王梓川,張嘉祺,李磊
哺乳動(dòng)物早期胚胎發(fā)育的體外研究
王梓川1,2,張嘉祺1,2,李磊1,2
1. 中國科學(xué)院動(dòng)物研究所,干細(xì)胞與生殖生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京干細(xì)胞與再生醫(yī)學(xué)創(chuàng)新研究院,北京 100101 2. 中國科學(xué)院大學(xué)存濟(jì)醫(yī)學(xué)院,北京 100049
哺乳動(dòng)物胚胎發(fā)育起始于受精卵,受精卵依次形成桑椹胚和囊胚。同時(shí),早期胚胎從輸卵管遷入子宮,植入母體子宮后通過原腸運(yùn)動(dòng)形成原腸胚并進(jìn)一步發(fā)育為新生個(gè)體。哺乳動(dòng)物體內(nèi)生命孕育方式造成研究取材和觀察等方面的困難,阻礙了人類對哺乳動(dòng)物胚胎發(fā)育過程的認(rèn)識。因此,必需開發(fā)哺乳動(dòng)物體外胚胎技術(shù),以克服體內(nèi)發(fā)育方式所帶來的研究困難。2021年12月,雜志公布了2021年十大科學(xué)突破,“體外胚胎為人類早期發(fā)育研究開辟新的方向”位列其中。本文對哺乳動(dòng)物體外胚胎的研究歷史和最新進(jìn)展進(jìn)行評述,同時(shí)探討這些新技術(shù)在相關(guān)領(lǐng)域研究中的應(yīng)用,以期為人類早期胚胎發(fā)育和相關(guān)疾病研究帶來啟示。
早期胚胎發(fā)育;胚胎體外培養(yǎng);人早期胚胎樣結(jié)構(gòu);類囊胚
哺乳動(dòng)物胚胎發(fā)育起始于受精卵,隨后受精卵開始卵裂并從輸卵管向子宮遷移。胚胎早期發(fā)育最先由受精卵中的卵母細(xì)胞來源的物質(zhì)主導(dǎo),直至合子基因激活,此后的發(fā)育逐漸轉(zhuǎn)變成由合子轉(zhuǎn)錄的產(chǎn)物調(diào)控[1,2]。合子基因激活后,早期胚胎通過卵裂增加細(xì)胞數(shù)量,隨著卵裂的繼續(xù)進(jìn)行,胚胎發(fā)育到桑椹胚,發(fā)生致密化,同時(shí)發(fā)生第一次細(xì)胞譜系分化,形成具有內(nèi)細(xì)胞團(tuán)(inner cell mass, ICM)和滋養(yǎng)外胚層(trophectoderm, TE)的囊胚。小鼠()和人()囊胚分別形成于E3.5~4.5 (embryo 3.5~4.5)和E6~7時(shí)期[3]。在晚期囊胚階段(小鼠E4.5,人E7.0),胚胎到達(dá)子宮,通過滋養(yǎng)外胚層識別,并植入母體子宮,與母體建立聯(lián)系以繼續(xù)胚胎發(fā)育。
小鼠和人胚胎的植入過程和植入后發(fā)育存在較大差異。胚胎的滋養(yǎng)外胚層與ICM接觸的部分為極滋養(yǎng)外胚層,圍繞囊胚腔不接觸ICM的為壁滋養(yǎng)外胚層,它們將發(fā)育成為胚外組織。在小鼠胚胎E4.5時(shí)期,壁滋養(yǎng)外胚層介導(dǎo)胚胎與子宮內(nèi)膜的粘附,極滋養(yǎng)外胚層發(fā)育為胚外外胚層。人胚胎則通過極滋養(yǎng)外胚層介導(dǎo),在E7~12期完成粘附和植入過程。植入后,小鼠上胚層細(xì)胞由幼稚狀態(tài)(na?ve state)轉(zhuǎn)變?yōu)榛罨瘧B(tài)(formative state)[4],同時(shí)伴隨著上皮化和極性出現(xiàn),胚胎形成中央有腔的“花環(huán)”結(jié)構(gòu)[5,6]。人胚胎在E8時(shí)期,中央腔擴(kuò)張,形成前羊膜腔;在E12~13時(shí)期,胚胎呈盤狀結(jié)構(gòu)(圖1)。在E5.5胚胎時(shí)期,在形成“花環(huán)”結(jié)構(gòu)后,胚外外胚層近胚胎端內(nèi)陷形成另外一個(gè)腔,兩個(gè)腔融合形成前羊膜腔[6],小鼠胚胎呈卵柱狀。此后,胚胎的上胚層后部形成原條,啟動(dòng)原腸運(yùn)動(dòng)。通過原腸運(yùn)動(dòng)形成外胚層、定型內(nèi)胚層和中胚層,它們是胚胎各類組織和器官形成的基礎(chǔ)[7~9]。小鼠的原腸運(yùn)動(dòng)發(fā)生在大約E6.0時(shí)期,而人胚胎的原腸運(yùn)動(dòng)則發(fā)生在大約E14時(shí)期。
胚胎在母體子宮內(nèi)發(fā)育,給相關(guān)過程的研究帶來了操作困難和取材不易等問題。此外,由于小鼠與人的早期胚胎發(fā)育存在明顯差異(圖1),基于小鼠的研究結(jié)果并不易解釋人類早期胚胎發(fā)育事件和調(diào)控機(jī)制。實(shí)際上,人類很早就有人造子宮的想法,并發(fā)明了新生兒重癥監(jiān)護(hù)中心NICU (a neonatal intensive care unit),挽救了很多高危新生兒的生命。如何不依賴母體子宮,體外培養(yǎng)哺乳動(dòng)物著床以后的胚胎一直是領(lǐng)域的關(guān)注點(diǎn);此外,人類胚胎研究材料受限也是早期胚胎發(fā)育領(lǐng)域亟需解決的問題。最近,新的小鼠胚胎體外培養(yǎng)體系的建立以及人的類囊胚樣結(jié)構(gòu)的成功構(gòu)建,為哺乳動(dòng)物尤其是人類的早期胚胎發(fā)育相關(guān)疾病研究提供了新的技術(shù)平臺(tái)。相關(guān)研究成果被評為2021年度十大科學(xué)突破之一。本文將分別對這些研究進(jìn)行論述,以期為哺乳動(dòng)物胚胎體外發(fā)育和人類疾病相關(guān)研究提供參考。
圖1 小鼠和人早期胚胎發(fā)育過程
小鼠和人的受精卵通過有絲分裂增加細(xì)胞數(shù)量,同時(shí)進(jìn)一步分化,形成由外層細(xì)胞包繞內(nèi)部腔體和細(xì)胞團(tuán)的囊胚;隨后胚胎進(jìn)入子宮腔,發(fā)生著床并植入子宮內(nèi),此時(shí)小鼠胚胎呈卵柱狀,而人類胚胎則呈雙層盤狀結(jié)構(gòu);此后胚胎的上胚層通過原腸運(yùn)動(dòng)形成三胚層,并以此為基礎(chǔ)形成各種組織和器官。
為了克服植入后胚胎觀察的困難,研究人員很早就嘗試體外培養(yǎng)小鼠胚胎。早先,研究人員利用鼠尾膠原蛋白和大鼠血清,嘗試將小鼠囊胚培養(yǎng)至卵柱狀結(jié)構(gòu)階段,甚至到早期體節(jié)發(fā)生階段[10~12]。除了靜態(tài)條件下培養(yǎng)小鼠囊胚,也有研究者嘗試滾筒等動(dòng)態(tài)方式培養(yǎng)著床以后的胚胎[13,14]。但這些方法存在效率低下、體外培養(yǎng)時(shí)間不長等問題。目前,人們有關(guān)哺乳動(dòng)物胚胎早期發(fā)育的認(rèn)識,主要通過解剖懷孕各階段胚胎結(jié)合基因敲除小鼠等技術(shù)獲得[9]。
通過將囊胚體外培養(yǎng)技術(shù)與成像系統(tǒng)結(jié)合,研究者描述了小鼠胚胎著床期間的卵柱狀結(jié)構(gòu)形成、前后體軸建立等形態(tài)發(fā)生事件[15]。近幾年,國內(nèi)外數(shù)個(gè)研究團(tuán)隊(duì)在體外將人胚胎培養(yǎng)至E13~E14,并利用多種技術(shù)手段從譜系分化、表觀修飾等角度對體外培養(yǎng)胚胎進(jìn)行描繪[16~18]。還有團(tuán)隊(duì)構(gòu)建了人早期胚胎的三維培養(yǎng)體系,將人胚胎培養(yǎng)至原條原基(primitive streak anlage)形成階段[19]。由于人胚胎體外培養(yǎng)不得超過14天,國內(nèi)兩個(gè)研究團(tuán)隊(duì)獨(dú)立在體外將食蟹猴()的胚胎培養(yǎng)至原腸運(yùn)動(dòng)階段(E20),并研究了非人靈長類胚胎原腸運(yùn)動(dòng)階段的重要事件,為人早期胚胎發(fā)育和早期細(xì)胞譜系分化等研究提供了重要線索[20,21]。
2021年3月,來自以色列的研究團(tuán)隊(duì)在發(fā)表了一種小鼠胚胎體外培養(yǎng)方法[22],能將植入后、原腸運(yùn)動(dòng)前的小鼠胚胎(E5.5)培養(yǎng)至器官發(fā)生階段(E11)。該團(tuán)隊(duì)集成多套氣體控制模塊,建立了一種滾筒培養(yǎng)系統(tǒng),實(shí)現(xiàn)了對O2、CO2含量以及容器內(nèi)氣壓的精準(zhǔn)控制。利用該系統(tǒng),研究人員首先實(shí)現(xiàn)在無母體子宮支持下,將小鼠原腸運(yùn)動(dòng)晚期的胚胎(E7.5)體外培養(yǎng)4天,使其發(fā)育至后肢形成階段(~E11),效率可達(dá)到77%;這些體外培養(yǎng)的胚胎具有44對體節(jié),體長近似體內(nèi)發(fā)育的同時(shí)期胚胎。為了進(jìn)一步探索更早期的胚胎發(fā)育,他們同時(shí)建立了原腸運(yùn)動(dòng)前胚胎(E5.5)至原腸運(yùn)動(dòng)后胚胎(E8.5)的靜態(tài)體外培養(yǎng)體系[22]。結(jié)合上述兩種培養(yǎng)體系,該團(tuán)隊(duì)最終成功將小鼠E5.5胚胎在體外連續(xù)培養(yǎng)6天,使其發(fā)育至42對體節(jié)期,效率可達(dá)20%。免疫熒光染色及單細(xì)胞測序分析顯示,體外培養(yǎng)的各階段胚胎和體內(nèi)發(fā)育的對應(yīng)時(shí)期胚胎在細(xì)胞類型和關(guān)鍵基因表達(dá)方面相似,說明體外培養(yǎng)胚胎能較好重現(xiàn)體內(nèi)胚胎發(fā)育過程[22]。
無母體子宮條件下的胚胎體外培養(yǎng)系統(tǒng)可以為研究哺乳動(dòng)物胚胎原腸運(yùn)動(dòng)前后發(fā)生的關(guān)鍵事件提供重要平臺(tái)。例如,研究人員將外源基因載體通過電穿孔或慢病毒轉(zhuǎn)染方式導(dǎo)入胚胎,結(jié)合成像技術(shù),可以直觀觀察胚胎的神經(jīng)管閉合等事件以及致畸物質(zhì)對胚胎發(fā)育的影響[22];此外,他們將熒光標(biāo)記的人原始小膠質(zhì)祖細(xì)胞注射到小鼠E7.5胚胎中,經(jīng)過體外培養(yǎng),發(fā)現(xiàn)人小膠質(zhì)祖細(xì)胞可以穩(wěn)定增殖并遷移到小鼠大腦中[22];他們還將小鼠上胚層干細(xì)胞(epiblast stem cells, EpiSC)和上胚層樣干細(xì)胞(epiblast- like stem cells, EpiLC)注射到胚胎中,通過該培養(yǎng)系統(tǒng),觀察到近似以前報(bào)道的體內(nèi)胚胎注射的嵌合效率[22~25]。但是,在該研究系統(tǒng)中,小鼠胚胎體外培養(yǎng)至大約E11時(shí)期后快速死亡,無法繼續(xù)發(fā)育,說明目前的系統(tǒng)還很難替代母體子宮發(fā)育環(huán)境。如果該系統(tǒng)能夠在大動(dòng)物,特別是在人類的胚胎中獲得成功應(yīng)用,將對早期高危新生兒助產(chǎn)系統(tǒng)產(chǎn)生重要影響;此外,結(jié)合囊胚體外發(fā)育系統(tǒng)和體外授精等技術(shù)[16,18,20,21,26],有望在體外實(shí)現(xiàn)全過程的哺乳動(dòng)物胚胎發(fā)育,將極大促進(jìn)哺乳動(dòng)物的體外生命孕育研究。
人早期胚胎發(fā)育研究除了受倫理限制外,還受到材料稀少的嚴(yán)重制約[27]。胚胎干細(xì)胞的建立,特別是近年來新建立的各種階段的人和小鼠胚胎干細(xì)胞系,明顯促進(jìn)了對哺乳動(dòng)物早期胚胎發(fā)育和細(xì)胞譜系形成的認(rèn)識[28~33]。此外,研究人員利用胚胎干細(xì)胞可以自組裝成早期胚胎樣結(jié)構(gòu)的特性,部分模擬胚胎發(fā)育過程,為早期胚胎發(fā)育研究提供了新的方向[34~38]。
2021年3月,美國西南醫(yī)學(xué)中心和澳大利亞蒙納士大學(xué)的兩個(gè)研究團(tuán)隊(duì)獨(dú)立構(gòu)建了人類早期胚胎樣結(jié)構(gòu)[39,40]。幼稚態(tài)人胚胎干細(xì)胞(na?vehuman embryonic stem cells, na?vehES)具有向胚胎和胚外組織發(fā)育的雙向潛能,利用這一特性,西南醫(yī)學(xué)中心的研究者將這些細(xì)胞在三維培養(yǎng)條件培養(yǎng),經(jīng)過數(shù)天,發(fā)現(xiàn)這些na?vehES自組裝成具有空腔的人類囊胚樣結(jié)構(gòu)(以下稱類囊胚)。優(yōu)化培養(yǎng)基及實(shí)驗(yàn)起始細(xì)胞數(shù)后,類囊胚的形成效率可達(dá)12.8%。他們構(gòu)建的類囊胚包括內(nèi)細(xì)胞和滋養(yǎng)外胚層樣的結(jié)構(gòu),具有與人囊胚相似的上胚層、下胚層和滋養(yǎng)外胚層標(biāo)記物的表達(dá)和分布模式;但這些類囊胚的上胚層樣細(xì)胞多而另外兩類細(xì)胞偏少[39]。單細(xì)胞轉(zhuǎn)錄組分析進(jìn)一步證明這些類囊胚與E5~E7時(shí)期的人胚胎相似。蒙納士大學(xué)的研究團(tuán)隊(duì)則是在研究人皮膚成纖維細(xì)胞重編程的過程中,意外發(fā)現(xiàn)重編程后的細(xì)胞可以自組裝成囊胚樣結(jié)構(gòu)[40]。于是,他們將能夠自組裝的重編程細(xì)胞培養(yǎng)于三維環(huán)境中,同樣得到了在胚層標(biāo)記物表達(dá)模式和轉(zhuǎn)錄組水平與人囊胚相似的類囊胚[40]。此外,兩個(gè)團(tuán)隊(duì)都利用類囊胚成功建立了具有胚胎組織分化潛能的多能干細(xì)胞系、具有胚外組織分化潛能的滋養(yǎng)層干細(xì)胞系、及能夠形成胚外內(nèi)胚層的細(xì)胞系。同年,其他研究團(tuán)隊(duì)也利用幼稚態(tài)人胚胎干細(xì)胞和人擴(kuò)展性多能干細(xì)胞(exten-ded pluripotent stem cell, EPSCs)構(gòu)建了人類早期胚胎樣結(jié)構(gòu)[41~43]。
人早期胚胎樣結(jié)構(gòu)具有類似人早期胚胎細(xì)胞的組成和轉(zhuǎn)錄組等特征,可部分模擬早期胚胎發(fā)育過程,可能解決人類胚胎研究材料的制約問題,為人早期胚胎發(fā)育和譜系形成提供了重要研究工具。相較于胚胎自然發(fā)育的體內(nèi)環(huán)境,體外培養(yǎng)系統(tǒng)更易于控制發(fā)育變量,方便研究者對胚胎施加各種干擾因素,探討它們對胚胎發(fā)育的影響。因此這些體外重構(gòu)模型為研究人類早期胚胎發(fā)育、出生缺陷和流產(chǎn)等重大疾病研究提供了重要平臺(tái)。盡管研究人員能從多種細(xì)胞系構(gòu)建人早期胚胎樣結(jié)構(gòu),但這些模型都存在成功效率低和部分細(xì)胞類型不明確等問題?;谛∈笈咛ハ嗨频难芯靠梢酝茰y,目前構(gòu)建的人早期胚胎樣結(jié)構(gòu)無法發(fā)育為可存活的個(gè)體[38]。因此,這些模型仍需要進(jìn)一步優(yōu)化。這種基于干細(xì)胞的體外胚胎模型是否備與人類胚胎相等的倫理與法律地位值得社會(huì)各界關(guān)注和廣泛討論。目前有關(guān)人類的胚胎體外培養(yǎng)和類胚胎的倫理和法律準(zhǔn)則可能面臨調(diào)整,以適應(yīng)快速發(fā)展的人類早期胚胎發(fā)育研究[27]。
哺乳動(dòng)物體外胚胎不僅可能克服研究技術(shù)和材料的制約,還可能避免倫理方面的研究限制,為哺乳動(dòng)物特別是人類早期胚胎發(fā)育和相關(guān)疾病研究提供了新的研究手段和方法。結(jié)合新的人工胚胎和體外胚胎培養(yǎng)、體外受精、NICU等技術(shù),有望擺脫母體子宮,在體外全程實(shí)現(xiàn)哺乳動(dòng)物胚胎發(fā)育。目前體外胚胎尤其是早期胚胎樣結(jié)構(gòu)與體內(nèi)發(fā)育胚胎還存在明顯差異,相關(guān)技術(shù)有待于進(jìn)一步完善。此外,這些技術(shù)發(fā)展需要倫理和法律的規(guī)范和約束,亟需社會(huì)各界共同參與,討論并制定適合相關(guān)領(lǐng)域發(fā)展的新條例和法規(guī)。這些新的發(fā)展方向和研究動(dòng)態(tài)可能明顯促進(jìn)人類對早期胚胎發(fā)育的認(rèn)識和重大疾病的防治。
[1] Li L, Zheng P, Dean J. Maternal control of early mouse development.2010, 137(6): 859–870.
[2] Li L, Lu XK, Dean J. The maternal to zygotic transition in mammals.2013, 34(5): 919–938.
[3] Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L, Turlier H, Ma?tre JL. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst., 2019, 365(6452): 465–468.
[4] Shahbazi MN, Scialdone A, Skorupska N, Weberling A, Recher G, Zhu M, Jedrusik A, Devito LG, Noli L, Macaulay IC, Buecker C, Khalaf Y, Ilic D, Voet T, Marioni JC, Zernicka-Goetz M. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos., 2017, 552(7684): 239–243.
[5] Bedzhov I, Zernicka-Goetz M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation., 2014, 156(5): 1032–1044.
[6] Christodoulou N, Kyprianou C, Weberling A, Wang R, Cui GZ, Peng GD, Jing NH, Zernicka-Goetz M. Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation.2018, 20(11): 1278–1289.
[7] Pijuan-Sala B, Griffiths J A, Guibentif C, Hiscock TW, Jawaid W, Calero-Nieto FJ, Mulas C, Ibarra-Soria X, Tyser RCV, Ho DLL, Reik W, Srinivas S, Simons BD, Nichols J, Marioni JC, G?ttgens B. A single-cell molecular map of mouse gastrulation and early organogenesis., 2019, 566(7745): 490–495.
[8] Peng GD, Suo SB, Cui GZ, Yu F, Wang R, Chen J, Chen SR, Liu ZW, Chen GY, Qian Y, Tam PPL, Han JDJ, Jing NH. Molecular architecture of lineage allocation and tissue organization in early mouse embryo., 2019, 572(7770): 528–532.
[9] Tam PPL, Loebel DAF. Gene function in mouse embr-yogenesis: get set for gastrulation.2007, 8(5): 368–381.
[10] Chen LT, Hsu YC. Development of mouse embryos in vitro: preimplantation to the limb bud stage., 1982, 218(4567): 66–68.
[11] Hsu YC. Differentiation in vitro of mouse embryos to the stage of early somite.1973, 33(2): 403–411.
[12] Jenkinson EJ, Wilson IB. In vitro support system for the study of blastocyst differentiation in the mouse.1970, 228(5273): 776–778.
[13] New DA, Coppola PT, Terry S. Culture of explanted rat embryos in rotating tubes., 1973, 35(1): 135–138.
[14] New D A. Development of explanted rat embryos in circulating medium., 1967, 17(3): 513–525.
[15] Morris SA, Grewal S, Barrios F, Patankar SN, Strauss B, Buttery L, Alexander M, Shakesheff KM, Zernicka-Goetz M. Dynamics of anterior-posterior axis formation in the developing mouse embryo.2012, 3(1): 673.
[16] Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalo-wska A, Bolton V, Fogarty NNM, Campbell A, Devito L, Ilic D, Khalaf Y, Niakan KK, Fishel S, Zernicka-Goetz M. Self-organization of the human embryo in the absence of maternal tissues.2016, 18(6): 700–708.
[17] Zhou F, Wang R, Yuan P, Ren YX, Mao YN, Li R, Lian Y, Li JS, Wen L, Yan LY, Qiao J, Tang FC. Reconstituting the transcriptome and DNA methylome landscapes of human implantation., 2019, 572(7771): 660–664.
[18] Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH. Self-organization of the in vitro attached human embryo., 2016, 533(7602): 251– 254.
[19] Xiang LF, Yin Y, Zheng Y, Ma YP, Li YG, Zhao ZG, Guo JQ, Ai ZY, Niu YY, Duan K, He JJ, Ren SC, Wu D, Bai Y, Shang ZC, Dai X, Ji WZ, Li TQ. A developmental landscape of 3D-cultured human pre-gastrulation embryos., 2020, 577(7791): 537–542.
[20] Niu Y, Sun N, Li C, Lei Y, Huang ZH, Wu J, Si CY, Dai X, Liu CY, Wei JK, Liu LQ, Feng S, Kang Y, Si W, Wang H, Zhang E, Zhao L, Li ZW, Luo X, Cui GZ, Peng GD, Belmonte JCI, Ji WZ, Tan T. Dissecting primate early post-implantation development using long-term in vitro embryo culture., 2019, 366(6467): eaaw5754.
[21] Ma HX, Zhai JL, Wan HF, Jiang XX, Wang XX, Wang L, Xiang YL, He XC, Zhao ZA, Zhao B, Zheng P, Li L, Wang HM. In vitro culture of cynomolgus monkey embryos beyond early gastrulation., 2019, 366(6467): eaax7890.
[22] Aguilera-Castrejon A, Oldak B, Shani T, Ghanem N, Itzkovich C, Slomovich S, Tarazi S, Bayerl J, Chugaeva V, Ayyash M, Ashouokhi S, Sheban D, Livnat N, Lasman L, Viukov S, Zerbib M, Addadi Y, Rais Y, Cheng SF, Stelzer Y, Keren-Shaul H, Shlomo R, Massarwa R, Novershtern N, Maza I, Hanna JH. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis., 2021, 593(7857): 119–124.
[23] Wu J, Okamura D, Li M, Suzuki K, Luo CY, Ma L, He YP, Li ZW, Benner C, Tamura I, Krause MN, Nery JR, Du TT, Zhang ZZ, Hishida T, Takahashi Y, Aizawa E, Kim NY, Lajara J, Guillen P, Campistol JM, Esteban CR, Ross PJ, Saghatelian A, Ren B, Ecker JR, Izpisua Belmonte JC. An alternative pluripotent state confers interspecies chimaeric competency., 2015, 521(7552): 316–321.
[24] Kojima Y, Kaufman-Francis K, Studdert JB, Steiner KA, Power MD, Loebel DA, Jones V, Hor A, de Alencastro G, Logan GJ, Teber ET, Tam OH, Stutz MD, Alexander IE, Pickett HA, Tam PP. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak., 2014, 14(1): 107–120.
[25] Huang Y, Osorno R, Tsakiridis A, Wilson V. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation., 2012, 2(6): 1571– 1578.
[26] Ma H, Wang H, Zheng P, Li L. Comments on ‘in vitro culture of cynomolgus monkey embryos beyond early gastrulation’.2020, 12(5): 400–402.
[27] Clark AT, Brivanlou A, Fu JP, Kato K, Mathews D, Niakan KK, Rivron N, Saitou M, Surani A, Tang FH, Rossant J. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: considerations leading to the revised ISSCR guidelines., 2021, 16(6): 1416–1424.
[28] Kinoshita M, Barber M, Mansfield W, Cui YZ, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of mouse and human stem cells with features of formative pluripotency., 2021, 28(3): 453–471.
[29] Yu LQ, Wei YL, Sun HX, Mahdi AK, Arteaga CAP, Sakurai M, Schmitz DA, Zheng CB, Ballard ED, Li J, Tanaka N, Kohara A, Okamura D, Mutto AA, Gu Y, Ross PJ, Wu J. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification., 2021, 28(3): 550–567.
[30] Wang XX, Xiang YL, Yu Y, Wang R, Zhang Y, Xu QH, Sun H, Zhao ZA, Jiang XX, Wang XQ, Lu XK, Qin DD, Quan YJ, Zhang JQ, Shyh-Chang N, Wang HM, Jing NH, Xie W, Li L. Formative pluripotent stem cells show features of epiblast cells poised for gastrulation.2021, 31(5): 526–541.
[31] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts., 1998, 282(5391): 1145–1147.
[32] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos.1981, 292(5819): 154–156.
[33] Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells., 1981, 78(12): 7634–7638.
[34] Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro., 2017, 356(6334).
[35] Sozen B, Amadei G, Cox A, Wang R, Na E, Czukiewska S, Chappell L, Chappell L, Voet T, Michel G, Jing NH, Glover DM, Zernicka-Goetz M. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures.2018, 20(8): 979–989.
[36] Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J, Vivié J, Truckenmüller RK, van Oudenaarden A, van Blitterswijk CA, Geijsen N. Blastocyst-like structures generated solely from stem cells., 2018, 557(7703): 106–111.
[37] Zhang SP, Chen TZ, Chen NX, Gao DF, Shi BB, Kong SB, West RC, Yuan Y, Zhi ML, Wei QQ, Xiang JZ, Mu HY, Yue L, Lei XH, Wang XP, Zhong L, Liang H, Cao SY, Belmonte JCI, Wang HB, Han JY. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells.2019, 10(1).
[38] Li RH, Zhong CQ, Yu Y, Liu HS, Sakurai M, Yu LQ, Min ZY, Shi L, Wei YL, Takahashi Y, Liao HK, Qiao J, Deng HK, Nu?ez-Delicado E, Rodriguez Esteban C, Wu J, Izpisua Belmonte JC. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures., 2019, 179(3): 687–702.
[39] Yu LQ, Wei YL, Duan J, Schmitz DA, Sakurai M, Wang L, Wang KH, Zhao SH, Hon GC, Wu J. Blastocyst-like structures generated from human pluripotent stem cells., 2021, 591(7851): 620–626.
[40] Liu XD, Tan JP, Schr?der J, Aberkane A, Ouyang JF, Mohenska M, Lim SM, Sun YBY, Chen J, Sun GZ, Zhou YC, Poppe D, Lister R, Clark AT, Rackham OJL, Zenker J, Polo JM. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids.2021, 591(7851): 627–632.
[41] Fan Y, Min ZY, Alsolami S, Ma ZL, Zhang E, Chen W, Zhong K, Pei WD, Kang XJ, Zhang PY, Wang YL, Zhang YY, Zhan LF, Zhu HY, An CR, Li R, Qiao J, Tan T, Li M, Yu Y. Generation of human blastocyst-like structures from pluripotent stem cells.2021, 7(1): 81.
[42] Yanagida A, Spindlow D, Nichols J, Nichols J, Dattani A, Smith A, Guo G. Naive stem cell blastocyst model captures human embryo lineage segregation.2021, 28(6): 1016–1022.
[43] Sozen B, Jorgensen V, Weatherbee BAT, Chen SS, Zhu M, Zernicka-Goetz M. Reconstructing aspects of human embryogenesis with pluripotent stem cells.2021, 12(1): 5550.
investigation of mammalian early embryonic development
Zichuan Wang1,2, Jiaqi Zhang1,2, Lei Li1,2
Mammalian embryonic development starts from a fertilized egg, which cleaves to form morula and blastocyst. At the same time, the early embryo is transported from the fallopian tube to the uterus for implantation. After implantation, the embryo undergoes gastrulation and forms a gastrula, further developing a new individual. The development of embryo in the uterus causes the difficulties in sampling and observation, hindering the understanding of mammalian embryonic development. Therefore, it is necessary to develop the technology to overcome the barrier ofembryonic development. In December 2021, “Embryo ‘husbandry’ opens windows into early development” was selected as one of’s 2021 breakthroughs. This review focuses on the achievements ofmammalian embryos and discusses their limitations and the future applications for the investigation of mammalian embryonic development and human related diseases.
early embryogenesis;culture of mammalian early embryo; human early embryo-like structures; blastoids
2022-02-14;
2022-03-18;
2022-03-28
國家重點(diǎn)研發(fā)計(jì)劃(編號:2018YFC1004500,2021YFC2700300)和國家自然科學(xué)基金項(xiàng)目(編號:31930033)資助[Supported by the National Key R&D Program of China (Nos. 2018YFC1004500, 2021YFC2700300) and the National Natural Science Foundation of China (No. 31930033)]
王梓川,在讀碩士研究生,專業(yè)方向:人體解剖與組織胚胎學(xué)。E-mail: wangzichuan@ioz.ac.cn
李磊,博士,研究員,研究方向:哺乳動(dòng)物早期胚胎發(fā)育。E-mail: lil@ioz.ac.cn
10.16288/j.yczz.22-034
(責(zé)任編委: 陸發(fā)隆)