• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      NPC結(jié)構(gòu)型SVG的模型預測電流控制策略

      2022-04-29 03:49:08王小軍段生強陳文魁阿依蘇魯艾尼瓦爾
      寧夏電力 2022年1期
      關鍵詞:結(jié)構(gòu)型延時控制策略

      王小軍,段生強,陳文魁,阿依蘇魯·艾尼瓦爾

      (國網(wǎng)新疆電力有限公司克州供電公司,新疆克州 844000)

      0 引言

      中點鉗位型(neutral point clamped,NPC)的靜止無功發(fā)生器(static var generator,SVG)的控制策略主要針對電流跟蹤精度問題展開。經(jīng)典的比例積分(proportional-integral,PI)控制方法對直流信號的跟蹤精度較高,但對SVG 輸出的交流補償信號無法實現(xiàn)無靜差跟蹤,存在較大的穩(wěn)態(tài)誤差[1]。PR 控制能夠做到正弦量的無穩(wěn)態(tài)誤差跟蹤,但其參數(shù)整定較為麻煩,很難確定出合適的參數(shù)[2]。基于模型的預測控制算法(model predictive control,MPC)具有優(yōu)異的動態(tài)性能和良好的系統(tǒng)魯棒性[3-4],其中無差拍控制可以做到快速的電流跟蹤,并且數(shù)字實現(xiàn)過程簡單[5-6],從而受到廣泛研究。文獻[7]提出了將模型預測控制應用于靜止無功補償器(static var compensator,SVC) 與靜止同步補償器(static synchronous compensator,STATCOM)的協(xié)調(diào)控制器設計,替代了傳統(tǒng)PI環(huán)節(jié),避免了PI控制參數(shù)難以整定和全局優(yōu)化困難等問題,并研究了兩者之間的交互影響問題,但沒有對SVC 與STATCOM 設備的各自特性進行分析。文獻[8]將實際控制系統(tǒng)中存在的計算、采樣耗時和控制延遲等考慮在內(nèi),并針對性地把補償一拍延遲的方法加入到MPC 算法中;但其具體實現(xiàn)過程嚴重依靠對換狀態(tài)量的提前預測,并未對超前預測方法做出詳細闡述。

      本文針對NPC 結(jié)構(gòu)型的SVG 提出了一種模型預測電流控制策略,該策略能夠?qū)崿F(xiàn)良好的電流跟蹤性能??紤]到預測模型實際為一個開環(huán)模型,其電流跟蹤精度不理想,故數(shù)值電流跟蹤誤差評估函數(shù)進行反饋校正并構(gòu)成了閉環(huán)優(yōu)化。考慮到控制延時會影響系統(tǒng)控制性能,將兩步預測策略應用到MPC 算法中,消除了控制延時,降低了電流諧波含量。最后對所提方法進行了仿真驗證與分析。

      1 NPC結(jié)構(gòu)型SVG系統(tǒng)模型

      圖1為NPC 結(jié)構(gòu)型的三相三線制三電平SVG的主電路拓撲結(jié)構(gòu),圖中:ea,eb,ec分別為三相電網(wǎng)電壓;Isa,Isb,Isc分別為三相電網(wǎng)電流;ILa,ILb,ILc分別為三相負載電流;udcu,udcd分別為電容C1,C2地端電壓;Ica,Icb,Icc為SVG輸出的三相電流;Idcu1,Idcu2分別為流經(jīng)電容C1,C2中的電流;I0為中性點電流;L為連接電抗;SVG各相輸出端相對于電網(wǎng)中性點N的輸出電壓為uxN(x=a,b,c,)。

      圖1 NPC結(jié)構(gòu)型SVG主電路結(jié)構(gòu)

      將SVG的a,b,c,橋臂的開關函數(shù)確定為

      式中:Sx1,Sx2,Sx3,Sx4—各相橋臂的功率開關器件;x=a,b,c,將Sx=1 定義為P狀態(tài),Sx=0 定義為0狀態(tài),Sx=-1定義為N狀態(tài)。

      各相橋臂參考中性點O的輸出電壓可表示為

      式中:udc=udcu1+udcu2,為直流側(cè)母線總電壓。

      根據(jù)圖1 中所給各相參數(shù),在不計各個支路阻抗的前提下,根據(jù)基爾霍夫電壓定律可得NPC結(jié)構(gòu)型SVG在abc坐標系下的數(shù)學模型為

      式中:RL—連接電抗等效電阻。

      由圖1可知:

      式中:uoN—SVG中性點O和電網(wǎng)中性點N的電壓差。

      由于三相三線制SVG 中不含零序分量,故SVG的各相橋臂兩端電壓之和為0:

      將式(4)與式(5)聯(lián)立后可得:

      結(jié)合式(2)至式(5)可得SVG 輸出電壓由開關函數(shù)形式表示為

      由上文中所示的abc坐標下的SVG 數(shù)學模型可知,SVG中的各項參數(shù)之間具有非線性強耦合的關系,為了便于分析研究,需將SVG的數(shù)學模型轉(zhuǎn)至αβ靜止坐標系中,對式(3)進行Tabc-aβ矩陣轉(zhuǎn)換,可得式(8)所示的αβ坐標系下的SVG數(shù)學模型。

      同理將式(7)變換至αβ坐標系下:

      2 NPC 結(jié)構(gòu)型SVG 模型預測電流控制

      2.1 預測模型

      MPC 控制核心思想就是根據(jù)預測模型,綜合考量歷史和現(xiàn)在各參數(shù)的狀態(tài)量和控制量,預測未來有限時域內(nèi)的系統(tǒng)的狀態(tài)軌跡,從而在每個控制周期中計算出該時域內(nèi)的開環(huán)最優(yōu)控制。MPC 算法是一種新型的計算機控制算法,故NPC結(jié)構(gòu)型SVG 的MPC 控制是基于系統(tǒng)的離散時間模型建立的。SVG 在采樣周期Ts足夠小時,對式(8)中的微分項使用前項差分法處理后可得:

      式中:Iaβ(k+1)—k+1時刻的SVG輸出電流預測值;

      Iaβ(k)—k時刻由采樣所得SVG 實際輸出電流值。

      把式(11)和式(8)聯(lián)立后可得SVG 電流預測模型為

      式中:ea(k),eβ(k)—時刻電網(wǎng)電壓的實測值;

      ua(k),uβ(k)—k-1 時刻對k時刻SVG 功率橋路輸出電壓的預測值。

      k+1 時刻的參考電流I*(k+1)使用拉格朗日插值法做出預測,拉格朗日n階預測公式為

      綜合考慮預測值精準度和計算耗時,選用二階拉格朗日法則I*(k+1)為

      2.2 構(gòu)建性能指標評估函數(shù)

      MPC 控制策略通過設計性能指標評估函數(shù)來計算出全部開關狀態(tài)下被控裝置或系統(tǒng)在將來有限時域的軌跡或行為,完成評估后選擇最佳的開關量作用于被控目標上。

      SVG 的MPC 電流控制策略下的主要控制目標應為電流跟蹤精度,本節(jié)不僅將電流跟蹤精度納入到評估函數(shù)中,同時將中點電位平衡也考慮進去,從這兩個方面構(gòu)建評估函數(shù)G。

      針對并網(wǎng)電流MPC 控制,通常使用以下三種形式函數(shù)來計算電流跟蹤誤差。

      式(16)中絕對誤差和平方誤差形式的計算函數(shù)在控制目標僅有電流跟蹤精度時,對SVG 的控制性能相差不大,但同時設計多個控制目標時,第一種形式的誤差計算函數(shù)難以區(qū)分出主次要目標控制的重要程度,而選用平方誤差形式的函數(shù)則能夠較易增大主要控制目標的權重。積分誤差形式的計算函數(shù)能夠?qū)崿F(xiàn)很高的電流誤差控制精度,但是采樣次數(shù)和計算量大大增加,這無疑增大了計算機處理器的工作負擔,增大了控制延時效應。對于SVG 的控制來說,不僅要實現(xiàn)多目標協(xié)調(diào)控制,還要控制延時在可接受的范圍內(nèi)。

      綜合考量之下,本文選取第二種形式的函數(shù)作為電流跟蹤精度價值函數(shù),其表達式如下:

      SVG 功率橋路直流側(cè)兩個電容之間的電位平衡與否直接影響了輸出電壓電流的波形質(zhì)量,所以在評估函數(shù)G 中必須將中點電位平衡控制gbal考慮在內(nèi),表達式形式如下:

      實現(xiàn)對兩個目標協(xié)調(diào)控制的評估函數(shù)G形式如下:

      式中:gI—電流跟蹤精度控制;

      gbal—中點電位平衡控制;

      λ1、λbal—相對應的權重系數(shù),在不同情況下可調(diào)整來實現(xiàn)對控制目標的重要程度的調(diào)整。

      2.3 控制延時補償

      在SVG 的MPC 控制系統(tǒng)中,檢測模塊檢測各相參數(shù)值,處理模塊計算各個所需參數(shù)都需要消耗一定的時間,這就造成了控制過程中的延時問題,如不進行解決,將會對系統(tǒng)的控制性能產(chǎn)生很大的影響,使SVG難以實現(xiàn)期望的補償目標。因此,本文采用兩步預測方法對控制延時進行消除,具體原理如圖2 所示。

      圖2 SVG模型預測電流控制延時補償原理

      第一步預測:kTs周期中施加在控制器上的開關狀態(tài)量是由(k-1)Ts周期內(nèi)計算得出的,在kTs周期起始時刻,把計算所需相關參數(shù)與kTs內(nèi)的開關狀態(tài)量經(jīng)過式(13)預測模型運算后,得出(k+1)Ts周期起始時刻的SVG 輸出電流預測值Ik+1。

      第二步預測:在上述步驟的基礎上,將Ik+1和即將尋優(yōu)的開關狀態(tài)量等參數(shù)在經(jīng)由式(19)中的預測模型計算出所有開關狀態(tài)對應的(k+2)Ts周期起始時刻的SVG輸出電流預測值Ik+2,接著將所有的Ik+2代入評估函數(shù)G中選出誤差最小時的Ik+2相對應的開關狀態(tài)量在(k+1)Ts時刻施加到控制器上,消除系統(tǒng)控制延時。

      式中:ua(k+1),uβ(k+1)—未尋優(yōu)的全部開關狀態(tài)對應SVG輸出電壓;

      ea(k+1),eβ(k+1)—eaβ由預測模型計算出的k+1時刻的預測值。

      2.4 整體控制策略

      MPC控制算法既可應用在三相靜止坐標系中,也可應用在坐標系αβ和dq坐標系中,dq坐標系中各參數(shù)量之間存在強耦合關系,使控制策略的復雜度顯著增大,因此選擇在αβ坐標系下實現(xiàn)NPC結(jié)構(gòu)型SVG的MPC控制策略,其控制如圖3所示。

      圖3 NPC結(jié)構(gòu)型SVG模型預測電流控制

      基本實現(xiàn)步驟如下:

      對并網(wǎng)電流電壓進行采樣,得到離散化的電壓e(k)、電流I(k)。根據(jù)加入延時補償?shù)念A測模型得到預測電流I(k+1)。將參考電流I*(k+1)、預測電流i(k+1)、k-1個控制周期的開關狀態(tài)S(k-1)以及相對應的SVG輸出電壓uo(k)經(jīng)評估函數(shù)G 計算后,得出G 值最小時對應的開關狀態(tài)Sn(k)。將最優(yōu)的Sn(k)作用于SVG 功率橋路,輸出補償電流于電網(wǎng)。

      3 仿真驗證與分析

      在MATLAB/SIMULINK 仿真環(huán)境下搭建了NPC 結(jié)構(gòu)型SVG 的仿真模型,以此來驗證分析MPC 控制策略下的NPC 結(jié)構(gòu)型SVG 的控制與補償性能。模型的具體參數(shù)如表1所示。

      表1 系統(tǒng)仿真參數(shù)

      仿真中設置兩個特性不同的負載,以驗證MPC控制策略下的SVG對不同特性的無功補償效果。

      將負載1 在仿真開始時接入系統(tǒng),負載2 在0.1 s 時接入系統(tǒng)。以A 相電壓電流為例,SVG 接入系統(tǒng)前后電壓電流波形如圖4、圖5所示。

      圖4 補償前A相電壓電流

      圖5 補償后A相電壓電流

      圖4為SVG 未接入系統(tǒng)時的A 相電壓電流波形。從圖中可以看出,補償前由于負載中存在非純阻性負載,電流明顯滯后于電壓,系統(tǒng)功率因數(shù)較低。圖5 為接入SVG 裝置后的電壓電流波形,在SVG 進行補償后,電流迅速恢復到與電壓同相位。在0.1 s 系統(tǒng)發(fā)生負載投切的情況下,補償后的電流波形能快速回復到穩(wěn)態(tài)值,仿真結(jié)果表明了此控制策略下的SVG 具有良好的補償性能和動態(tài)響應能力。

      為了更加直觀地觀察SVG 補償效果,在系統(tǒng)中只接入負載2,圖6為補償前后的系統(tǒng)功率因數(shù)。

      圖6 補償前后系統(tǒng)功率因數(shù)

      由于系統(tǒng)中存在感性負載,在SVG 未入系統(tǒng)時,功率因數(shù)明顯較低,只在0.95 以下,而接入SVG 以后,系統(tǒng)功率因數(shù)基本上穩(wěn)定在1,表明此策略下的SVG具有良好的無功補償能力。

      為了體現(xiàn)出控制延時補償對SVG 補償能力的改善,保持仿真參數(shù)不變,在MPC 算法中加入10 μs 的延時,此時經(jīng)SVG 補償后的A 相電流快速傅里葉變換(fast Fourier transform,F(xiàn)FT)分析如圖7所示。

      圖7 加入延時補償后A相網(wǎng)側(cè)電流FFT分析

      從圖7 可以看出,在MPC 算法中加入延時以模擬實際的數(shù)字控制系統(tǒng)中采樣、計算、控制的耗時,此時SVG 的補償效果明顯變差,電網(wǎng)電流的總諧波畸變(total harmonic distortion,THD)為6.60%。圖8 為加入延時補償環(huán)節(jié)的MPC 算法控制下的SVG補償后的電網(wǎng)A相電流的FFT分析。

      圖8 延時補償后A相網(wǎng)側(cè)電流分析

      由圖8可以看出,在加入延時補償后,SVG 的輸出電流對指令電流的跟蹤精度得到了很大的改善,A 相電流的THD 從6.60%下降到了4.38%,F(xiàn)FT分析結(jié)果表明了延時補償方法的有效性。

      為了分析MPC 控制策略下的SVG 的電流跟蹤精度和無功補償效果,以補償后電網(wǎng)A 相中無功電流的含量為例。圖9為補償后的電網(wǎng)中無功電流含量。

      圖9 補償后電網(wǎng)A相中的無功電流

      由圖9 可知,補償后的A 相無功電流波動很小,幅度變化都在±2 A以內(nèi),這表明了此策略下的SVG的無功電流跟蹤效果良好,無功補償性能優(yōu)越。

      SVG 直流側(cè)母線的電壓是否穩(wěn)定是SVG 能否實現(xiàn)良好的補償性能的關鍵,圖10為仿真參數(shù)不變時直流側(cè)母線總電壓波形,從圖中可以看出,直流側(cè)母線的電壓在MPC 策略的控制下非常穩(wěn)定,波動極小,這表明了MPC 控制策略能夠有效地穩(wěn)定直流側(cè)電壓。

      圖10 SVG直流側(cè)母線總電壓

      4 結(jié)論

      針對NPC 結(jié)構(gòu)型的SVG 建立了模型預測電流控制的仿真模型,將模型進行了離散化,建立了預測模型,同時設計了電流跟蹤誤差評估函數(shù),既保證了電流跟蹤精度,又能很好地控制計算量。接著對系統(tǒng)中控制延時的問題進行了分析,提出了兩步預測法對控制延時進行了補償,然后對整體的控制策略進行了確定。最后在MATLAB/SIMULINK 仿真環(huán)境中搭建了系統(tǒng)的仿真模型,對所提控制策略進行了仿真驗證,仿真結(jié)果表明了本文所提方法的有效性和可行性。

      猜你喜歡
      結(jié)構(gòu)型延時控制策略
      考慮虛擬慣性的VSC-MTDC改進下垂控制策略
      能源工程(2020年6期)2021-01-26 00:55:22
      基于級聯(lián)步進延時的順序等效采樣方法及實現(xiàn)
      自愈合薄膜的研究進展
      西部論叢(2020年8期)2020-08-31 22:44:28
      工程造價控制策略
      山東冶金(2019年3期)2019-07-10 00:54:04
      體育社團結(jié)構(gòu)型社會資本的培育研究
      現(xiàn)代企業(yè)會計的內(nèi)部控制策略探討
      消費導刊(2018年10期)2018-08-20 02:57:02
      淺議科技論文結(jié)構(gòu)型英文摘要的句型特點和表達方式
      新時期計算機程序的設計模式
      容錯逆變器直接轉(zhuǎn)矩控制策略
      Two-dimensional Eulerian-Lagrangian Modeling of Shocks on an Electronic Package Embedded in a Projectile with Ultra-high Acceleration
      船舶力學(2015年6期)2015-12-12 08:52:20
      璧山县| 西宁市| 登封市| 乐昌市| 北安市| 孝感市| 文安县| 庆阳市| 翼城县| 大余县| 遂平县| 贵德县| 南华县| 那曲县| 敦煌市| 济南市| 徐闻县| 浪卡子县| 雅江县| 江永县| 金川县| 鲁山县| 简阳市| 项城市| 茶陵县| 色达县| 中方县| 社旗县| 新建县| 怀来县| 洱源县| 涿鹿县| 达州市| 格尔木市| 九江市| 石河子市| 禹城市| 荥阳市| 茶陵县| 西充县| 台北市|