• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual-contrast Optical Projection Tomography With Principal Component Analysis*

    2022-04-24 06:15:48YANGXuLunZHANGYanTingGUANCaiZhongZHANGZhangWANGLuQuanYIMinHANDingAnWANGMingYiCHENYongZENGYaGuang

    YANG Xu-Lun,ZHANG Yan-Ting,GUAN Cai-Zhong,ZHANG Zhang,WANG Lu-Quan,YI Min,HAN Ding-An,WANG Ming-Yi,CHEN Yong*,ZENG Ya-Guang*

    (1)School of Mechatronic Engineering and Automation,Foshan University,Foshan 528000,China;2)School of Physics and Optoelectronic Engineering,Foshan University,Foshan 528000,China)

    Abstract Objective We propose a dual-contrast optical projection tomography (DC-OPT) based on principal component analysis (PCA) to obtain a three-dimensional (3D) visualization of the blood-flow network and skeleton in a live organism.Methods The PCA method was used to extract the absorption and flow contrast images (15 images/projection position). The absorption image was obtained with the use of the first principal component of the raw image sequence. The flow images were obtained based on the computation of the modulation depth of each pixel. The flow and absorption contrast images at different projection positions are combined to achieve a synchronous reconstruction of a 3D image. Results The combination of PCA and OPT is used to realize the 3D imaging of the blood-flow network and skeleton of the biological sample by separating the dynamic blood flow signal and the static background signal of the sample. Conclusion The novelty of our study is attributed to the fast,simultaneous, dual-contrast 3D images of the blood-flow network and skeleton by the same optical system.The experimental result can be applied in physiological development studies in live model organisms.

    Key words optical projection tomography,principal component analysis,dual-contrast imaging,three-dimensional angiography

    The visualization of a three-dimensional (3D)blood-flow network and skeleton development is conducive to the provision of an effective means for the development of live organisms[1-2]. Label-free blood-flow network reconstruction methods, such as photoacoustic (PA) imaging and optical coherence tomography (OCT), have been developed in optical imaging[3]and applied biological research. PA imaging and OCT are noncontact methods and have high contrast. However, their applications are limited owing to the image depth and high cost. Optical projection tomography (OPT) is an inexpensive 3D microscopic imaging technology that can perform fullview 3D imaging of specimens. With laser speckle and laser Doppler effect of the moving blood flow,some methods have been developed to obtain 3D flow images in OPT systems[4-5].In this regard,Liaoet al.[6]proposed a method based on the scattering of lateral dynamic light called optical projection angiography(OPA).They used an intensity fluctuation modulation(IFM) method[7]to obtain the blood flow signal.However, to achieve this they recorded 512 raw frames(5.1 s)at every projection angle.

    In this paper, we propose a dual-contrast optical projection tomography (DC-OPT) with the same laser source to simultaneously obtain the visualization of the blood-flow network and skeleton of live biological specimens. In the present study, the principal component analysis (PCA) method was used to extract the two-dimensional (2D) absorption and flow contrast projection image from 15 raw image frames at every projection position. For the DC-OPT, the absorption image was obtained with the use of the first principal component of the raw image sequence.The 2D flow images can be potentially achieved by using the modulation depth (MD) of each pixel as the image parameter. The flow and absorption contrast images at different projection positions are combined to synchronously reconstruct 3D blood-flow networks and skeleton images with the filtered backprojection algorithm. Compared with our previous work, we only use 15 raw image frames (0.15 s) with the PCA method to simultaneously obtain the absorption and flow images at every projection position. The experimental innovation of this study is based on the ability to generate synchronous, fast-speed, dualcontrast 3D images for blood-flow networks and skeletons in the same optical system. The experiment result can be applied potentially in physiological developmental studies.

    1 Experimental setup

    Fig.1 Schematic of DC-OPT

    Figure 1a shows the schematic of the DC-OPT experimental setup. A laser source (LS) (λ=650 nm,average power: 50 mW) forms two symmetrical laser beams optical paths through a 1/2 fiber splitter (FS)continuous output. Using expanding lenses (L), two symmetric lasers to illuminate the sample as uniformly as possible, the telecentric imaging system avoid to receive the parallel transmission light from the light source and the camera only receives scattered light in the illumination field as show in the dotted frame①[8]in Figure 1a.A zebrafish (35 d old, length of 17 mm, width of 3.9 mm, and approximate maximum and minimum thicknesses of 2.5 mm and 0.4 mm, respectively) were used as the specimens to achieve 3D imaging for its blood network and skeleton. The customized telecentric system was used to capture raw speckle images at each projection angle position. The telecentric system (Edmund optics 58428) has a field depth of 9.67 mm and a spatial resolution of approximately 8.5 μm, and aperture is 0.025 and the magnification is 0.3×.The entire system was fixed on a vibration-isolating optical platform.The raw images were recorded by a camera (C)(acA2000-340 km, Basler with a pixel size of 5.5 μm×5.5 μm. As shown in Figure 1b, the camera records 15 raw speckle images at each projection position, and uses the PCA algorithm to obtain a blood flow and absorption contrast images. In the experiment, a 16-bit, high-speed analog output board(NI PCI-6221) was used to synchronize and trigger the camera acquisition and step motor rotation.First,a laser source (LS) was triggered to achieve a stable output followed by the digital camera acquisition.Subsequently, the stepping motor was triggered to rotate by 1.8°, and this process was repeated until the stepping motor was rotated by 360° to capture 200 angles in total. Herein, LabVIEW(version: 2015) was used for data acquisition, and MATLAB (version:2015 a) is used to process data. The biological specimen zebrafish used in the experiment was first anesthetized with a stabilizer. It was then hung in a cylindrical glass tube with thin walls (1 mm) and a large diameter (8 mm) with a low-melting point(L.M.P.)agarose(1%agar,gel temperature:24-29°C)fixation. The tube follow the specimen rotation and prevent its movement. Herein, the cylindrical glass tube was placed in the refractive index matching pool(IMP). With this, any refractive index difference between the glass and water/agarose was used to eliminate lens aberration[9].

    2 Methods

    The key problem of the DC-OPT was the synchronous extraction of the absorption and flow signal from the raw images. Our method can be described as follows. When a laser beam illuminates moving particles of the specimen, a time-dependent fluctuating intensity with a Doppler-shifted frequency can be observed. For capillaries, the Doppler frequency of the blood flow signal was generally in the range of 20 Hz-10 kHz.In our study,the exposure time of the camera was set to 50 μs. Based on the Nyquist sampling theorem,the camera can capture the variation of the Doppler signal up tof0= 1/2t0= 10 kHz[10]. The signal recorded by the camera was lower than the half period of the Doppler signal to retain its fluctuation condition. However, the acquired frame speed of the cameras was set to 100 frames per second (fps) that is much lower than the Doppler frequency. Thus, the sub-Nyquist sampling acquisition method can obtain the fluctuation information. In this case, the undersampled Doppler signal comprises a dynamic component from the moving red blood cells (RBCs) and a static component from the background, such the muscle or skeleton. The reason for the use of the particular sampling method has been explained in detail in our previous work[11]. Therefore, the acquired raw signal can be written as follows:

    WhereIdc(x,y,t) andIac(x,y,t) are the static and dynamic components of the raw signal, respectively,xandyindicate the size of the collected data, andtis the data sample that denotes the acquisition time,xstands for Pixel.Figure 2 shows the schematic of PCA method used to extract the staticIdc(x,y) and dynamic signalIac(x,y). In this study, data with dimensions Pixel×Y×Time were acquired in the case of the DCOPT, and the datasets (Pixel-time), including the spatiotemporal information, were employed in each PCA algorithm. Herein, we remarked that PCA-based techniques have been proposed for several applications in medical ultrasonic imaging. Further,on the basis of the different statistical characteristics of the blood flow and wall thump signals, PCA has been employed to discriminate the blood flow component from a mixed signal in ultrasonic imaging[12]. Accordingly, in this study, we separated the dynamic blood flow signal from the static background signal and low-frequency noise with PCA.In this regard,we first calculated the covariance of the row pixel data along the time sequence and obtained the covariance matrixC(x,yi,t)=cov[(x,yi,t)],whereI(x,yi,t) denotes the undersampled Doppler signal at the pixel in rowi, and cov[I(x,yi,t)] denotes the covariance operation.C(x,yi,t) is the eigenvalue decomposed along T orthogonal directions expressed as

    where Λ=diag(λ1,λ2,…,λT), (λ1>λ2>…λT) denotes the eigenvalue matrix andEis the eigenvectors[10]. PCA uses an orthogonal transformation to convert raw correlated variables in linearly uncorrelated variables.This indicates that the base vectors of all the components are orthogonal. This is similar to our previous optical projection angiography method[6]. In that study, we used Fourier transform to convert the time-domain signal in the frequency domain, and extracted the blood flow information according to the frequency component between the dynamic flow signal (high-frequency signal). The dynamic signal can be obtained as follows[10]:

    Fig.2 Schematic diagram of PCA algorithm

    The static background signal (low-frequency signal)can be presented as:

    whereωdandωsdenote the weights that decide the filtering range. Notably, the weights can be modified according to the required case. We setωd=(0,1,1,1,…)T, which presents all the high-order principal components,i.e., from 2 to N. We setωs=(1,0,0,0,…)T, which presents the first principal component. ∑denotes the sum operator with respect to the time. In the traditional OPT case, the import problem refers to the extraction of the absorption signal that presents the absorption message along the field depth in the optical telecentric system. Based on the PCA method shown Figure 2,we assumed that the first principal component represents the absorption information for most specimens. We usedIdc(x,y)processed by Equation (4) to represent the absorption information of the specimens at every projection position.

    To visualize the blood flow image, the MD of each pixel was defined as the flow image parameter,i. e., the ratio of the dynamic signal to the static signal[10]:

    According to our previous study, the flow parameter MD presents the concentration of moving particles, and the parameter MD is related to the particle concentration.Given that the PCA method has the capacity to separate the blood flow signal from the background tissue signal. In our previous work[10], we verified that the imaging effect of the PCA method when the number of frames is 5-15 frames is better for the flow contrast, but in order to balance OPT absorption imaging, it requires multi-frame image to average the laser speckle.So the number of 15 frames at every projection position is chosen as optimal frames to process the data. Then the acquired time was approximately 0.15 s. Compared with the IFM method that acquires 512 frames raw images (5.1 s),our method improved considerably the imaging speed.This is important for live organisms. Absorption images and blood flow images at different angles were reconstructed with the filtered backprojection reconstruction algorithm to form 3D image[13].

    Herein, * represents the convolution,M(l,θ)represents the projection parameter MD orldcfor the same angle of viewθ.In the case of OPT images,it is the polar coordinate representation ofIdc, and in the case of OPA, it is the polar coordinate representation of MD. In addition,c(l) denotes the spatial domain representation of the appropriate filter required for back projection. So far, the 3D vascular structure and 3D tissue structure were obtained.

    3 Results and discussion

    Figure 3 shows the normalized raw image(Figure 3a), the normalized absorption image (Figure 3b), and the normalized flow image (Figure 3c) at a projection position.The laser speckle character can be identified in Figure 3a. This may mean that internal interference take place with the live specimen. The boxed area (0.1 mm×0.1 mm) marked with the number 1 is the swimming bladder in which the tissue is transparent and exhibits increased brightness. The average of the data in the box 1 is 0.64. Box 2 shows the spinal cord position,and the average of the data in the boxed area (0.1 mm×0.1 mm) is 0.53. Box 3 shows the posterior cardinal vein position, and the average of the data in the box area (0.1 mm×0.1 mm)is 0.54. Figure 3b shows the absorption image processing outcome based on the PCA method. The 15 raw images were processed based on Equation (4)with the first principal component. The laser speckle character can also be found from the absorption image. The averaged values of boxes 1, 2, and 3 are 0.70,0.58,and 0.57,respectively.From the absorption image, it can be inferred that the intensive image is similar to the raw image at the same position. The flow signal is not outstanding.This is attributed to the fact that the first principal component only extracts the static speckle signal but does not completely remove the influence of laser speckle effect. Further studies will investigate and elucidate the speckle effect from the first principal component signal.Figure 3c shows the imaging outcomes when MD is used as the imaging parameter following processing based on Equation (5). Compared with Figure 3a, b,the averaged intensity values of the boxes 1, 2, and 3,are 0.12, 0.49, and 0.63, respectively. The intensity of the swimming bladder(box 1)has been declined.This means that the background static signal is eliminated.However, the flow signal of the posterior cardinal vein(box 3)has been improved considerably.

    Fig.3 Various normalized two-dimensional(2D)images at the same projection position

    Figure 4 shows the 3D experimental results for the zebrafish with the back-projection algorithm.Figure 4a and Supplementary movie S1 shows the 3D absorption image, the spinal cord and dorsal fins can be observed clearly, but the organ located in the abdomen cannot be reconstructed owing to the increased absorption. From the 3D absorption image,one can infer that the speckle pattern is attenuated considerably. The reason for this is attributed to the fact that the back-projection computation at different positions has superimposed the speckle effect at the trajectory light path. In other words, the filter backprojection algorithm can lead to a more consistent reconstruction absorption effect. Figure 4b and Supplementary movie S2 shows the 3D vascular distribution image of the specimen based on the reconstruction of the flow images extracted by the PCA method.In this reconstruction,the major vessels,such as the posterior cardinal, hepatic portal, and gonadal veins, and blood capillaries, such as the intersegment vessels, can be observed clearly. These outcomes have considerable reference value to life science research. Figure 4c and Supplementary movie S3 is the fusion of the 3D absorption and 3D vascular distribution images. Serial numbers1,2, and3represent the zebrafish swimming bladder, spinal cord, and posterior cardinal veins, as shown in Figure 3, respectively. As observed in the 3D fusion image,the swimming bladder disappeared. It is sheltered by the spinal cord in some projection positions. We consider that the reason for this is attributed to the flat shape of the specimen. However, the spinal cord and posterior cardinal vein can be clearly observed. Our results show that our method can realize the dualcontrast optical projection tomography for a live zebrafish. The 3D visualization of the blood-flow network and skeleton should be applied in physiological developmental studies for live model organisms.

    Fig.4 Three-dimensional(3D)diagram of experimental results

    Figure 5 shows the images of the zebrafish section marked by a white dotted line, and the yellow arrows in Figure 4c. Figure 5a shows the absorption image slice map in which the skeleton distribution of the specimen was reconstructed. We can clearly observe the cross-sectional image of the spinal cord,dorsal, and ventral fin. Figure 5b shows the vascular distribution in this section in which the major vascular channels, such as the aorta and cardinal vein, hepatic portal vein, and the intersegment vessels (highlighted in red) can be clearly observed. Figure 5c shows the fused images shown in Figure 5a, b, The outcome shows details of the skeleton and the distribution of vascularity, and provides more comprehensive information for life science research. To evaluate the spatial resolution of this system, two curves are plotted in Figure 5d that show the fluctuations of the signals along the white line on Figure 5c. The red curve represents the blood flow signal of the specimen, and the black curve represents the skeleton signal. We cut across the half-amplitude and quarteramplitude lines in the red curve points inA,A', andB,B', respectively. |BB'-AA'|in Figure 5d is approximately 31.45 μm. Additionally, the value of the black curve in |DD'-CC'|is 24.05 μm[14].Compared with our previous method[6], the experimental results show that our method can not only achieve the 3D visualization of bones with a lower number of frames, but also acquire the highresolution 3D blood flow network imaging in the same optical system.

    Although the proposed method simultaneously achieves dual-contrast optical projection tomography,it is only suitable for the case that the sample is nearly transparent, thickness uniform, and the size is within the depth of field. There are some improvements should be further considered in our future study. DCOPT can highlight 3D skeleton and blood flow of microbial specimens simultaneously. But we admit there is an entanglement relationship between the extracted static signals and absorption or scattering coefficient, we should verify it in the future work. In the current experiment, we used a glass tube (n=1.5)in water (n=1.33) to match the refractive index. In order to obtain higher accuracy refractive index match, the FEP tubes (n=1.37) will be used in future experiments.

    Fig.5 The images of the zebrafish section marked by a white dotted line,and the yellow arrows in Figure 4c

    4 Conclusion

    We propose a dual-contrast optical projection tomography method to simultaneously acquire a 3D visualization of the blood-flow network and skeleton.2D absorption and flow images of each projection position are extracted based on the separation of dynamic blood flow signals from static background signals. 3D blood flow network and bone were reconstructed by the filtered backprojection algorithm.The innovation of this method is that we use the idea of static background signal and dynamic blood flow signal separation to realize the fast, simultaneous,dual-contrast 3D images of the blood-flow network and skeleton. The experimental results in live biological specimens prove the feasibility of our method and may have potential applications in physiological developmental studies of live model organisms.

    SupplementaryPIBB_20210124.Movie_S1-S3.mpg are available online (http://www.pibb.ac.cn or http://www.cnki.net).

    九草在线视频观看| 一区二区av电影网| 亚洲 欧美一区二区三区| 精品一区二区三区视频在线| 夜夜爽夜夜爽视频| 免费高清在线观看日韩| 精品一区二区三区四区五区乱码 | 三级国产精品片| 欧美97在线视频| 国产白丝娇喘喷水9色精品| 一区二区三区精品91| 亚洲综合色网址| 99九九在线精品视频| 三上悠亚av全集在线观看| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 一边亲一边摸免费视频| www日本在线高清视频| av在线app专区| 女性生殖器流出的白浆| www.色视频.com| 97人妻天天添夜夜摸| 乱人伦中国视频| 大香蕉久久网| 精品久久久久久电影网| 在线观看免费高清a一片| 超碰97精品在线观看| 日韩在线高清观看一区二区三区| 亚洲精品自拍成人| 国产亚洲最大av| 下体分泌物呈黄色| 国产成人午夜福利电影在线观看| 婷婷色麻豆天堂久久| 多毛熟女@视频| av女优亚洲男人天堂| 亚洲第一av免费看| 亚洲精品aⅴ在线观看| 成人国语在线视频| 人妻人人澡人人爽人人| 日日啪夜夜爽| 日本黄大片高清| 黑人高潮一二区| 亚洲精品国产av成人精品| 亚洲av在线观看美女高潮| 成年人免费黄色播放视频| 国产精品成人在线| 最近中文字幕高清免费大全6| 国产无遮挡羞羞视频在线观看| 18禁国产床啪视频网站| 免费观看a级毛片全部| 黄片播放在线免费| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 少妇被粗大猛烈的视频| 精品久久久精品久久久| 老女人水多毛片| 色网站视频免费| 精品久久久久久电影网| 高清欧美精品videossex| av在线app专区| 九九在线视频观看精品| 桃花免费在线播放| 中文字幕精品免费在线观看视频 | 男女高潮啪啪啪动态图| 另类精品久久| 久久久久精品人妻al黑| 极品人妻少妇av视频| 精品卡一卡二卡四卡免费| 丝瓜视频免费看黄片| 90打野战视频偷拍视频| 国产欧美另类精品又又久久亚洲欧美| 丝袜脚勾引网站| 久久这里有精品视频免费| 亚洲精品aⅴ在线观看| 国产精品三级大全| 亚洲欧美日韩另类电影网站| 精品人妻熟女毛片av久久网站| 国产精品一国产av| 99久久综合免费| 99久久人妻综合| 色网站视频免费| 亚洲精品乱久久久久久| 亚洲人与动物交配视频| 欧美老熟妇乱子伦牲交| 免费播放大片免费观看视频在线观看| 午夜福利影视在线免费观看| 国产高清三级在线| 亚洲激情五月婷婷啪啪| 久久97久久精品| 亚洲美女搞黄在线观看| 中文字幕另类日韩欧美亚洲嫩草| 黑人猛操日本美女一级片| 韩国av在线不卡| 国产伦理片在线播放av一区| 日韩精品有码人妻一区| 99久国产av精品国产电影| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 激情五月婷婷亚洲| 欧美人与性动交α欧美软件 | 最近最新中文字幕免费大全7| 夫妻午夜视频| 欧美 日韩 精品 国产| 90打野战视频偷拍视频| 国产精品三级大全| 在线观看www视频免费| 捣出白浆h1v1| 99热网站在线观看| 国产精品99久久99久久久不卡 | 日本欧美视频一区| 91国产中文字幕| 亚洲精品av麻豆狂野| 精品99又大又爽又粗少妇毛片| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 久久人人爽人人片av| 久久久久久久久久成人| av免费在线看不卡| 一级黄片播放器| 久久久欧美国产精品| 免费女性裸体啪啪无遮挡网站| 免费av不卡在线播放| 精品人妻偷拍中文字幕| av免费观看日本| 日韩中字成人| av免费在线看不卡| 狂野欧美激情性xxxx在线观看| 9191精品国产免费久久| 久久久久精品性色| 人妻系列 视频| 欧美日韩av久久| 丰满饥渴人妻一区二区三| av在线app专区| 国产成人一区二区在线| 熟女av电影| 亚洲人成77777在线视频| 日韩熟女老妇一区二区性免费视频| 国产成人精品无人区| 18在线观看网站| 在线观看免费日韩欧美大片| 久久人人爽人人爽人人片va| 男女高潮啪啪啪动态图| 精品久久久精品久久久| 欧美成人精品欧美一级黄| 99re6热这里在线精品视频| 国产女主播在线喷水免费视频网站| av片东京热男人的天堂| 亚洲精品自拍成人| 国产日韩一区二区三区精品不卡| 丁香六月天网| 这个男人来自地球电影免费观看 | 国产精品免费大片| 国产精品久久久久久精品古装| 色94色欧美一区二区| 久久久久视频综合| 国产黄色视频一区二区在线观看| videosex国产| √禁漫天堂资源中文www| 欧美亚洲日本最大视频资源| 成人毛片60女人毛片免费| 成人影院久久| 男女午夜视频在线观看 | 香蕉精品网在线| 久久国产精品大桥未久av| 亚洲内射少妇av| 国产精品一二三区在线看| 看十八女毛片水多多多| 中文精品一卡2卡3卡4更新| 在线免费观看不下载黄p国产| 免费看光身美女| 爱豆传媒免费全集在线观看| 99热6这里只有精品| 国产欧美亚洲国产| 爱豆传媒免费全集在线观看| 亚洲国产成人一精品久久久| 国产成人精品无人区| 观看美女的网站| 免费黄频网站在线观看国产| 成人黄色视频免费在线看| 日韩欧美精品免费久久| 伦精品一区二区三区| 亚洲国产av影院在线观看| 男人爽女人下面视频在线观看| 免费在线观看完整版高清| 国产一区二区在线观看av| 午夜激情av网站| 看免费成人av毛片| √禁漫天堂资源中文www| 亚洲精品国产av蜜桃| 久久人妻熟女aⅴ| 黄片播放在线免费| 成年动漫av网址| av福利片在线| 人妻少妇偷人精品九色| 久久国产精品大桥未久av| 91久久精品国产一区二区三区| 熟妇人妻不卡中文字幕| 最新的欧美精品一区二区| 毛片一级片免费看久久久久| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 精品少妇内射三级| 亚洲成av片中文字幕在线观看 | 狂野欧美激情性xxxx在线观看| 丝瓜视频免费看黄片| a级毛片在线看网站| 毛片一级片免费看久久久久| 欧美激情国产日韩精品一区| 欧美另类一区| 一个人免费看片子| 26uuu在线亚洲综合色| 男人爽女人下面视频在线观看| 看免费成人av毛片| √禁漫天堂资源中文www| 自线自在国产av| 母亲3免费完整高清在线观看 | 黄色视频在线播放观看不卡| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 日韩视频在线欧美| 我的女老师完整版在线观看| 18禁观看日本| 1024视频免费在线观看| 国内精品宾馆在线| 久久国产精品大桥未久av| 久久影院123| 精品人妻一区二区三区麻豆| freevideosex欧美| 女性被躁到高潮视频| 精品酒店卫生间| 伦理电影免费视频| 成人综合一区亚洲| 亚洲av男天堂| 黄色 视频免费看| 亚洲av欧美aⅴ国产| 91精品伊人久久大香线蕉| 考比视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 成人二区视频| 欧美亚洲 丝袜 人妻 在线| 高清欧美精品videossex| 日本黄色日本黄色录像| 精品久久国产蜜桃| 久久久久久久亚洲中文字幕| 美女国产视频在线观看| 欧美日韩亚洲高清精品| av在线观看视频网站免费| 国内精品宾馆在线| 精品国产一区二区三区久久久樱花| 国产精品女同一区二区软件| 18禁观看日本| 观看av在线不卡| 黄色视频在线播放观看不卡| 亚洲国产精品一区二区三区在线| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 高清不卡的av网站| 人人妻人人爽人人添夜夜欢视频| 一级a做视频免费观看| 老熟女久久久| 久久99蜜桃精品久久| 国内精品宾馆在线| 一级毛片黄色毛片免费观看视频| 久久韩国三级中文字幕| 免费看光身美女| 激情五月婷婷亚洲| 午夜免费观看性视频| 亚洲伊人久久精品综合| 久久久久久人人人人人| 成人手机av| 成年人午夜在线观看视频| 不卡视频在线观看欧美| 亚洲国产精品一区三区| 日韩在线高清观看一区二区三区| 久久久精品94久久精品| 一区二区日韩欧美中文字幕 | 超碰97精品在线观看| 男的添女的下面高潮视频| 99九九在线精品视频| 不卡视频在线观看欧美| 观看美女的网站| 两个人免费观看高清视频| 亚洲av男天堂| av黄色大香蕉| 亚洲av成人精品一二三区| 麻豆乱淫一区二区| 久久久亚洲精品成人影院| 欧美 亚洲 国产 日韩一| 国产欧美亚洲国产| 91在线精品国自产拍蜜月| 蜜桃在线观看..| xxx大片免费视频| 自线自在国产av| 国产 一区精品| 国产成人aa在线观看| 亚洲欧美一区二区三区黑人 | 午夜福利视频在线观看免费| 一级毛片 在线播放| 晚上一个人看的免费电影| 亚洲精品视频女| 在现免费观看毛片| 最近最新中文字幕大全免费视频 | 这个男人来自地球电影免费观看 | 一本大道久久a久久精品| 99久久中文字幕三级久久日本| 少妇 在线观看| 欧美xxⅹ黑人| 2021少妇久久久久久久久久久| 成人免费观看视频高清| 国产成人a∨麻豆精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一边亲一边摸免费视频| 国产精品久久久av美女十八| 成人国语在线视频| 日本91视频免费播放| 精品一区二区三区四区五区乱码 | 久久99精品国语久久久| 久久久久国产精品人妻一区二区| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| 你懂的网址亚洲精品在线观看| 亚洲欧美日韩卡通动漫| 免费看光身美女| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 久久人人爽人人爽人人片va| 丝袜喷水一区| 我的女老师完整版在线观看| 日韩制服丝袜自拍偷拍| 一区二区av电影网| 97在线人人人人妻| 女人精品久久久久毛片| tube8黄色片| 精品一区二区三区四区五区乱码 | 日韩一本色道免费dvd| 99久久精品国产国产毛片| 波野结衣二区三区在线| 高清不卡的av网站| 久久女婷五月综合色啪小说| 丰满少妇做爰视频| 在线天堂最新版资源| 亚洲国产最新在线播放| 插逼视频在线观看| 性色avwww在线观看| 精品酒店卫生间| 日日爽夜夜爽网站| 亚洲经典国产精华液单| 热re99久久国产66热| 看免费成人av毛片| 热re99久久国产66热| 成人免费观看视频高清| 亚洲国产最新在线播放| 免费女性裸体啪啪无遮挡网站| 日韩免费高清中文字幕av| 免费av不卡在线播放| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 久久精品国产综合久久久 | 国产精品久久久久久精品电影小说| 精品熟女少妇av免费看| 女性被躁到高潮视频| 亚洲av日韩在线播放| 欧美 亚洲 国产 日韩一| av.在线天堂| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 成年人午夜在线观看视频| 国产免费一级a男人的天堂| 五月天丁香电影| 成人毛片60女人毛片免费| 男人爽女人下面视频在线观看| 久久99一区二区三区| 亚洲四区av| 在线看a的网站| 99久久精品国产国产毛片| 欧美xxⅹ黑人| 欧美精品亚洲一区二区| 丝袜人妻中文字幕| 欧美丝袜亚洲另类| 26uuu在线亚洲综合色| 久久久久久人妻| 又大又黄又爽视频免费| 新久久久久国产一级毛片| 色吧在线观看| 免费少妇av软件| 在线观看三级黄色| 国产午夜精品一二区理论片| 青青草视频在线视频观看| 亚洲久久久国产精品| 免费观看性生交大片5| 久久鲁丝午夜福利片| 黄色怎么调成土黄色| 国产欧美亚洲国产| 咕卡用的链子| 精品熟女少妇av免费看| 欧美精品亚洲一区二区| av播播在线观看一区| 亚洲精品456在线播放app| 美女主播在线视频| 国产在线一区二区三区精| 色吧在线观看| 午夜福利乱码中文字幕| 丰满迷人的少妇在线观看| 欧美激情国产日韩精品一区| 亚洲 欧美一区二区三区| 看十八女毛片水多多多| 久久国内精品自在自线图片| 日韩一本色道免费dvd| 国产日韩欧美视频二区| av福利片在线| 丁香六月天网| 亚洲欧洲日产国产| 久久久久久久亚洲中文字幕| 极品人妻少妇av视频| 亚洲图色成人| 日韩中文字幕视频在线看片| 久久久久久人妻| 大香蕉久久成人网| 久久久久久久国产电影| 美女国产视频在线观看| 日韩精品免费视频一区二区三区 | 精品亚洲成国产av| 亚洲国产欧美在线一区| 日韩视频在线欧美| 青春草亚洲视频在线观看| 精品人妻熟女毛片av久久网站| 久久国产亚洲av麻豆专区| 色94色欧美一区二区| 中文字幕精品免费在线观看视频 | 国产精品久久久久久久久免| www.色视频.com| 免费少妇av软件| 欧美少妇被猛烈插入视频| 宅男免费午夜| 国产成人a∨麻豆精品| 国产精品久久久久久久电影| 亚洲欧美清纯卡通| 日韩av在线免费看完整版不卡| 韩国av在线不卡| 69精品国产乱码久久久| 97在线人人人人妻| 国产亚洲午夜精品一区二区久久| 国产伦理片在线播放av一区| 99久久综合免费| 制服丝袜香蕉在线| 国产精品一区www在线观看| 午夜日本视频在线| 女人被躁到高潮嗷嗷叫费观| 中国三级夫妇交换| 亚洲丝袜综合中文字幕| 久久午夜综合久久蜜桃| videosex国产| 中文乱码字字幕精品一区二区三区| 国产精品 国内视频| 欧美3d第一页| 七月丁香在线播放| 青春草视频在线免费观看| 伦理电影免费视频| 女性生殖器流出的白浆| 亚洲精品日本国产第一区| 国产精品国产三级专区第一集| 亚洲国产欧美日韩在线播放| 美女国产视频在线观看| 考比视频在线观看| 久久 成人 亚洲| av.在线天堂| 亚洲精品第二区| 国产 一区精品| 极品少妇高潮喷水抽搐| 久久久精品94久久精品| 国产在线免费精品| 五月天丁香电影| 久久99蜜桃精品久久| 国产深夜福利视频在线观看| 日本猛色少妇xxxxx猛交久久| 伦精品一区二区三区| 国产精品久久久久久av不卡| 男女免费视频国产| 久久精品久久久久久久性| 亚洲国产av新网站| 成人午夜精彩视频在线观看| 女性生殖器流出的白浆| 亚洲欧美清纯卡通| 欧美日韩成人在线一区二区| 精品亚洲乱码少妇综合久久| 午夜久久久在线观看| 亚洲国产精品999| av卡一久久| 亚洲av日韩在线播放| 久久99热6这里只有精品| 汤姆久久久久久久影院中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 18禁国产床啪视频网站| 午夜福利视频精品| 交换朋友夫妻互换小说| 18禁动态无遮挡网站| 日韩大片免费观看网站| 成人午夜精彩视频在线观看| 91精品国产国语对白视频| 精品国产一区二区三区久久久樱花| 国产黄色视频一区二区在线观看| 又大又黄又爽视频免费| 亚洲丝袜综合中文字幕| 亚洲,一卡二卡三卡| 全区人妻精品视频| 天堂俺去俺来也www色官网| 最新中文字幕久久久久| 欧美97在线视频| 免费大片18禁| 99视频精品全部免费 在线| 欧美精品亚洲一区二区| 视频区图区小说| 高清在线视频一区二区三区| 久久ye,这里只有精品| 90打野战视频偷拍视频| 欧美xxxx性猛交bbbb| 人人妻人人澡人人看| 成人综合一区亚洲| 国产av国产精品国产| 最近最新中文字幕大全免费视频 | 我的女老师完整版在线观看| 日韩成人伦理影院| 亚洲精品国产av成人精品| 超色免费av| 高清在线视频一区二区三区| 中文字幕最新亚洲高清| 精品国产一区二区三区久久久樱花| 亚洲五月色婷婷综合| 精品一区二区三区四区五区乱码 | 国产男人的电影天堂91| 亚洲,欧美,日韩| 欧美 亚洲 国产 日韩一| 亚洲美女黄色视频免费看| 国产精品麻豆人妻色哟哟久久| 久久综合国产亚洲精品| 色网站视频免费| 黄网站色视频无遮挡免费观看| 草草在线视频免费看| 精品一品国产午夜福利视频| 久久97久久精品| 欧美精品一区二区大全| 女的被弄到高潮叫床怎么办| 啦啦啦在线观看免费高清www| 欧美老熟妇乱子伦牲交| 春色校园在线视频观看| 亚洲av中文av极速乱| 伊人久久国产一区二区| av天堂久久9| 国产男女超爽视频在线观看| 在线免费观看不下载黄p国产| www.色视频.com| 中国美白少妇内射xxxbb| 中文字幕精品免费在线观看视频 | 国产色爽女视频免费观看| 两个人看的免费小视频| 亚洲欧美精品自产自拍| 久久久久久久大尺度免费视频| 精品午夜福利在线看| 国产欧美亚洲国产| 欧美xxxx性猛交bbbb| 亚洲综合色惰| 亚洲成av片中文字幕在线观看 | 欧美日韩av久久| 少妇人妻 视频| kizo精华| 人妻人人澡人人爽人人| 国产精品一国产av| 美女中出高潮动态图| 亚洲色图综合在线观看| 久久免费观看电影| 亚洲av在线观看美女高潮| 亚洲国产精品一区三区| 男女免费视频国产| 欧美日韩亚洲高清精品| 激情五月婷婷亚洲| 亚洲成人av在线免费| 国产无遮挡羞羞视频在线观看| 大片电影免费在线观看免费| 国产成人精品福利久久| av女优亚洲男人天堂| 亚洲国产av影院在线观看| 人妻一区二区av| 日本欧美国产在线视频| 最新中文字幕久久久久| a级片在线免费高清观看视频| 午夜福利影视在线免费观看| 国产熟女午夜一区二区三区| 考比视频在线观看| 亚洲婷婷狠狠爱综合网| 国产精品国产三级专区第一集| 国产日韩欧美在线精品| 午夜福利视频精品| 在线观看免费日韩欧美大片| 在线观看一区二区三区激情| 久久精品久久精品一区二区三区| 22中文网久久字幕| 老女人水多毛片| 一区二区三区四区激情视频| 久久久亚洲精品成人影院| 在线观看人妻少妇| 高清不卡的av网站| 国产精品国产三级专区第一集| 日本欧美视频一区| 大片免费播放器 马上看| 中文欧美无线码| 男人添女人高潮全过程视频| 精品少妇内射三级| 欧美精品一区二区免费开放| 午夜福利视频在线观看免费| 欧美日韩视频高清一区二区三区二| 纵有疾风起免费观看全集完整版| 欧美成人精品欧美一级黄| 欧美精品av麻豆av| 国产福利在线免费观看视频| 高清在线视频一区二区三区|