向妙蓮,吳帆,李樹成,王印寶,肖劉華,彭文文,陳金印,2,陳明
褪黑素處理對梨果實采后黑斑病及貯藏品質(zhì)的影響
1江西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/江西省果蔬采后處理關(guān)鍵技術(shù)與質(zhì)量安全協(xié)同創(chuàng)新中心/江西省果蔬保鮮與無損檢測重點實驗室,南昌 330045;2萍鄉(xiāng)學(xué)院,江西萍鄉(xiāng) 337055
【】探究褪黑素(Melatonine,MT)處理對梨果實采后黑斑病及貯藏品質(zhì)的影響,為外源物質(zhì)調(diào)控果實抗采后病害及貯藏品質(zhì)提供理論依據(jù)和參考。以‘翠冠’梨果實為試驗材料,噴施0.1 mmol·L-1MT溶液置室溫,48 h后沿梨果實赤道兩側(cè)刺直徑1 mm、深度3 mm大小兩個小孔,待傷口晾干后注入20 μL濃度為1.0×106spores/mL黑斑病菌()孢子懸浮液,以無菌水處理作為對照。接種后果實置于25℃,分析梨果實病斑直徑、誘導(dǎo)效果及過氧化氫酶()、過氧化物酶()多酚氧化酶()、銅-鋅超氧化物歧化酶()等防御酶相關(guān)基因和幾丁質(zhì)酶()、-1, 3葡聚糖酶()等病程相關(guān)基因的表達(dá)量,研究MT誘導(dǎo)梨果實抗黑斑病的效應(yīng)和機(jī)理。此外,梨果實噴施0.1 mmol·L-1MT溶液晾干后于(5±1)℃、相對濕度85%—90%貯藏42 d,以無菌水處理為對照,定期測定果實腐爛率、失重率、呼吸強(qiáng)度、硬度、可溶性固形物、可滴定酸、維生素C、總酚和丙二醛含量,從而探討MT處理對梨果實貯藏效果和品質(zhì)的影響。梨果實接種后,病斑直徑隨接種時間延長而逐漸增大,MT處理組果實病斑直徑顯著小于對照組(<0.05),接種后第3、5和7天,MT對梨果實抗黑斑病的誘導(dǎo)效應(yīng)分別為29.16%、45.03%和23.26%;梨果實、、和相對表達(dá)量在接種后第4—7天均顯著高于對照,最大值分別為對照的1.35、2.08、2.28、2.02、2.89和3.45倍,其中和在接種后第1—6天表達(dá)量持續(xù)上升,且MT處理可顯著提高表達(dá)量,表明MT處理誘導(dǎo)梨果實抗黑斑病可能與其提高防御酶基因和病程相關(guān)蛋白基因表達(dá)密切相關(guān)。在低溫貯藏期間,MT處理組果實腐爛率與對照組差異不顯著,或因病原菌在低溫下生長受到抑制,果實腐爛降低;梨果實硬度在貯藏期內(nèi)逐漸下降,但MT處理組果實硬度均高于對照組,在28 d時差異顯著,MT處理組為對照組的1.06倍;梨果實呼吸強(qiáng)度在貯藏前期(7—14 d)上升后下降,但與對照組相比,MT處理抑制果實呼吸強(qiáng)度,延緩果實衰老的效果在貯藏前期較后期更明顯;此外,MT處理也可顯著降低果實失重率,維持較高水平的可溶性固形物,延緩可滴定酸和維生素C降解,同時促進(jìn)果實總酚含量積累,增強(qiáng)果實抗氧化能力,抑制MDA含量積累,減輕細(xì)胞膜脂過氧化傷害。以上結(jié)果揭示MT可能通過調(diào)節(jié)梨果實糖、酸和細(xì)胞壁代謝,從而增強(qiáng)果實品質(zhì)與耐貯性。0.1 mmol·L-1MT處理誘導(dǎo)了梨果實對采后黑斑病的抗性,激發(fā)了果實防御酶和病程相關(guān)蛋白基因的表達(dá),且能顯著提高梨果實貯藏品質(zhì)。
褪黑素;梨;果實;黑斑病;誘導(dǎo)抗性;貯藏品質(zhì)
【研究意義】‘翠冠’梨(cv Cuiguan)屬早熟品種,目前在中國南方地區(qū)多有栽培,具有皮薄肉脆汁多,早熟高產(chǎn)質(zhì)優(yōu)的特點[1]。成熟期在七月中下旬,正值高溫高濕環(huán)境,果實采后極易快速衰老,感染病害而劣變,從而造成嚴(yán)重經(jīng)濟(jì)損失。黑斑病是由鏈格孢()引起的梨常見病害之一[2],該病害在梨生長發(fā)育、果實運輸貯藏過程中均可發(fā)生,給梨產(chǎn)業(yè)造成很大經(jīng)濟(jì)損失?!厩叭搜芯窟M(jìn)展】隨著我國冷藏和氣調(diào)貯藏設(shè)施及技術(shù)的不斷完善,可通過調(diào)控貯藏條件有效維持梨果實采后品質(zhì)[3-5],也有研究表明通過生防菌和外源誘導(dǎo)劑處理能顯著減少果實采后病害的發(fā)生,提高貯藏品質(zhì)[6-8]。褪黑素(Melatonin,MT)作為一種植物內(nèi)源多功能生物信號分子,在植物生長發(fā)育,成熟衰老等生理代謝和植物生物與非生物脅迫應(yīng)答過程中有著重要作用[9-12]。近年來,褪黑素在果蔬采后貯藏保鮮的作用已成為研究熱點。研究者發(fā)現(xiàn)當(dāng)植物遭遇逆境脅迫時,外源MT可通過調(diào)控生理代謝信號通路,激發(fā)抗逆基因表達(dá),從而增強(qiáng)植物抗逆性。如外源MT通過調(diào)控活性氧代謝和抗氧化酶系統(tǒng)抑制荔枝[13]果實褐變,增強(qiáng)桃[14]、杏[15]果實抗冷性,保持梨[16]、石榴[17]、蘋果[18]、芒果[19]果實的品質(zhì),從而延長貯藏時間。此外,生吉萍等[20]發(fā)現(xiàn)MT可通過激活抗病相關(guān)基因、等的表達(dá)提高番茄對灰霉病的抗性。MT還可誘導(dǎo)激活茉莉酸通路中的茉莉酸合成關(guān)鍵酶基因啟動,促進(jìn)其表達(dá),最終影響茉莉酸含量,從而增強(qiáng)梨果實輪紋病抗性[21]?!颈狙芯壳腥朦c】目前國內(nèi)外有關(guān)褪黑素處理對梨采后黑斑病及貯藏品質(zhì)影響的報道很少。筆者課題組前期試驗初步解析了0.025—0.3 mmol·L-1MT處理對梨果實抗黑斑病的影響,結(jié)果表明0.1 mmol·L-1MT處理能顯著誘導(dǎo)‘翠冠’梨果實抗采后黑斑病,可能與其增強(qiáng)梨果實抗病防御酶活性、調(diào)控活性氧代謝、促進(jìn)病程相關(guān)蛋白有關(guān),但MT對梨果實抗病相關(guān)基因及冷藏品質(zhì)的影響還有待深入研究?!緮M解決的關(guān)鍵問題】在MT處理梨果實后,通過測定病斑直徑、關(guān)鍵防御酶及病程相關(guān)蛋白基因表達(dá),分析抗病相關(guān)基因在整個病程中的表達(dá)趨勢和梨果實冷藏品質(zhì)的變化,為研發(fā)MT在生產(chǎn)實際中調(diào)控梨果實采后品質(zhì)的方法提供理論依據(jù)和參考。
試驗用果:‘翠冠’梨果實于2019年7月15日(盛花期后114 d)采自江西省吉安市峽江縣金坪鄉(xiāng)精品富興果業(yè)良種示范園,采摘后挑選無病蟲害、大小均勻的果實,置于陰涼通風(fēng)處36 h,充分散去田間熱后備用。
供試菌株:由江西農(nóng)業(yè)大學(xué)植物病理實驗室提供。黑斑病菌()分離自典型黑斑病‘翠冠’梨果實,單孢分離后-80℃保存。
供試試劑:MT購自美國Sigma公司,先使用少許0.1% Tween80和乙醇混合均勻,后加無菌水配置濃度為0.1 mmol·L-1的溶液,保存于4℃冰箱備用。Hifair?Ⅲ試劑盒購自翌圣生物科技(上海)有限公司,SYBR?Premix購自寶生物工程(大連)有限公司。
1.2.1 鏈格孢孢子懸浮液制備鏈格孢()于PDA培養(yǎng)基上培養(yǎng)5—7 d后,用無菌水洗脫孢子,經(jīng)無菌脫脂棉過濾后用血球計數(shù)板計數(shù),配置濃度為1.0×106spores/mL孢子懸浮液,現(xiàn)配現(xiàn)用。
1.2.2 MT誘導(dǎo)梨果實抗黑斑病的效應(yīng) 取1.1所述梨果實,用0.1%次氯酸鈉溶液浸泡果實1—2 min,經(jīng)自來水沖洗干凈,室溫晾干,噴施0.1 mmol·L-1MT溶液,置于25℃恒溫,48 h后用75%的酒精擦拭表面,無菌接種針沿梨果實赤道兩側(cè)各刺直徑1.0 mm、深度3.0 mm的小孔,待傷口晾干后分別注入20 μL孢子懸浮液,每組處理60個果,3次重復(fù),以無菌水處理作為對照。接種果實于25℃培養(yǎng)。
誘導(dǎo)效果:處理和對照隨機(jī)選取12個果實,逐日觀察梨果實發(fā)病情況,采用十字交叉法測量病斑直徑,按以下公式計算誘導(dǎo)效果:誘導(dǎo)效果=(對照病斑直徑-處理組病斑直徑)/對照病斑直徑×100%。
RNA提取與檢測:接種后第0—7天逐日隨機(jī)選取4個果實,取梨果實病健交界處果肉,液氮迅速冷凍后置-80℃?zhèn)溆?。使用CTAB法提取梨果實總RNA。使用微量核酸分析儀和1%瓊脂糖凝膠電泳并檢測RNA的質(zhì)量。使用Hifair?Ⅲ試劑盒(翌圣,上海)反轉(zhuǎn)錄RNA合成cDNA第一鏈。制備的cDNA儲存在?80℃超低溫冰箱用于后續(xù)RT-qPCR試驗。
基因表達(dá)分析:以為內(nèi)參[22],使用TB Green??(Takara,大連)通過RT-qPCR方法檢測6種抗病相關(guān)基因的表達(dá),引物序列如表1所示。PCR反應(yīng)程序設(shè)定為:95℃預(yù)變性進(jìn)行30 s,95℃持續(xù)5 s,60℃退火持續(xù)30 s,72℃延伸30 s,進(jìn)行40個循環(huán)。反應(yīng)體系為10 μL,包括5 μL TB Green,上、下游引物各0.3 μL,3.4 μL ddH2O,1 μL cDNA。每個樣品進(jìn)行3次重復(fù)?;虮磉_(dá)結(jié)果采用2-ΔΔCt計算[23]。
1.2.3 MT對梨果實貯藏效果和品質(zhì)的影響 取1.1所述梨果實,噴施0.1 mmol·L-1MT溶液晾干后于5℃、相對濕度85%—90%貯藏,以無菌水處理為對照,每處理120個果,3次重復(fù)。分別隨機(jī)取20個果實用于腐爛率和失重率測定,另外,每隔7 d隨機(jī)選取6個果實,去皮后取果肉切碎混勻,液氮迅速冷凍后置-80℃?zhèn)溆谩?/p>
腐爛率(%)=腐爛個數(shù)/總數(shù)×100。失重率:隨機(jī)選取20個梨果實編號并稱重。失重率(%)=(貯藏前重量-貯藏后重量)/貯藏前重量×100。每7 d測量一次指標(biāo)并統(tǒng)計數(shù)據(jù)。
表1 引物序列
采用手持?jǐn)?shù)顯糖度計(RA250-WE)測定果實可溶性固形物(TSS,%),可滴定酸含量采用酸堿滴定法(%),總糖含量采用蒽酮比色法(%),維生素C含量(Vc)采用2, 6-二氯靛酚滴定法測定(mg/100 g)。
使用TA.XT Plus型質(zhì)構(gòu)儀(英國SMS公司)測定果實硬度,每個果實隨機(jī)均勻取赤道部附近,去果皮測定6個點,每組處理測定6個果實,3次重復(fù);使用果蔬呼吸測定儀(GHX-3051H)測定梨果實呼吸速率,脫CO2的空氣為載氣,以標(biāo)準(zhǔn)CO2(1 040 μL·L-1)校準(zhǔn);MDA含量測定采用硫代巴比妥酸法;總酚含量根據(jù)Folin-Ciocalteu法測定,以沒食子酸作標(biāo)準(zhǔn)曲線計算總酚含量,樣品總酚含量換算為每100克鮮重樣品沒食子酸含量。
采用Excel 2013和SPSS20.0軟件對數(shù)據(jù)進(jìn)行處理和分析,使用-test和Duncan新復(fù)極差法進(jìn)行差異顯著性分析。
如圖1-A所示,對照組與0.1 mmol·L-1MT處理組果實病斑直徑隨接種時間延長而逐漸增大,在第3天時開始出現(xiàn)顯著性差異,且MT處理組果實病斑直徑在第3—7天均顯著小于對照(<0.05)。MT處理組果實誘導(dǎo)效應(yīng)呈先上升后下降趨勢(圖1-B),在第5天時達(dá)最大值45.03%,與其余時間點相比差異顯著,分別是第3和7天的1.54和1.94倍(<0.05)。對照和MT處理果實病斑大小見圖1-C。
如圖2-A所示,損傷接種后梨果實相對表達(dá)量于0—2 d上升,2—4 d下降,5—7 d上升。且與對照相比,MT處理組相對表達(dá)量均顯著提高,第2天時差異極顯著,相對表達(dá)量是對照的2.49倍(<0.01),而在第5天其表達(dá)量達(dá)到最高,是對照的1.35倍(<0.01)。
損傷接種后,梨果實相對表達(dá)量在0—6 d呈上升趨勢,第7天時下降(圖2-B)。MT處理組的表達(dá)量在1—3 d與對照無顯著性差異,但在4—7 d顯著高于對照,分別是對照的1.47、1.76、2.08和1.32倍(<0.01)。
從圖2-C可知,梨果實相對表達(dá)量隨接種時間延長整體呈上升趨勢。與對照相比,MT處理組相對表達(dá)量第1天不顯著,第3天顯著降低,其他均顯著高于對照,在第6天相對表達(dá)量達(dá)到最高,為對照的2.28倍(<0.01)。
鏈格孢損傷接種后梨果實相對表達(dá)量與相對表達(dá)量趨勢相同,隨接種時間延長,整體呈上升趨勢(圖2-D)。與對照相比,MT處理組相對表達(dá)量除第3天為對照的71.79%外,其余時間均顯著高于對照,且在第7天達(dá)到最高,為對照的2.02倍(<0.01)。
**表示同一時間MT處理和對照之間差異極顯著(P<0.01),不同小寫字母表示經(jīng)Duncan新復(fù)極差檢驗在P<0.05水平上有顯著性差異。下同
由圖3-A可知,梨果實損傷接種后,相對表達(dá)量隨時間延長逐漸上升。與對照相比,MT處理組梨果實相對表達(dá)量除第1和3天外均顯著高于對照,在第4天急劇上升,于第6天達(dá)到峰值,分別是對照的2.97和2.89倍(<0.01)。梨果實相對表達(dá)量隨時間增加呈先上升后下降再上升的趨勢(圖3-B)。在第6天達(dá)到峰值,為對照的3.45倍,與對照相比,2—7 d表達(dá)量均顯著高于對照(<0.01)。
由圖4-A可知,冷藏期間果實腐爛率隨貯藏時間延長而逐漸上升,MT處理組與對照之間無顯著差異,在整個貯藏期都處于較低水平,42 d時約為3.00%。失重率隨貯藏時間延長而不斷升高(圖4-B)。在貯藏前期(7—28 d),MT處理組果實失重率均顯著低于對照,分別為0.09%、0.16%、0.32%和0.49%;后期(35—42 d)與對照無顯著差異。
由圖5-A所示,果實可溶性固形物含量隨貯藏時間延長呈先上升后下降再上升趨勢,除35 d外,MT處理組可溶性固形物均顯著高于對照(<0.05),前期(7—28 d)極顯著高于對照,分別為對照的1.07、1.09、1.05和1.06倍(<0.01)。
可滴定酸含量在貯藏期間先上升后下降(圖5-B)。在14、28和35 d,MT處理組可滴定酸含量極顯著高于對照,分別為對照的1.17、1.22和1.33倍(<0.01)。在7和21 d,其含量低于對照,但無顯著性差異。
圖2 褪黑素處理對梨果實防御酶基因相對表達(dá)量的影響
圖3 褪黑素處理對梨果實病程相關(guān)蛋白CHI和GLU基因相對表達(dá)量的影響
由圖5-C可知,整個貯藏期內(nèi)VC含量逐漸降低。除35 d外,MT處理組果實VC含量均顯著高于對照(<0.05),在7和21 d極顯著高于對照,分別為對照的1.20和1.18倍(<0.01)。
貯藏期間果實總糖含量整體呈上升趨勢(圖5-D)。與對照相比,MT處理組果實總糖含量在35 d顯著低于對照(<0.05),其他時間也低于對照,但無顯著性差異。
*表示處理間差異顯著(P<0.05)。下同 *indicate significant difference (P<0.05). The same as below
圖5 MT處理對梨果實冷藏期間TSS、TA、VC和總糖含量的影響
由圖6-A可知,果實硬度在貯藏期內(nèi)逐漸下降,MT處理組果實可維持較高硬度,在28 d時顯著高于對照,為對照的1.06倍(<0.05)。果實呼吸強(qiáng)度在貯藏前期(7—14 d)上升,后期下降(圖6-B)。與對照相比,MT處理組果實呼吸強(qiáng)度在7—14 d和42 d時顯著低于對照(<0.05),中期略有上升,但與對照無顯著性差異??偡雍吭谫A藏期內(nèi)逐漸上升,MT處理組果實總酚含量稍高于對照,21 d有顯著性差異,其余時間均無顯著性差異(圖6-C)。MDA含量在第7天急劇上升后又迅速下降,14—42 d穩(wěn)步上升(圖6-D)。整個貯藏期間MT處理組的MDA含量均明顯低于對照,7—28 d與對照相比有顯著性差異(<0.05)。
圖6 MT處理對梨果實冷藏期間硬度、呼吸強(qiáng)度、總酚和MDA含量的影響
CAT、PPO、SOD、POD、GLU和CHI等是寄主植物關(guān)鍵防御酶,植物受到病原微生物侵染時,外源誘導(dǎo)物質(zhì)可通過調(diào)控上述酶編碼基因表達(dá)來誘導(dǎo)植物產(chǎn)生抗病性,如獼猴桃果實經(jīng)茉莉酸甲酯(MeJA)熏蒸處理后,和表達(dá)量顯著高于對照,抗病性顯著提高[24]。李磊等[25]發(fā)現(xiàn)馬鈴薯經(jīng)水楊酸誘導(dǎo)后抗晚疫病效果增強(qiáng),過氧化物酶基因和多酚氧化酶基因表達(dá)量在施用早期顯著高于對照。2, 4-表油菜素內(nèi)酯處理葡萄果實,和抗病基因表達(dá)顯著增加,果實采后灰霉病發(fā)病率降低[26]。
MT作為近年來誘導(dǎo)植物抗病研究領(lǐng)域的新熱點,可通過調(diào)控活性氧代謝,激發(fā)防御酶活性和病程相關(guān)蛋白基因表達(dá)等提高植物抗逆性。孫子荀等[27]發(fā)現(xiàn)外源MT處理通過提高草莓抗病相關(guān)基因和等的表達(dá)量,從而提高草莓黑斑病抗性。MT處理感銹病小豆品種激發(fā)誘導(dǎo)了水楊酸通路關(guān)鍵基因表達(dá),進(jìn)而激活下游病程相關(guān)蛋白(PR1、PR5、CHI、GLU)的高水平應(yīng)答,使其獲得對銹病的抗性[28]。本研究結(jié)果表明,MT預(yù)處理激活了梨果實中防御酶基因、、、和的表達(dá)。這些防御相關(guān)基因均在后期維持較高水平表達(dá),且與對照相比差異顯著,其中和的表達(dá)量明顯高于其余基因。MT處理誘導(dǎo)梨果實對黑斑病的抗性可能與其防御酶基因和病程相關(guān)蛋白基因表達(dá)密切相關(guān)。
梨屬呼吸躍變型果實,采后貯藏期間果實呼吸作用增強(qiáng),糖、酸、VC等營養(yǎng)物質(zhì)逐漸降解,硬度下降,衰老速度加快,品質(zhì)降低[29]。本研究中,MT處理能維持梨果實硬度和TSS在較高水平,延緩可滴定酸和VC的降解,抑制呼吸速率,促進(jìn)總酚積累。MT處理甜櫻桃[30]、石榴[31]和獼猴桃[32]等果實也得出類似結(jié)論,從而有效延緩果實采后衰老。TSS的變化可能與貯藏期間糖的轉(zhuǎn)化有關(guān)[33],有研究表明MT處理可通過抑制枇杷[34]和桃果實[35]蔗糖下降,減緩葡萄糖和果糖含量變化,提高酚類物質(zhì)和有機(jī)酸含量,增強(qiáng)木質(zhì)素生物合成相關(guān)酶和抗氧化酶活性,延緩果實衰老,提高果實品質(zhì)。MT處理棗還可抑制與果實軟化相關(guān)酶(PME、PG、Cx和-glu)的活性,減緩可溶性果膠產(chǎn)生,保持果實硬度[36]。推測MT可能通過增強(qiáng)抗氧化酶活性,調(diào)節(jié)果實糖、酸和細(xì)胞壁代謝,從而增強(qiáng)果實品質(zhì)與耐貯性。本研究中,果實腐爛率在整個貯藏期都處于較低水平,但MT處理組與對照之間無顯著差異,這可能是由于病原菌在低溫下生長受到抑制,從而延緩病害發(fā)生時間[37-38]。
翠冠梨果實經(jīng)0.1 mmol·L-1MT處理,可能通過激活防御相關(guān)酶基因和病程相關(guān)蛋白基因的表達(dá),從而誘導(dǎo)梨果實抗采后黑斑病。MT處理顯著抑制低溫貯藏期間果實呼吸強(qiáng)度,延緩果實衰老,維持TSS在較高水平,延緩可滴定酸和VC的降解;同時促進(jìn)果實總酚含量的積累,增強(qiáng)果實抗氧化能力,抑制MDA含量積累,減輕細(xì)胞膜脂過氧化傷害,從而提高了果實品質(zhì)。
[1] 鄧秀新, 王力榮, 李紹華, 張紹鈴, 張志宏, 叢佩華, 易干軍, 陳學(xué)森, 陳厚彬, 鐘彩虹. 果樹育種40年回顧與展望. 果樹學(xué)報, 2019, 36(4): 514-520.
DENG X X, WANG L R, LI S H, ZHANG S L, ZHANG Z H, CONG P H, YI G J, CHEN X S, CHEN H B, ZHONG C H. Retrospection and prospect of fruit breeding for last four decades in China. Journal of Fruit Science, 2019, 36(4): 514-520. (in Chinese)
[2] 李丙新, 何鋒, 劉娟娟, 趙延存, 孫偉波, 操海群, 劉鳳權(quán). 梨黑斑病菌遺傳操作體系的建立與RFP標(biāo)記轉(zhuǎn)化子的致病性分析. 植物病理學(xué)報, 2018, 48(5): 648-655. doi:10.13926/j.cnki.apps.000182.
LI B X, HE F, LIU J J, ZHAO Y C, SUN W B, CAO H Q, LIU F Q. Established genetic transformation ofand pathogenicity analysis of the RFP labeled transformants. Acta Phytopathologica Sinica, 2018, 48(5): 648-655. doi:10.13926/j.cnki. apps.000182. (in Chinese)
[3] 王志華, 王文輝, 賈朝爽, 姜云斌. CO2體積分?jǐn)?shù)對氣調(diào)貯藏‘紅香酥’梨果實貨架期相關(guān)生理指標(biāo)的影響. 果樹學(xué)報, 2020, 37(10): 1562-1572. doi:10.13925/j.cnki.gsxb.20200272.
WANG Z H, WANG W H, JIA C S, JIANG Y B. Effects of carbon dioxide concentrations on the physiological indexes of 'Hongxiangsu'pears during shelf-life after controlled atmosphere storage. Journal of Fruit Science, 2020, 37(10): 1562-1572. doi:10.13925/j.cnki.gsxb.20200272. (in Chinese)
[4] 杜艷民, 王文輝, 賈曉輝, 佟偉, 王陽, 張鑫楠. 不同O2濃度對鴨梨采后生理代謝及貯藏品質(zhì)的影響. 中國農(nóng)業(yè)科學(xué), 2020, 53(23): 4918-4928.
DU Y M, WANG W H, JIA X H, TONG W, WANG Y, ZHANG X N. The effects of different oxygen concentration on postharvest physiology and storage quality of yali pear. Scientia Agricultura Sinica, 2020, 53(23): 4918-4928. (in Chinese)
[5] LI M, ZHI H H, DONG Y. The influence of pre- and postharvest 1-MCP application and oxygen regimes on textural properties, cell wall metabolism, and physiological disorders of late-harvest ‘Bartlett’ pears. Postharvest Biology and Technology, 2021, 173: 111429.
[6] 馬強(qiáng), 石雅君, 李正男, 王文輝, 孫平平.PGLY-1的分離、鑒定及對梨青霉病的抑制作用評價. 中國果樹, 2020(5): 50-54. doi:10.16626/j.cnki.issn1000-8047.2020.05.009.
MA Q, SHI Y J, LI Z N, WANG W H, SUN P P. Isolation and identification ofPGLY-1 for the inhibition of pear green mold. China Fruits, 2020(5): 50-54. doi:10.16626/j.cnki. issn1000-8047.2020.05.009. (in Chinese)
[7] 張靖國, 陳啟亮, 楊曉平, 范凈, 胡紅菊. 1-MCP處理對翠冠梨貨架期品質(zhì)的影響. 湖北農(nóng)業(yè)科學(xué), 2020, 59(21): 121-123. doi:10.14088/j.cnki.issn0439-8114.2020.21.025.
ZHANG J G, CHEN Q L, YANG X P, FAN J, HU H J. Effects of 1-MCP treatment on shelf life quality of Cuiguan pear. Hubei Agricultural Sciences, 2020, 59(21): 121-123. doi:10.14088/j.cnki. issn0439-8114.2020.21.025. (in Chinese)
[8] KAN C N, GAO Y, WAN C P, CHEN M, ZHAO X Y, LIU S J, CHEN J Y. Influence of different cold storage times on quality of ‘Cuiguan’pear fruits during shelf life. Journal of Food Processing and Preservation, 2019, 43(12): 14245.
[9] 王蕊, 楊小龍, 須暉, 李天來. 高等植物褪黑素的合成和代謝研究進(jìn)展. 植物生理學(xué)報, 2016, 52(5): 615-627.
WANG R, YANG X L, XU H, LI Y L. Research progress of melatonin biosynthesis and metabolism in higher plants. Plant Physiology Journal, 2016, 52(5): 615-627. (in Chinese)
[10] 鞏彪, 史慶華. 園藝作物褪黑素的研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2017, 50(12): 2326-2337. doi:10.3864/j.issn.0578-1752.2017.12.013.
GONG B, SHI Q H. Review of melatonin in horticultural crops. Scientia Agricultura Sinica, 2017, 50(12): 2326-2337. doi:10.3864/ j.issn.0578-1752.2017.12.013. (in Chinese)
[11] WANG L, LUO Z S, BAN Z J, JIANG N, YANG M Y, LI L. Role of exogenous melatonin involved in phenolic metabolism ofjujuba fruit. Food Chemistry, 2021, 341(pt 2): 128268. doi:10.1016/ j.foodchem.2020.128268.
[12] 卞鳳娥, 肖秋紅, 郝桂梅, 孫永江, 陸文利, 杜遠(yuǎn)鵬, 翟衡. 根施褪黑素對NaCl脅迫下葡萄內(nèi)源褪黑素及葉綠素?zé)晒馓匦缘挠绊? 中國農(nóng)業(yè)科學(xué), 2018, 51(5): 952-963.
BIAN F E, XIAO Q H, HAO G M, SUN Y J, LU W L, DU Y P, ZHAI H. Effect of root-applied melatonin on endogenous melatonin and chlorophyll fluorescence characteristics in grapevine under NaCl stress. Scientia Agricultura Sinica, 2018, 51(5): 952-963. (in Chinese)
[13] 喬沛, 殷菲朧, 王雨萱, 李靜, 董新紅. 外源褪黑素處理對采后荔枝褐變及活性氧代謝的影響. 食品工業(yè)科技, 2021, 42(6): 282-287. doi:10.13386/j.issn1002-0306.2020060279.
QIAO P, YIN F L, WANG Y X, LI J, DONG X H. Effects of exogenous melatonin on browning and active oxygen metabolism of postharvest. Science and Technology of Food Industry, 2021, 42(6): 282-287. doi:10.13386/j.issn1002-0306.2020060279. (in Chinese)
[14] GAO H, LU Z M, YANG Y, WANG D N, YANG T, CAO M M, CAO W. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 2018, 245: 659-666. doi:10.1016/j. foodchem.2017.10.008.
[15] 何歡, 劉昭雪, 張亞琳, 張歡歡, 蘆玉佳, 朱璇. 外源褪黑素調(diào)控活性氧代謝對減輕采后杏果實冷害的分析. 食品科學(xué), 2021. https:// kns.cnki.net/kcms/detail/11.2206.TS.20210322.1129. 018.html.
HE H, LIU Z X, ZHANG Y L, ZHANG H H, LU Y J, ZHU X. Effects of exogenous melatonin on reactive oxygen species metabolism and chilling injury of postharvest apricot fruit. Food Science, 2021. https:// kns.cnki.net/kcms/detail/11.2206.TS.20210322.1129.018.html. (in Chinese)
[16] 王紀(jì)忠, 童瑤, 史云勇, 魏樹偉. 外源褪黑素處理對常溫貨架期梨果實貯藏品質(zhì)的影響. 果樹學(xué)報, 2021, 38(4): 569-579.
WANG J Z, TONG Y, SHI Y Y, WEI S W. Effects of exogenous melatonin treatment on storage quality of pear fruits during shelf life at room temperature. Journal of Fruit Science, 2021, 38(4): 569-579. (in Chinese)
[17] AGHDAM M S, LUO Z, LI L, JANNATIZADEH A, FARD J R, PIRZAD F. Melatonin treatment maintains nutraceutical properties of pomegranate fruits during cold storage. Food Chemistry, 2020, 303: 125385. doi:10.1016/j.foodchem.2019.125385.
[18] ONIK J C, WAI S C, LI A, LIN Q, SUN Q Q, WANG Z D, DUAN Y Q. Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chemistry, 2021, 337: 127753. doi:10.1016/j.foodchem.2020.127753.
[19] 劉帥民, 胡康琦, 劉港帥, 張善英, 潘永貴, 史學(xué)群, 張正科. 外源褪黑素處理對鮮切芒果貯藏品質(zhì)的影響. 食品科學(xué), 2020, 41(21): 160-166. doi:10.7506/spkx1002-6630-20191031-358.
LIU S M, HU K Q, LIU G S, ZHANG S Y, PAN Y G, SHI X Q, ZHANG Z K. Effect of exogenous melatonin treatment on storage quality of fresh-cut mango. Food Science, 2020, 41(21): 160-166. doi:10.7506/spkx1002-6630-20191031-358. (in Chinese)
[20] 生吉萍, 趙瑞瑞, 陳玲玲, 申琳. 褪黑素采前噴施對采后番茄果實抗病性和貯藏品質(zhì)的影響. 食品科學(xué), 2020, 41(9): 188-193. doi:10.7506/spkx1002-6630-20190416-204.
SHENG J P, ZHAO R R, CHEN L L, SHEN L. Effect of pre-harvest melatonin spraying on the post-harvest disease resistance and storage quality of tomato fruit. Food Science, 2020, 41(9): 188-193. doi:10.7506/spkx1002-6630-20190416-204. (in Chinese)
[21] 劉建龍. 外源褪黑素對梨果實發(fā)育、采后品質(zhì)和抗輪紋病的影響及其調(diào)控機(jī)制研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2019.
LIU J L. Regulatory function of exogenous melatonin on fruit development, postharvest fruit quality and ring rot disease resistance in pears [D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[22] 余辰.-氨基丁酸對梨果實青霉病抗性的誘導(dǎo)作用及相關(guān)機(jī)理研究[D]. 杭州: 浙江大學(xué), 2014.
YU C. Induced effect of-aminobutvric acid on host resistance against blue mold and defense-related mechanism in pear fruit [D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[23] LIVAK K J, SCHMITTGEN T D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCtmethod. Methods, 2001, 25(4): 402-408.
[24] PAN L Y, ZHAO X Y, CHEN M, FU Y Q, XIANG M L, CHEN J Y. Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit. Food Chemistry, 2020, 305: 125483. doi:10.1016/j.foodchem.2019.125483.
[25] 李磊, 陸杰, 包亞洲, 李勇, 呂文河, 王曉丹. 四種化合物誘導(dǎo)馬鈴薯抗晚疫病的效果及其相關(guān)防御基因表達(dá)分析. 植物保護(hù)學(xué)報, 2020, 47(6): 1277-1286. doi:10.13802/j.cnki.zwbhxb.2020.2020019.
LI L, LU J, BAO Y Z, LI Y, Lü W H, WANG X D. Resistant effects of potato against late blight and expression analysis of potato-related defense genes induced by four kinds of compounds. Journal of Plant Protection, 2020, 47(6): 1277-1286. doi:10.13802/j.cnki.zwbhxb.2020. 2020019. (in Chinese)
[26] 楊藝琳, 張正敏, 李美琳, 趙立艷, 金鵬, 鄭永華. 2, 4-表油菜素內(nèi)酯對葡萄果實采后灰霉病的抑制作用機(jī)理. 食品科學(xué), 2019, 40(15): 231-238. doi:10.7506/spkx1002-6630-20180821-222.
YANG Y L, ZHANG Z M, LI M L, ZHAO L Y, JIN P, ZHENG Y H. Modes of action of 2, 4-epibrassionolide against postharvest gray mold decay of grapes. Food Science, 2019, 40(15): 231-238. doi:10. 7506/spkx1002-6630-20180821-222. (in Chinese)
[27] 孫子荀, 倪照君, 高志紅, 喬玉山, 萬春雁, 古咸彬. 外源褪黑素提高草莓黑斑病抗性的效果和作用機(jī)制初探. 西北植物學(xué)報, 2020, 40(10): 1679-1687. doi:10.7606/j.issn.1000-4025.2020.10.1679.
SUN Z X, NI Z J, GAO Z H, QIAO Y S, WAN C Y, GU X B. Effect and mechanism of exogenous melatonin on improvement of black rot disease resistance in strawberry. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1679-1687. doi:10.7606/j.issn.1000-4025.2020. 10.1679. (in Chinese)
[28] 郭博鋮, 柯希望, 高尚雨, 于昕卉, 孫啟明, 左豫虎. 褪黑素誘導(dǎo)小豆抗銹病機(jī)理的初步研究. 植物保護(hù), 2020, 46(1): 145-150, 156. doi:10.16688/j.zwbh.2018521.
GUO B C, KE X W, GAO S Y, YU X H, SUN Q M, ZUO Y H. A preliminary study on the mechanisms of melatonin-induced rust resistance of adzuki bean. Plant Protection, 2020, 46(1): 145-150, 156. doi:10.16688/j.zwbh.2018521. (in Chinese)
[29] ADHIKARY T, GILL P P S, JAWANDHA S K, BHARDWAJ R D, ANURAG R K. Efficacy of postharvest sodium nitroprusside application to extend storability by regulating physico-chemical quality of pear fruit. Food Chemistry, 2021, 346: 128934. doi:10.1016/ j.foodchem.2020.128934.
[30] MIRANDA S, VILCHES P, SUAZO M, PAVEZ L, GARCíA K, MéNDEZ M A, GONZáLEZ M, MEISEL L A, DEFILIPPI B G, DEL POZO T. Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chemistry, 2020, 319: 126360. doi:10.1016/j. foodchem.2020.126360.
[31] LORENTE-MENTO J M, GUILLéN F, CASTILLO S, MARTíNEZROMERO D, VALVERDE J M, VALERO D, SERRANO M. Melatonin treatment to pomegranate trees enhances fruit bioactive compounds and quality traits at harvest and during postharvest storage. Antioxidants, 2021, 10(6): 820.
[32] 胡苗, 李佳穎, 饒景萍. 褪黑素處理對采后獼猴桃果實后熟衰老的影響. 食品科學(xué), 2018, 39(19): 226-232. doi:10.7506/spkx1002- 6630-201819035.
HU M, LI J Y, RAO J P. Effect of melatonin on ripening and senescence of postharvest kiwifruits. Food Science, 2018, 39(19): 226-232. doi:10.7506/spkx1002-6630-201819035. (in Chinese)
[33] ZHAO H D, WANG B G, CUI K B, CAO J K, JIANG W B. Improving postharvest quality and antioxidant capacity of sweet cherry fruit by storage at near-freezing temperature. Scientia Horticulturae, 2019, 246: 68-78.
[34] WANG D, CHEN Q Y, CHEN W W, GUO Q G, XIA Y, WU D, JING D L, LIANG G L. Melatonin treatment maintains quality and delays lignification in loquat fruit during cold storage. Scientia Horticulturae, 2021, 284: 110126
[35] 徐利偉, 岑嘯, 李林香, 沈子明, 陳景丹, 陳馨, 陳偉, 楊震峰. 外源褪黑素對低溫脅迫下桃果實蔗糖代謝的影響. 核農(nóng)學(xué)報, 2017, 31(10): 1963-1971. doi:10.11869/j.issn.100-8551.2017.10.1963.
XU L W, CEN X, LI L X, SHEN Z M, CHEN J D, CHEN X, CHEN W, YANG Z F. Effect of exogenous melatonin on sucrose metabolism in peach fruit exposed to low temperature stress. Journal of Nuclear Agricultural Sciences, 2017, 31(10): 1963-1971. doi:10.11869/j.issn. 100-8551.2017.10.1963. (in Chinese)
[36] TANG Q, LI C Y, GE Y H, LI X, CHENG Y, HOU J B, LI J R. Exogenous application of melatonin maintains storage quality of jujubes by enhancing anti-oxidative ability and suppressing the activity of cell wall-degrading enzymes. LWT-Food Science and Technology, 2020, 127: 109431.
[37] POSE G, PATRIARCA A, KYANKO V, PARDO A, FERNáNDEZ PINTO V. Water activity and temperature effects on mycotoxin production byon a synthetic tomato medium. International Journal of Food Microbiology, 2010, 142(3): 348-353. doi:10.1016/j.ijfoodmicro.2010.07.017.
[38] 黃偉, 馮作山, 白羽嘉, 張培嶺, 鄭峰. 采后果實鏈格孢屬真菌病害防治方法研究進(jìn)展. 食品與機(jī)械, 2016, 32(3): 247-252.
HUANG W, FENG Z S, BAI Y J, ZHANG P L, ZHENG F. Advances on methods to control fungal diseases ofin postharvest. Food & Machinery, 2016, 32(3): 247-252. (in Chinese)
Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit
1College of Agronomy, Jiangxi Agricultural University/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province/Jiangxi Key Laboratory for Postharvest Technology and Non-destructive Testing of Fruits & Vegetables, Nanchang 330045;2Pingxiang University, Pingxiang 337055, Jiangxi
【】The aim of this study was to explore the effects of melatonine (MT) treatment on postharvest black spot disease and storage quality of pear fruit, so as to provide the theoretical basis and reference for exogenous substances regulating postharvest disease and storage quality of pear fruit.【】‘Cuiguan’ pears were used as the experimental material, which were sprayed with 0.1 mmol·L-1MT solution and then kept at room temperature for 48 h. The treated fruits were inoculated with two 1 mm diameter × 3 mm depth small holes along both sides of the fruit equator. Twenty μLspore suspension with 1.0×106spores/mL were injected into the two holes, and the sterile water treatment was used as control. The fruit was placed at 25℃ after inoculation, and then the lesion diameters and induced effects as well as the genes expression of defense enzymes, such as catalase (), peroxidase (), polyphenol oxidase (), and copper-zinc superoxide dismutase (), and pathogenesis-related protein including chitinase () and-1,3 glucanase (), were analysed to demonstrate the effect and mechanism of MT-induced pear fruit against black spot disease. In addition, the pear fruits were sprayed with 0.1 mmol·L-1MT solution, and then stored at (5±1)℃, 85%-90% relative humidity for 42 d. The sterile water treatment was used as the control. The decay rate, weight loss rate, respiration rate, firmness, total soluble solids, titratable acid, vitamin C, total phenols and malondialdehyde contents were measured at fixed period, and the effect of MT treatment on the storage effect and quality of pear fruit were discussed. 【】The lesion diameters of pear fruits inoculated withgradually increased with the time, while the lesion diameters under MT treatment was significantly smaller than those under the control (<0.05). The MT-induced resistance effects on pear fruits black spot were 29.16%, 45.03% and 23.26% on the 3rd, 5th and 7th day, respectively. The relative expression levels of,,,,andin MT-treated groupwere significantly higher than those of the control group during 4-7 days post inoculation (dpi), and the maximum values of them were 1.35, 2.08, 2.28, 2.02, 2.89 and 3.45 times of control fruits, respectively. The induced expression of,andindicated that MT treatment inducing resistance of pear fruit to black spot disease possible depended on these defense enzyme and pathogenesis-related proteins. For the low temperature storage, the fruit decay rate was not significantly different between MT treatment group and control group, which was probably caused by the inhibition growth of pathogen under low temperature. All of fruit firmness gradually decreased during storage, while the fruit firmness under MT treatment was higher than that under the control with 1.06 times of significant difference at 28 d. Furthermore, the fruit respiration rate increased in the early storage stage (7-14 d) and decreased in the later stage. In comparison with the control group, the effects of MT treatment inhibiting fruit respiration and delaying fruit senescence were more significantly in the early storage stage than in the later stage. In addition, MT treatment also significantly reduced the fruit weight loss rate, maintained the high levels of total soluble solids, and delayed the degradation of titratable acid and vitamin C. Also, it promoted the accumulation of total phenolic content, enhanced the fruit antioxidant capacity, inhibited the accumulation of MDA content, and reduced the damage of cell membrane lipid peroxidation. The above results indicated that MT might enhance fruit quality and storage resistance by regulating fruit sugar, acid, and cell wall metabolism.【】0.1 mmol·L-1MT treatment induced the resistance of pear fruit to black spot, stimulated the relative expression of defense enzymes and pathogenesis-related protein coded-genes, and finally improved the storage quality of pear fruit.
melatonin; pear; fruit; black spot; induced resistance; storage quality
10.3864/j.issn.0578-1752.2022.04.013
2021-06-08;
2021-08-20
國家自然科學(xué)基金(31360466)、江西省自然科學(xué)基金(20192BAB204018)、江西省果蔬采后處理關(guān)鍵技術(shù)及質(zhì)量安全協(xié)同創(chuàng)新中心項目(JXGS-02)
向妙蓮,E-mail:mlxiang@jxau.edu.cn。通信作者陳明,E-mail:mingchen@jxau.edu.cn
(責(zé)任編輯 趙伶俐)