information and Quantum Physics,Hefei 230026,China

    5Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords:iron-based superconductors,superconductivity,electronic nematicity,strain effect

    Electronic nematic phase,in which the rotational symmetry is broken,exhibits a twist with superconductivity in the electronic phase diagram of iron-based superconductors(IBSCs).[1]Many experiments have already shown conclusive evidences for the electronic nematicity in IBSCs,including anisotropic transport,angle resolved photoemission spectroscopy(ARPES),scanning tunneling microscopy(STM),neutron scattering and so on.[2]So far,although the existence of electronic nematicity in IBSCs is well-established,[3–5]the underlying mechanism and its exact role on the superconducting pairing are still mystery and under hot debate.[1,6,7]Most of the existing experimental results support a direct competition between nematic order and superconductivity in the electronic phase diagram.[8,9]Since the nematic order is tightly twisted with a stripe-type antiferromagnetic order in the iron-pnictide family,[10–12]the competition between the nematic order and the superconductivity is widely believed to stem from the competition between antiferromagnetic order and superconductivity.[8,9]In this case,the nematic order is even considered to be driven by stripe-type spin fluctuations.[1,5,13–16]However,in iron-selenides family such as FeSe1?xSxsystems,there is no direct evidence for the competition between nematic order and superconductivity.[17,18]Interestingly,the stripe-type antiferromagnetic order is also decoupled with nematic order in the electronic phase diagram,which leads to an alternative scenario for electronic nematicity due to orbital order,[19,20]e.g.,the ferro-orbital order.Moreover,orbital fluctuations are also considered to mediate an s++superconducting pairing.[21]So far,the origin of the electronic nematicity and its role on superconductivity are still highly controversial in iron-selenides family.[1,6,7,21,22]

    As a conjugate field for electronic nematicity,strain can be used to manipulate the electronic nematicity,[3–5,24,25]which is helpful to elucidate the relationship between electronic nematicity and superconductivity.[26,27]Recently,a dominant B1g-type strain effect on superconductivity has been revealed in the underdoped Ba(Fe1?xCox)2As2.[24,25]With further electron doping,an A1g-type instead of B1g-type strain effect appears and becomes dominant in the overdoped Ba(Fe1?xCox)2As2.[28,29]These results strongly support a significant role of electronic nematicity on superconductivity.Then,a natural question is whether a similar B1g-type strain effect could be also observed in iron-selenides family or not,which would be helpful to further understand the role of electronic nematicity on the superconducting pairing in IBSCs.

    Previous study on FeSe thin films,utilizing pulsed laser deposition on different substrates,already indicates that the superconducting transition temperature(Tc)in FeSe thin films is highly tunable from 0 K to 12 K by changing the lattice parameters.[30]However,the previous study of the strain effect on Tcin bulk FeSe is not very successful due to the possible damage of FeSe single crystals by large uniaxial strain.[2]Only a small range of uniaxial strain could be applied to FeSe single crystal through a“horseshoe device”or pasting on a piezo-ceramic stack to achieve the measurements of nematic susceptibility.[31,32]In this work,in order to increase the tuning range of uniaxial strain in the bulk FeSe,we adopt a mechanical cleavage method to first cleave FeSe single crystal into thin flakes with the thickness of~25 nm,and then transfer these FeSe thin flakes on a flexible substrate.The uniaxial strain is applied to these thin flakes by bending the flexible substrate.The similar method has been successfully used for the strain tuning of MoS2and black phosphorus thin flakes.[33,34]By utilizing this method for applying uniaxial strain,Tcand Tsof FeSe thin flakes can be largely varied exceeding all previous studies on the strain effect in bulk FeSe.The maximum Tcof FeSe can be increased by 30%through applying a compressive strain up to 12 K,while the nematic transition temperature shows an anti-correlation with Tc.Detailed measuring procedures and data analysis are presented in the following part.We note that,during preparing this manuscript,a couple of similar researches on the strain-tuning effects of bulk FeSe have been published.[35–37]The strain-tuning methods in these researches are different from ours,while the main results are consistent with our experiments.

    In order to achieve continuous change of the uniaxial strain,we use flexible polyethylene terephthalate(PET)films as the substrate to stick FeSe thin flakes and then bend the substrate to produce strain.Bending the flexible substrate downward/upward could induce a tensile/compressive strain on the FeSe thin flakes(Fig.1(b)).The nominal magnitude of the strain is defined asε=ΔL/L0,whereΔL=L?L0,and L0and L are the sample length without and with strain,respectively(see supplementary materials for the details of calculation).

    Fig.1.Crystal structure,device configuration and strain-dependent Raman spectra of FeSe.(a)The crystal structure of the pristine FeSe.(b)Schematic structure of a FeSe thin flake on the flexible polyethylene terephthalate(PET)substrate.Variable compressive/tensile strains are induced on FeSe thin flakes by bending the substrate downward/upward.(c)An optical image of a FeSe thin flake supported on flexible PET substrate.(d),(e)AFM image of the dashed square in(c).The thickness of FeSe thin flake is about 25 nm along the red dashed line.(f)In-situ Raman spectroscopy of the FeSe thin flakes under different tensile and compressive strains with the strain along(110).The peaks of A1g and B1g modes move to the lower wave number with increasing the tensile strain and shift to the higher wave number with increasing the compressive strain.(g)The peak positions of A1g and B1g modes as a function of the strain.The frequencies of the A1g and B1g modes monotonously decrease with increasing the strain from negative to positive.

    As shown in Fig.1(a),due to the van der Waals interaction between different FeSe layers,the FeSe thin flakes can be easily obtained by the mechanical exfoliation with scotch tape method.FeSe thin flakes are first mechanically exfoliated from bulk crystals onto polydimethylsiloxane(PDMS)substrates,and then transferred to PET substrates by the so-called dry-transfer method.[38](see supplementary materials for the details of devices fabrication).Figure 1(b)is the schematic structure of the final strain device.In practical,proper thin flakes with good flatness and regular shape are chosen by using an optical microscopy.Then,the thickness is characterized by an atomic force microscopy(AFM).The typical thickness of the FeSe thin flakes used for the transport measurement is about 25 nm as evidenced by the AFM image as shown in Figs.1(d)and 1(e).Finally,four electrodes(Cr/Au with thicknesses of 5 and 50 nm,respectively)for transport measurements are coated on the surface of the FeSe thin flakes by using mask technique.The coated four electrodes also serve as the clamping points to prevent the sample from slippage during the bending of the substrate.Figure 1(c)displays an optical image of the actual device.It should be noted that the inplane crystal orientation of FeSe single crystal is determined by Laue diffraction measurement.The applied strain by bending the PET substrate is always along the[110]or[100]direction.The direction of the current can be changed by varying the direction of the electrodes.

    The strain induced by bending the PET substrate can be estimated by a continuum-mechanics model for an elastic beam(see supplementary material S2),in which the radius of curvature(R)from the bending of the PET substrate is assumed to be much larger than the thickness(h)of the PET substrate.Then,the magnitude of the applied strain can be calculated byε=h/2R[39](see details in Fig.S1 of the supplementary materials).A positive/negativeεdenotes a tensile/compressive strain,respectively.In this work,the thickness of the PET substrate is about 100μm,and we could extract the value of R from the profile of the bended PET substrate.In order to continuously change the strain in the FeSe thin flakes,the prepared device is fixed in the middle of two parallel plates and the distance between these two plates is continuously changed to bend the PET substrate.If no slippage happens between the FeSe thin flake and PET substrate,then the strainεin the FeSe thin flake can be directly calculated by the above formula.Here,the sample should be mounted in the middle position of the substrate.

    Fig.2.The longitudinal resistance and the temperature derivatives of the resistance at differentεalong(110).(a),(d),(g)and(j)Temperature dependence of resistance for FeSe thin flakes under different strains and different current directions.The inset is a schematic of the strain and the direction of the measured current.(b),(e),(h)and(k)The resistance at low temperatures corresponding to(a),(d),(g)and(j).(c),(f),(i)and(l)Temperature dependence of the temperature derivative of resistance for the samples corresponding to(a),(d),(g)and(j).

    Usually,x-ray diffraction(XRD)experiment is needed to verify the change of lattice parameters due to uniaxial strain.However,due to limited sample’s volume,it is very difficult to perform an in-situ XRD measurement on the FeSe thin flakes as that in large single crystal.[40]Instead,we have performed in-situ Raman measurements,which is sensitive to uniaxial strains on the FeSe thin-flake samples.As shown in Fig.1(f),we successfully obtain in-situ Raman spectra for the FeSe thin flakes under various strains along[110]direction.The A1gand B1gmodes come from the vibrations of Se atoms along the c axis and the vibrations of Fe atoms along the c axis,respectively.[41–43]By increasing the strain from tensile to compressive strain,both A1gand B1gmodes continuously shift to a higher wavenumber.The systematic evolution of A1gand B1gmodes with the uniaxial strain is shown in Fig.1(g).Qualitatively,although the absolute magnitude of the uniaxial strain on the FeSe thin flakes can not be determined precisely,the in-situ Raman result indicates that the uniaxial strain by bending the PET substrate is effectively transferred to the FeSe thin flakes.Similar in-situ Raman results are also obtained in the FeSe thin flakes under various strains along[100]direction(see supplementary materials Fig.S3).Therefore,we assume that the calculated value of strain by the above mentioned method well represents the actual strain in the FeSe thin flakes.Next,we would investigate the strain effects on both superconducting and nematic transitions in the FeSe thin flakes by electronic transport measurements.

    As shown in Fig.2,the temperature dependence of resistance for the FeSe thin flakes are systematically measured under different strains along the[110](Fe–Se–Fe)direction.In order to measure both tensile/compressive strain effects with the electric current parallel or perpendicular to the bending direction,we have prepared four similar strain devices to measure the temperature-dependent resistance.Figures 2(a)and 2(d)show the temperature dependences of resistances under tensile strain,with the electric current parallel and perpendicular to the direction of the uniaxial strain,respectively.The overall temperature dependence of resistance is very similar to the previous report on the bulk FeSe,[18]excepting a higher superconducting temperature and a lower nematic transition temperature.Such difference in superconducting and nematic temperatures between bulk FeSe and FeSe thin flake has already been reported in previous study.[44]Moreover,with increasing the tensile strain,the temperature-dependent resistances show a clear difference below the nematic transition temperature with current parallel and perpendicular to[110]direction,which suggests that the FeSe thin flake on the PET substrate is detwinned with the applied tensile substrate.The superconducting temperature(defined as the middle point of the resistive transition Tmidc)drops from the initial 9 K to 7.8 K with a tensile strain up to 0.47%in the device,when the electric current flows perpendicular to the direction of uniaxial strain.In the device with the electric current parallel to the direction of uniaxial strain,Tmidc drops from the initial 9.6 K to 6.9 K with a tensile strain up to 0.61%.In spite of slightly difference between different devices,it is clear that the superconducting temperature is almost linearly suppressed by increasing the tensile strain along the[110]direction.On the other hand,the nematic transition temperature(Ts)is determined from the derivative of the temperature-dependent resistance.As shown in Figs.2(c)and 2(f),there is a clear sharp jump due to the nematic transition in the differential curves.Tsis determined by the minimum of the jump.In the device with current parallel to the direction of uniaxial strain,Tsgradually increases from initial 71.2 K to 91.2 K with a tensile strain up to 0.61%.In the device with current perpendicular to the direction of uniaxial strain,Tsgradually increases from initial 70.4 K to 83 K with a tensile strain up to 0.47%.Therefore,in contrast to the superconducting temperature,the nematic transition temperature is clearly increased as the tensile strain increases.

    Fig.3.(a)Tc and Ts as a function of the strainεwhen the strain is applied along the[110]direction.With increasing the tensile strain,Tc gradually decreases and Ts gradually increases.With increasing the compressive strain,Tc gradually increases and Ts gradually decreases.There is a negative correlation between Tc and Ts.(b)and(c)Schematics of different strain types.εA1g is symmetry-preserving strain andεB1g is the strain component which breaks the four-fold rotational symmetry.

    In general,a uniaxial stress applied along one in-plane direction(a or b axis)will induce strains along all three principal axes.[28]Then we haveεjj=?vijεii,where vijis the intrinsic Poisson ratio for materials.This gives

    whereεA1g1andεA1g2are the non-symmetry-breaking strain such as volume expansion and change of tetragonality;and εB1gis the strain component which breaks the four-fold rotational symmetry.Based on symmetry considerations,Tcshould depend quadratically onεB2gbut linearly onεA1g.Accordingly,we have[28]

    whereαandβare the dimensionless coefficients of the dependence of TconεA1gandεB1g,respectively.In the previous study on the underdoped Ba(Fe1?xCox)2As2,the straindependent Tcis found to be dominant by aεB1gcomponent and shows a quadratical dependence.In that case,the coefficient of the quadratic termαis believed to be related to the longrange antiferromagnetic order existing in Ba(Fe1?xCox)2As2andεB1gwould enhance spin fluctuations while suppress nematic fluctuations.[45]With increasing the amount of Co doping to the overdoped region,the antiferromagnetic order in Ba(Fe1?xCox)2As2is gradually suppressed and thenεA1gbecomes dominant on the strain dependence of Tc.Following this explanation on strain-dependent Tc,the absence of longrange antiferromagnetic order in bulk FeSe would lead to a negligible value ofαand then only a linear term would be left.This is definitely confirmed by the observation in the present study.Therefore,our results indirectly support a role of stripe-type spin fluctuations on superconductivity.In addition,as reported in previous literatures,Tcis found to be very sensitive to the change of the c-axis lattice constant in FeSe thin films,[27]which might be responsible for the observed predominant A1g-type strain effect.In fact,the A1gtype strain effect could be also compared with the pressure effect in FeSe,in which the superconducting transition temperature would be enhanced by low pressure below 1 GPa while the nematic transition temperature is suppressed.However,with further increasing pressure,a long-range antiferromagnetic order would appear and then Tcwould be slightly suppressed by the development of antiferromagnetic order.[46]Here,whether a long-range antiferromagnetic order would appear or not with further increasing strain is still elusive.It may deserve further study to clarify the underlying physics for the A1g-type strain effect.On the other hand,a similar B1g-type strain effect on the nematic transition temperature was also revealed in the underdoped Ba(Fe1?xCox)2As2.[28]However,our results clearly demonstrate that such a B1g-type strain effect on Tsis absent in FeSe.If assuming a key role of spin degree of freedom on the electronic nematicity in iron-pnictides,the absence of B1g-type strain effect on Tssuggests that the orbital degree of freedom might play a key role instead of the spin degree of freedom to drive the electronic nematicity.Since the orbital order is sensitive to the change of lattice parameter,[47–49]the dominant A1g-type strain effect on Tscould be also related to the change of lattice parameter induce by uniaxial strain as that for Tc.Therefore,combining the strain effect in both FeSe and Ba(Fe1?xCox)2As,the stripe-type spin fluctuations,which would lead to a B1g-type strain effect on both Tcand Ts,play a more important role than orbital fluctuations on the superconductivity in IBSCs.In fact,this is also supported by a slight change of Tcacross the nematic quantum critical point in FeSe1?xSxsystem.[25]Recently,several experiments on the strain-tuning effects of bulk FeSe have been conducted by different groups.[35–37]Owing to different measuring methods and sample dimensions,there is a few slight differences in the detailed behavior of Ts(ε)and Tc(ε)among different experiments.[35–37]Nevertheless,consistent conclusions are obtained,which suggest intrinsic strain-tuning effects revealed in this study.

    In summary,by utilizing PET substrate,we successfully obtain a wide-range strain tuning for FeSe thin flake with both tensile and compressive strain up to about 0.7%.Our results reveal a predominant A1g-type strain effect on Tc,which is different from that of B1g-type in underdoped Ba(Fe1?xCox)2As2.Meanwhile,Tsexhibits a monotonic anticorrelation with Tcand the maximum Tcreaches to 12 K when Tsis strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe1?xCox)2As2,the absence of B1g-type strain effect in FeSe further supports a role of stripe-type spin fluctuations on superconductivity.Our findings provide new insights for clarifying the underlying mechanism of nematic order and its twist with superconductivity in iron-based superconductors.

    猜你喜歡
    吳濤朝暉
    紅燈亮了
    好詩(shī)與好人
    芙蓉國(guó)里盡朝暉
    Recent advances in quasi-2D superconductors via organic molecule intercalation
    CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT*
    觀巖畫(huà)
    三只蚊子
    Module 10 Units 3-4單元點(diǎn)撥
    Module 10 Units 1—2 單元點(diǎn)撥
    唆拜(外一首)
    文藝論壇(2015年23期)2015-03-04 07:57:15
    天天躁狠狠躁夜夜躁狠狠躁| 久久精品aⅴ一区二区三区四区| 老汉色av国产亚洲站长工具| 老鸭窝网址在线观看| xxxwww97欧美| 精品午夜福利视频在线观看一区| 国产亚洲精品一区二区www| 麻豆成人av在线观看| 五月伊人婷婷丁香| 国产伦人伦偷精品视频| 中出人妻视频一区二区| 亚洲午夜理论影院| 日韩欧美 国产精品| 欧美午夜高清在线| 俺也久久电影网| www.精华液| 两性午夜刺激爽爽歪歪视频在线观看| 91av网一区二区| 天天添夜夜摸| 欧美黄色淫秽网站| 国产1区2区3区精品| 成年女人看的毛片在线观看| 亚洲av免费在线观看| 国产精品久久视频播放| 国产久久久一区二区三区| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av在线| 中文字幕人妻丝袜一区二区| 成年人黄色毛片网站| 99久久成人亚洲精品观看| 色老头精品视频在线观看| 亚洲自拍偷在线| 噜噜噜噜噜久久久久久91| 国产淫片久久久久久久久 | 久久久久久久久久黄片| 久久性视频一级片| 日韩大尺度精品在线看网址| 999久久久国产精品视频| 免费高清视频大片| 欧美日韩福利视频一区二区| 久久久久久久久中文| 天堂影院成人在线观看| 黄色日韩在线| 久久中文看片网| 中国美女看黄片| 国产激情久久老熟女| 又黄又粗又硬又大视频| 亚洲成人中文字幕在线播放| 男女视频在线观看网站免费| 精品久久蜜臀av无| 老司机在亚洲福利影院| 99re在线观看精品视频| 国产精品久久视频播放| 国产成人av激情在线播放| 国产亚洲精品久久久久久毛片| 国产一区在线观看成人免费| 亚洲av熟女| 中出人妻视频一区二区| 一级黄色大片毛片| 天堂动漫精品| 午夜激情欧美在线| 搞女人的毛片| 婷婷六月久久综合丁香| 亚洲国产欧美一区二区综合| 日本一本二区三区精品| 国产精品久久久久久亚洲av鲁大| 91av网站免费观看| 色视频www国产| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 综合色av麻豆| 亚洲精品456在线播放app | 99久久无色码亚洲精品果冻| 蜜桃久久精品国产亚洲av| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 99国产精品一区二区蜜桃av| 欧美大码av| 全区人妻精品视频| 亚洲无线在线观看| 性欧美人与动物交配| 国产亚洲精品一区二区www| 精品久久久久久,| 国产精品女同一区二区软件 | 九九久久精品国产亚洲av麻豆 | 欧美绝顶高潮抽搐喷水| 男女下面进入的视频免费午夜| 91在线精品国自产拍蜜月 | 欧美不卡视频在线免费观看| 岛国视频午夜一区免费看| 国产亚洲av嫩草精品影院| 脱女人内裤的视频| 午夜免费成人在线视频| 国产精品女同一区二区软件 | 97超视频在线观看视频| 熟女人妻精品中文字幕| 亚洲最大成人中文| 色吧在线观看| 别揉我奶头~嗯~啊~动态视频| 一级毛片高清免费大全| 18禁黄网站禁片免费观看直播| а√天堂www在线а√下载| 欧美中文日本在线观看视频| 99热精品在线国产| 国产av麻豆久久久久久久| 国产精品爽爽va在线观看网站| 久久香蕉国产精品| 亚洲中文av在线| 午夜福利免费观看在线| 91av网站免费观看| 亚洲五月天丁香| 成年人黄色毛片网站| 在线观看免费午夜福利视频| 三级毛片av免费| 精品午夜福利视频在线观看一区| 国产综合懂色| 久久热在线av| 亚洲自偷自拍图片 自拍| 亚洲成人免费电影在线观看| 欧美又色又爽又黄视频| 午夜福利18| 亚洲美女视频黄频| 免费电影在线观看免费观看| 天堂√8在线中文| 午夜亚洲福利在线播放| 免费看十八禁软件| 操出白浆在线播放| 成年女人毛片免费观看观看9| 亚洲自偷自拍图片 自拍| 午夜福利欧美成人| 又大又爽又粗| 99久久精品一区二区三区| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 亚洲美女黄片视频| 老鸭窝网址在线观看| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 91久久精品国产一区二区成人 | 色av中文字幕| 国产精品综合久久久久久久免费| 少妇裸体淫交视频免费看高清| 色av中文字幕| 日韩免费av在线播放| 一个人免费在线观看电影 | 九色成人免费人妻av| 精品无人区乱码1区二区| 亚洲专区字幕在线| 99久久精品热视频| 无人区码免费观看不卡| h日本视频在线播放| 波多野结衣高清作品| 热99re8久久精品国产| 国产亚洲精品一区二区www| 精品国产三级普通话版| 成人av在线播放网站| netflix在线观看网站| 午夜福利欧美成人| 操出白浆在线播放| 亚洲专区国产一区二区| 九色成人免费人妻av| 国产单亲对白刺激| 99视频精品全部免费 在线 | 精品福利观看| 国产黄a三级三级三级人| 日本精品一区二区三区蜜桃| 97超级碰碰碰精品色视频在线观看| 老熟妇乱子伦视频在线观看| 午夜福利免费观看在线| 欧美大码av| 97碰自拍视频| 免费人成视频x8x8入口观看| 中文字幕最新亚洲高清| 久久久久亚洲av毛片大全| av视频在线观看入口| 久久午夜综合久久蜜桃| 亚洲欧美日韩无卡精品| 久久久色成人| 不卡av一区二区三区| 亚洲激情在线av| 精品熟女少妇八av免费久了| 麻豆成人av在线观看| 亚洲中文av在线| 欧美极品一区二区三区四区| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 脱女人内裤的视频| 99久久精品热视频| 首页视频小说图片口味搜索| 日韩欧美 国产精品| 亚洲欧美一区二区三区黑人| 欧美最黄视频在线播放免费| 国内揄拍国产精品人妻在线| 老鸭窝网址在线观看| 精品久久蜜臀av无| 男人舔女人的私密视频| 女生性感内裤真人,穿戴方法视频| 男人和女人高潮做爰伦理| 国产精品亚洲美女久久久| 国产精品久久久久久精品电影| 亚洲人成电影免费在线| 亚洲熟女毛片儿| 欧美日韩中文字幕国产精品一区二区三区| 99久久成人亚洲精品观看| 亚洲av成人不卡在线观看播放网| 亚洲五月婷婷丁香| www日本在线高清视频| 深夜精品福利| 精品久久蜜臀av无| 欧美又色又爽又黄视频| 亚洲欧美日韩高清专用| 国产精品一区二区精品视频观看| 亚洲国产欧美人成| 精品久久久久久久久久免费视频| 美女午夜性视频免费| 久久午夜亚洲精品久久| 精品福利观看| 欧美日韩乱码在线| 午夜日韩欧美国产| 国产欧美日韩精品亚洲av| 老司机午夜福利在线观看视频| 亚洲国产高清在线一区二区三| 叶爱在线成人免费视频播放| 99久久精品一区二区三区| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 欧美日韩精品网址| 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 午夜福利在线在线| 精品欧美国产一区二区三| 又黄又粗又硬又大视频| 90打野战视频偷拍视频| 人妻丰满熟妇av一区二区三区| 午夜福利欧美成人| 中文字幕精品亚洲无线码一区| 麻豆成人av在线观看| 俄罗斯特黄特色一大片| 国产伦精品一区二区三区四那| 最新中文字幕久久久久 | 亚洲成人免费电影在线观看| 制服丝袜大香蕉在线| 啦啦啦韩国在线观看视频| 国产一区在线观看成人免费| 精品一区二区三区四区五区乱码| 在线a可以看的网站| 叶爱在线成人免费视频播放| 少妇的逼水好多| 久久99热这里只有精品18| 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 69av精品久久久久久| 国产1区2区3区精品| 久久天堂一区二区三区四区| 欧美中文综合在线视频| 日韩成人在线观看一区二区三区| 女警被强在线播放| 国产99白浆流出| 亚洲黑人精品在线| 又黄又粗又硬又大视频| 听说在线观看完整版免费高清| 精品久久久久久久久久免费视频| 久久精品国产清高在天天线| 日本在线视频免费播放| 亚洲成人中文字幕在线播放| 成人鲁丝片一二三区免费| 午夜福利在线观看免费完整高清在 | 国产精品亚洲美女久久久| 哪里可以看免费的av片| 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 亚洲成av人片免费观看| 在线a可以看的网站| 国产黄色小视频在线观看| 看片在线看免费视频| 一进一出好大好爽视频| 国产精品永久免费网站| 99re在线观看精品视频| 成年女人毛片免费观看观看9| 伊人久久大香线蕉亚洲五| 午夜福利视频1000在线观看| 亚洲精品一卡2卡三卡4卡5卡| 观看美女的网站| 精品国内亚洲2022精品成人| 久久久久久久久久黄片| 国产 一区 欧美 日韩| 亚洲成人中文字幕在线播放| 狂野欧美激情性xxxx| 日本免费一区二区三区高清不卡| 久久九九热精品免费| 又黄又爽又免费观看的视频| 精品国产美女av久久久久小说| 午夜免费激情av| 观看免费一级毛片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲aⅴ乱码一区二区在线播放| 人妻久久中文字幕网| 757午夜福利合集在线观看| 国产一区二区在线观看日韩 | 久久久久久久午夜电影| 免费在线观看亚洲国产| 日韩欧美在线乱码| av欧美777| 母亲3免费完整高清在线观看| 久久久久精品国产欧美久久久| 欧美日韩黄片免| 岛国在线免费视频观看| 特级一级黄色大片| 国产伦人伦偷精品视频| 亚洲无线观看免费| 综合色av麻豆| 国产亚洲精品综合一区在线观看| 国产av不卡久久| xxx96com| 免费av毛片视频| 欧美成人免费av一区二区三区| 神马国产精品三级电影在线观看| x7x7x7水蜜桃| 此物有八面人人有两片| 亚洲人成伊人成综合网2020| 嫩草影视91久久| 成年人黄色毛片网站| 亚洲国产欧洲综合997久久,| 欧美国产日韩亚洲一区| 国产免费av片在线观看野外av| 日本黄色片子视频| 亚洲 欧美 日韩 在线 免费| 最新中文字幕久久久久 | 丁香欧美五月| 日韩av在线大香蕉| 免费看日本二区| 亚洲av五月六月丁香网| 国产精品一及| 高清毛片免费观看视频网站| 丁香六月欧美| 日韩欧美精品v在线| 麻豆av在线久日| 啦啦啦观看免费观看视频高清| 国产野战对白在线观看| 欧美在线一区亚洲| 亚洲av成人精品一区久久| 亚洲专区中文字幕在线| 亚洲精品中文字幕一二三四区| 亚洲av电影不卡..在线观看| 精品国产超薄肉色丝袜足j| 一个人免费在线观看电影 | 亚洲,欧美精品.| 欧美色欧美亚洲另类二区| 国产亚洲精品久久久久久毛片| 亚洲精华国产精华精| 亚洲色图av天堂| 国产精品久久久久久人妻精品电影| 国产免费男女视频| 亚洲av熟女| 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 一个人看视频在线观看www免费 | 韩国av一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 亚洲中文av在线| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 一区福利在线观看| 久久久色成人| 亚洲专区国产一区二区| 免费看美女性在线毛片视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩高清专用| 国产亚洲精品一区二区www| 国产精品免费一区二区三区在线| 两人在一起打扑克的视频| 国产黄片美女视频| 日韩 欧美 亚洲 中文字幕| 1024手机看黄色片| 白带黄色成豆腐渣| 欧美性猛交╳xxx乱大交人| 精品一区二区三区av网在线观看| 久久99热这里只有精品18| 欧美中文日本在线观看视频| 两个人的视频大全免费| 一个人观看的视频www高清免费观看 | 男人和女人高潮做爰伦理| 国内精品一区二区在线观看| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 人人妻,人人澡人人爽秒播| 免费观看的影片在线观看| 日韩国内少妇激情av| 国产午夜精品久久久久久| 国产亚洲欧美98| 手机成人av网站| 女生性感内裤真人,穿戴方法视频| 久久久国产成人精品二区| 黄色成人免费大全| www.999成人在线观看| 欧美色视频一区免费| 午夜日韩欧美国产| 亚洲国产看品久久| 免费观看的影片在线观看| 成人欧美大片| 巨乳人妻的诱惑在线观看| 免费看美女性在线毛片视频| 成人亚洲精品av一区二区| 中文亚洲av片在线观看爽| 欧美一区二区国产精品久久精品| 国产成人aa在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 午夜免费观看网址| 一边摸一边抽搐一进一小说| 国产成人精品久久二区二区免费| www日本黄色视频网| 欧美成狂野欧美在线观看| 成人精品一区二区免费| 日韩精品青青久久久久久| 亚洲欧美日韩卡通动漫| 中文字幕最新亚洲高清| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品久久国产高清桃花| 91在线观看av| avwww免费| 久久精品91无色码中文字幕| 国产激情欧美一区二区| 日韩成人在线观看一区二区三区| 国产淫片久久久久久久久 | 成人性生交大片免费视频hd| 日韩国内少妇激情av| 麻豆国产97在线/欧美| 色av中文字幕| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 欧美日本视频| 波多野结衣高清作品| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 后天国语完整版免费观看| 成年版毛片免费区| 亚洲九九香蕉| 免费观看精品视频网站| 久久99热这里只有精品18| 欧美中文日本在线观看视频| 日韩人妻高清精品专区| 久久久久国内视频| 日韩国内少妇激情av| 精品久久久久久久毛片微露脸| 欧美乱码精品一区二区三区| 欧美黑人巨大hd| 99视频精品全部免费 在线 | 国产真人三级小视频在线观看| 国产成人aa在线观看| 99国产极品粉嫩在线观看| 欧美中文日本在线观看视频| 一进一出好大好爽视频| 99久久精品一区二区三区| 我要搜黄色片| 国产精品一区二区精品视频观看| 毛片女人毛片| 精品人妻1区二区| 亚洲av电影不卡..在线观看| 欧美黑人欧美精品刺激| 久久久久久久久中文| 亚洲七黄色美女视频| 在线观看免费视频日本深夜| 女警被强在线播放| 成人三级黄色视频| 中文字幕最新亚洲高清| 亚洲无线在线观看| 免费看光身美女| 99riav亚洲国产免费| 全区人妻精品视频| 非洲黑人性xxxx精品又粗又长| 巨乳人妻的诱惑在线观看| 久久午夜综合久久蜜桃| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 午夜精品在线福利| 亚洲真实伦在线观看| 成人三级做爰电影| 亚洲国产欧洲综合997久久,| 亚洲一区二区三区不卡视频| 久久久久国内视频| 亚洲av成人不卡在线观看播放网| 国产精品久久电影中文字幕| 老汉色av国产亚洲站长工具| 老司机深夜福利视频在线观看| 亚洲精品久久国产高清桃花| 国产三级中文精品| 亚洲男人的天堂狠狠| www.999成人在线观看| 欧美乱码精品一区二区三区| 一边摸一边抽搐一进一小说| 欧美+亚洲+日韩+国产| 色av中文字幕| 国产av不卡久久| 免费在线观看视频国产中文字幕亚洲| 在线观看午夜福利视频| 精品电影一区二区在线| 亚洲avbb在线观看| 日韩三级视频一区二区三区| 国产精品乱码一区二三区的特点| 国产亚洲精品久久久com| 精品人妻1区二区| 色尼玛亚洲综合影院| 亚洲国产欧美人成| 手机成人av网站| 精品一区二区三区视频在线 | 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 非洲黑人性xxxx精品又粗又长| 日本 av在线| 午夜精品一区二区三区免费看| 免费大片18禁| 动漫黄色视频在线观看| 性欧美人与动物交配| 国产91精品成人一区二区三区| 99热精品在线国产| АⅤ资源中文在线天堂| 免费一级毛片在线播放高清视频| 成年女人永久免费观看视频| 成人精品一区二区免费| 欧美日韩中文字幕国产精品一区二区三区| 脱女人内裤的视频| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 草草在线视频免费看| 欧美中文综合在线视频| 久久99热这里只有精品18| 99久久成人亚洲精品观看| 国产精品一及| 亚洲av成人精品一区久久| 天堂√8在线中文| 国产激情欧美一区二区| 欧美一区二区国产精品久久精品| 欧美高清成人免费视频www| 一个人免费在线观看的高清视频| 99国产精品99久久久久| 久久久精品欧美日韩精品| 成人精品一区二区免费| 成在线人永久免费视频| 99国产精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产精品98久久久久久宅男小说| 午夜福利在线观看吧| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 999久久久国产精品视频| 女警被强在线播放| 99久久精品热视频| 黑人操中国人逼视频| 十八禁人妻一区二区| 欧美又色又爽又黄视频| 最新美女视频免费是黄的| 在线观看美女被高潮喷水网站 | 国产伦精品一区二区三区四那| 91久久精品国产一区二区成人 | 欧美在线黄色| 国产精品野战在线观看| 午夜福利在线观看吧| 日本五十路高清| xxx96com| av视频在线观看入口| 国产视频一区二区在线看| 久久久色成人| 波多野结衣高清无吗| 97超级碰碰碰精品色视频在线观看| 18禁黄网站禁片免费观看直播| 亚洲avbb在线观看| 精品国产美女av久久久久小说| www.熟女人妻精品国产| 天堂av国产一区二区熟女人妻| 久久久久久久久久黄片| 国产在线精品亚洲第一网站| 淫秽高清视频在线观看| 岛国在线观看网站| 欧美xxxx黑人xx丫x性爽| 午夜福利在线观看免费完整高清在 | 成年女人永久免费观看视频| 无限看片的www在线观看| 99国产综合亚洲精品| 国产精品99久久99久久久不卡| 亚洲五月婷婷丁香| 日本免费一区二区三区高清不卡| 成人鲁丝片一二三区免费| 午夜福利欧美成人| 久久久久精品国产欧美久久久| 日本 av在线| 99久久成人亚洲精品观看| 男女做爰动态图高潮gif福利片| 精品久久久久久成人av| 男女做爰动态图高潮gif福利片| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区久久| 中文字幕av在线有码专区| 国产精品女同一区二区软件 | 男人舔奶头视频| 亚洲第一欧美日韩一区二区三区| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 哪里可以看免费的av片| 欧美日韩国产亚洲二区| 日本 欧美在线| 我的老师免费观看完整版| 成年免费大片在线观看| 国产又色又爽无遮挡免费看| 国产人伦9x9x在线观看| 国产一区二区在线av高清观看| 好看av亚洲va欧美ⅴa在| 色精品久久人妻99蜜桃| 一进一出抽搐gif免费好疼| av片东京热男人的天堂| 黄色女人牲交| 日日摸夜夜添夜夜添小说| 免费看美女性在线毛片视频|