周新改
在小學(xué)數(shù)學(xué)教學(xué)中有許多公認(rèn)的學(xué)習(xí)難點(diǎn),可以稱作是“經(jīng)典”難點(diǎn)。從大量的公開(kāi)課或常規(guī)課來(lái)看,執(zhí)教者要么淡化處理,要么“告知”學(xué)生。這樣做不僅窄化了教學(xué)空間、堵塞了學(xué)生思考的通道,而且會(huì)挫傷學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,不利于學(xué)生思維的發(fā)展,讓學(xué)生潛意識(shí)地認(rèn)為數(shù)學(xué)是無(wú)根無(wú)源的、數(shù)學(xué)學(xué)習(xí)是不講道理的、數(shù)學(xué)學(xué)習(xí)是死記硬背的。本文就結(jié)合筆者個(gè)人的教學(xué)實(shí)踐淺談自己引導(dǎo)學(xué)生追溯知識(shí)的本源,幫助學(xué)生化解學(xué)習(xí)難點(diǎn)的一些做法及體會(huì)。
一、對(duì)接生活,追根溯源
我們知道,二年級(jí)學(xué)生在《初步認(rèn)識(shí)角》一課的學(xué)習(xí)中很難理解“角的大小與邊的長(zhǎng)短無(wú)關(guān)”的道理。不少老師借助這樣的演示幫助學(xué)生理解:把老師的三角尺教具和學(xué)生的三角尺學(xué)具中的大小相同的角重合,力圖讓學(xué)生看到“老師三角尺中的一個(gè)角和學(xué)生三角尺中的一個(gè)角完全重合,而老師三角尺中的這個(gè)角兩邊比學(xué)生三角尺中的那個(gè)角兩邊要長(zhǎng),不就說(shuō)明角的大小與邊的長(zhǎng)短無(wú)關(guān)嗎?從課堂反饋來(lái)看,學(xué)生仍是滿臉茫然。殊不知,這樣的演示讓學(xué)生看到的是“面”的比較,更沒(méi)有看到“完全重合”,反而造成了學(xué)生對(duì)“角”與“面”的認(rèn)知混淆。
也有很多老師只引導(dǎo)學(xué)生利用“活動(dòng)角”直觀感受角的大小是與邊的張合有關(guān),卻不引導(dǎo)學(xué)生體會(huì)角的大小與邊的長(zhǎng)短無(wú)關(guān)。
學(xué)生面對(duì)畫在紙面上的“靜態(tài)角”,難以擺脫其邊的長(zhǎng)短以及表面上的大小所帶來(lái)的非本質(zhì)屬性的干擾,排除這個(gè)負(fù)面干擾,仍要回到“角”是怎樣抽象出來(lái)的源頭去。
請(qǐng)看我教學(xué)這部分的片段。
師(指三角板中的一個(gè)角):誰(shuí)能把這個(gè)角畫在黑板上?
學(xué)生到黑板上利用三角板畫出老師指的角。
師:我也把這個(gè)角畫出來(lái)。
師仿照學(xué)生的畫法也畫出了這個(gè)角(但和學(xué)生所畫的角的邊長(zhǎng)度不同)。
問(wèn)學(xué)生:這兩個(gè)角,哪個(gè)大,哪個(gè)小?
因?yàn)槔蠋熀蛯W(xué)生畫的是三角板的同一個(gè)角,有了“畫同一個(gè)角”做載體,課堂上這樣的聲音多了:畫的是同一個(gè)角,所以這兩個(gè)角同樣大。不僅有結(jié)論,而且有道理。
我不急于說(shuō)出學(xué)生心目中想要的答案。
轉(zhuǎn)身在黑板上先寫了一個(gè)小一些的“3”,在它的旁邊又寫了一個(gè)大大的“3”。
問(wèn)學(xué)生:這兩個(gè)寫得大小不同的“3”,哪個(gè)“3”大一些?
生齊答:一樣大。
追問(wèn):咦?明明一個(gè)“3”寫得那么大,另一個(gè)“3”寫得這么小,怎么能相等呢?
生:雖然寫得大小不同,但都表示3個(gè)一,所以相等。
順著學(xué)生的回答,我在兩個(gè)“3”之間寫上“=”。
至此,學(xué)生感受到“大”和“小”又有了不尋常的意義。
師:數(shù)的大小是指這個(gè)數(shù)所包含的個(gè)數(shù)的大小,與寫得大小無(wú)關(guān),那角的大小又是指角哪里的大???與角的哪兒無(wú)關(guān)?
學(xué)生紛紛發(fā)表自己的見(jiàn)解,還迫不及待地邊打手勢(shì)邊說(shuō):角的大小是指角的兩邊張開(kāi)的大小,與邊的長(zhǎng)短無(wú)關(guān)。
看來(lái),學(xué)生對(duì)于“大”和“小”的認(rèn)識(shí)正在變得全面而深刻。
杜威說(shuō):“教育就是經(jīng)驗(yàn)的改造和重組?!眱和纳罱?jīng)驗(yàn)和認(rèn)知缺陷經(jīng)常會(huì)干擾對(duì)數(shù)學(xué)知識(shí)本質(zhì)屬性的理解。立足兒童的心理特點(diǎn),基于數(shù)學(xué)的學(xué)科特征,設(shè)計(jì)相應(yīng)的活動(dòng),不僅對(duì)知識(shí)進(jìn)行抽象,還要對(duì)知識(shí)進(jìn)行還原,讓學(xué)生回到知識(shí)產(chǎn)生的源頭,經(jīng)歷知識(shí)產(chǎn)生的過(guò)程,由直觀感知逐步走向數(shù)學(xué)抽象,不斷修正錯(cuò)誤的認(rèn)知,感悟數(shù)學(xué)概念的本質(zhì)。
二、聯(lián)系對(duì)比,追根溯源
蘇教版五年級(jí)下冊(cè)第30頁(yè)《因數(shù)與倍數(shù)》這一單元開(kāi)始有一處注釋:
*研究因數(shù)與倍數(shù)時(shí),所說(shuō)的數(shù)一般指不是0的自然數(shù)。
教師們都知道這是一個(gè)數(shù)學(xué)“規(guī)定”,卻不研究規(guī)定背后的道理,教學(xué)中只是補(bǔ)充告訴學(xué)生,而且“以書為證”。那么學(xué)生對(duì)于這樣“規(guī)定”的科學(xué)性與合理性就無(wú)從認(rèn)識(shí)和理解,讓學(xué)生潛意識(shí)里以為數(shù)學(xué)是不講理的,這不是數(shù)學(xué)應(yīng)有的面貌。
下面,我提供一個(gè)版本,大家可以討論,是否可以幫助學(xué)生理解這個(gè)規(guī)定?
學(xué)生在學(xué)習(xí)了“因數(shù)和倍數(shù)”的概念后。
師:同學(xué)們,你們自己能獨(dú)立寫出一道算式并說(shuō)出算式中的數(shù)具有怎樣的因數(shù)與倍數(shù)關(guān)系嗎?
生交流,說(shuō)的也都是各部分是整數(shù)的乘法或除法算式。學(xué)生對(duì)于概念意義的表面模仿還是很強(qiáng)的。
師:看來(lái),因數(shù)和倍數(shù)這兩個(gè)概念是建立在我們學(xué)習(xí)過(guò)的什么運(yùn)算的基礎(chǔ)上?
生:乘法或除法。
師:你能用一句話概括乘法算式中三個(gè)數(shù)之間具有怎樣的因數(shù)和倍數(shù)關(guān)系嗎?
生:在乘法算式中,兩個(gè)乘數(shù)都是積的因數(shù),積是這兩個(gè)乘數(shù)的倍數(shù)。
師:除法算式中呢?
生:在除法算式中,除數(shù)和商都是被除數(shù)的因數(shù),被除數(shù)是商和除數(shù)的倍數(shù)。
師:我寫兩個(gè)算式,請(qǐng)你們來(lái)說(shuō)說(shuō)這兩個(gè)算式中的各個(gè)數(shù)具有怎樣的因數(shù)和倍數(shù)關(guān)系。
板書:2×5=10,10×0.2=2
對(duì)于第一個(gè)算式,學(xué)生都特別容易回答了;對(duì)于第二個(gè)算式,有受思維定勢(shì)干擾的學(xué)生立刻按照形式說(shuō):10和0.2是2的因數(shù),2是10和0.2的倍數(shù)。(說(shuō)完,自己也吐了吐舌頭)
馬上有學(xué)生反對(duì):怎么一會(huì)兒10是2的倍數(shù),一會(huì)兒2是10的倍數(shù)?
師故作驚訝:是呀!怎么會(huì)有這樣的數(shù)學(xué)呢?不是矛盾嗎?
學(xué)生們議論開(kāi)來(lái),有的說(shuō)不可能,有的自言自語(yǔ):怎么回事呢?也有看過(guò)書中注釋的同學(xué)恍然大悟:怪不得呢!
我請(qǐng)同學(xué)們發(fā)表自己的想法、看法。
生1:這樣不是亂套了嗎?
生2(舉著課本興奮地):書中已經(jīng)規(guī)定了“研究因數(shù)和倍數(shù)時(shí),所說(shuō)的數(shù)一般是指不是0的自然數(shù)?!?/p>
生3:就好像“0不能作為除數(shù)”一樣,是為了不產(chǎn)生矛盾。
生4:我來(lái)補(bǔ)充,只能說(shuō)2是10的0.2倍,但不能說(shuō)2是10的倍數(shù),因?yàn)樗€沒(méi)到10的1倍。
師:是呀!為了不產(chǎn)生矛盾,便于研究,所以才有了“研究因數(shù)和倍數(shù)時(shí),所說(shuō)的數(shù)一般指不是0的自然數(shù)”的規(guī)定。
學(xué)生找到了這個(gè)“規(guī)定”的“源頭”,對(duì)概念的理解就會(huì)更加深刻。
其實(shí),任何數(shù)學(xué)規(guī)定產(chǎn)生的背后都有一定的原因和道理、一定的合理性與必要性,作為教師,應(yīng)努力引導(dǎo)學(xué)生去探索、理解、體會(huì)“規(guī)定”產(chǎn)生的過(guò)程,讓學(xué)生感受到數(shù)學(xué)知識(shí)內(nèi)在的嚴(yán)謹(jǐn)性,感受到相關(guān)“規(guī)定”背后的數(shù)學(xué)道理,從而形成更加合理的認(rèn)知結(jié)構(gòu),獲得更多有價(jià)值的感悟。
三、經(jīng)驗(yàn)倒轉(zhuǎn),追根溯源
有經(jīng)驗(yàn)的教師都知道,教學(xué)《分?jǐn)?shù)的意義》最難突破的是學(xué)生對(duì)單位“1”意義的構(gòu)建。許多教師是在學(xué)生認(rèn)識(shí)分?jǐn)?shù)的基礎(chǔ)上,總結(jié)性地、講述式地告訴學(xué)生:像圖中的一個(gè)物體、一個(gè)圖形、一個(gè)計(jì)量單位或由許多物體組成的一個(gè)整體,都可以用自然數(shù)1來(lái)表示,通常叫作單位“1”。繼而再讓學(xué)生舉例說(shuō)說(shuō)單位“1”還可以是什么。學(xué)生抽象單位“1”的思維過(guò)程被教師的一句話代替了,學(xué)生處于被動(dòng)接受知識(shí)的位置,單位“1”好像是從天而降的“怪物”!試想:這樣缺乏學(xué)生主動(dòng)思考的學(xué)習(xí),還怎么會(huì)有經(jīng)歷?怎么會(huì)有體驗(yàn)?怎么形成經(jīng)驗(yàn)?
接下來(lái)就說(shuō)說(shuō)我是怎樣引導(dǎo)學(xué)生抽象出單位“1”的。
如下圖,要求學(xué)生自主完成例1中的填空,集體交流說(shuō)出每個(gè)分?jǐn)?shù)的意義。
我利用學(xué)生已有的分?jǐn)?shù)認(rèn)知經(jīng)驗(yàn),引導(dǎo)學(xué)生再回來(lái)逐一深入研究每一幅圖。
師:把一塊餅平均分成4份,其中一份用表示,其中的2份、3份、4份各怎樣表示?為什么?
生1:1份是,2份是,3份是,4份是,有幾份就是幾個(gè)。
生2:我覺(jué)得4份是,也就是1。
師:大家覺(jué)得呢?
學(xué)生進(jìn)行充分地交流討論得出:4份合起來(lái)不就是原來(lái)的一塊餅嗎?就可以用“1”來(lái)表示。
第一幅圖突破了,第二、三幅圖同理。并明確:1塊餅、1個(gè)長(zhǎng)方形、1個(gè)長(zhǎng)度單位都可以用“1”來(lái)表示。
最后一幅圖稍遇障礙。
師:這6個(gè)圓片該用哪個(gè)數(shù)來(lái)表示呢?
生1:用6來(lái)表示。
生2:(疑惑地)我感覺(jué)還應(yīng)該用1來(lái)表示吧?
真好!出現(xiàn)了不同的觀點(diǎn)。
師:還是大家一起討論,但要說(shuō)出用這個(gè)數(shù)來(lái)表示的道理。
不一會(huì)兒,意見(jiàn)就統(tǒng)一了,原來(lái)認(rèn)為用6來(lái)表示的同學(xué)說(shuō):我忘記了這里的2個(gè)圓片是用來(lái)表示的了,3個(gè)合起來(lái)是? ?,也就是1。
師:看來(lái)1的意義真廣呀!不僅可以表示1個(gè)物體、1個(gè)長(zhǎng)方形、1個(gè)長(zhǎng)度單位,還可以表示——
生(齊答):6個(gè)物體組成的一個(gè)整體。
師:聯(lián)想一年級(jí)時(shí)學(xué)習(xí)的1,這幾幅圖里的“1”又有什么不同?
生:一年級(jí)學(xué)習(xí)的1就代表一個(gè)物體,而這里的1還可以表示很多物體。
師:用1來(lái)表示很多物體時(shí),是把很多個(gè)物體組成一個(gè)——
生(齊答):一個(gè)整體。
師:你還能舉例說(shuō)說(shuō)用1來(lái)表示許多物體組成的一個(gè)整體的事情嗎?
學(xué)生紛紛舉例,有一堆蘋果、一堆沙、一條路、一個(gè)班的學(xué)生、一個(gè)學(xué)校的學(xué)生、一個(gè)城市的人口——都可以看作1。
單位“1”的意義呼之欲出。
師:此時(shí)的“1”非彼時(shí)的“1”,意義更廣泛,數(shù)學(xué)上叫單位“1”。
單位“1”的意義已經(jīng)在學(xué)生的思維里生長(zhǎng)出來(lái),分?jǐn)?shù)意義的形成還有困難嗎?喚醒學(xué)生已有的認(rèn)知分?jǐn)?shù)經(jīng)驗(yàn),引導(dǎo)學(xué)生的思維倒轉(zhuǎn)到知識(shí)發(fā)生的“源頭”,深深體會(huì)到平均分是單位“1”,平均分后得到的分?jǐn)?shù)都是單位“1”的一部分?!?”不斷累加得到整數(shù),“1”平均分后得到分?jǐn)?shù),“1”是整數(shù)的根基,也是分?jǐn)?shù)產(chǎn)生的根基。有了這樣的理解和認(rèn)識(shí),就能很好地為學(xué)生后續(xù)的學(xué)習(xí)賦能。
學(xué)生學(xué)習(xí)任何知識(shí)都應(yīng)該是自然的、自覺(jué)的,面對(duì)學(xué)生學(xué)習(xí)中的難點(diǎn),要聯(lián)系所學(xué)知識(shí)的“前世今生”,結(jié)合學(xué)生的認(rèn)知規(guī)律,思考我們的教學(xué)路徑,把數(shù)學(xué)學(xué)習(xí)從哪里來(lái)、到哪里去,梳理清晰明白。從學(xué)生的已知出發(fā),引導(dǎo)學(xué)生到未知的領(lǐng)域探索。