• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于混合整數(shù)線性規(guī)劃的含ZIP負(fù)荷有源配電網(wǎng)重構(gòu)方法

    2022-04-19 03:23:14張琳娜李昊炅
    關(guān)鍵詞:有源二階整數(shù)

    張琳娜,樂(lè) 健,李昊炅

    基于混合整數(shù)線性規(guī)劃的含ZIP負(fù)荷有源配電網(wǎng)重構(gòu)方法

    張琳娜1,樂(lè) 健2,李昊炅1

    (1.國(guó)網(wǎng)山西省電力公司,山西 太原 030001;2.武漢大學(xué)電氣與自動(dòng)化學(xué)院,湖北 武漢 430072)

    隨著分布式電源并網(wǎng)和負(fù)荷類型的日益復(fù)雜,傳統(tǒng)配電網(wǎng)重構(gòu)模型尚未考慮復(fù)雜的綜合負(fù)荷模型。提出了考慮ZIP綜合負(fù)荷模型的有源配電網(wǎng)混合整數(shù)線性規(guī)劃方法。在輻射狀配電網(wǎng)二階錐潮流模型的基礎(chǔ)上,通過(guò)線性回歸法將ZIP負(fù)荷模型等效為ZP負(fù)荷模型,建立基于混合整數(shù)二階錐規(guī)劃的有源配電網(wǎng)重構(gòu)模型。通過(guò)多面體近似將二階錐約束進(jìn)行線性化,建立基于混合整數(shù)線性規(guī)劃的有源配電網(wǎng)重構(gòu)模型。在三個(gè)不同規(guī)模配電系統(tǒng)的仿真結(jié)果表明,基于混合整數(shù)線性規(guī)劃的有源配電網(wǎng)重構(gòu)模型精度與基于混合整數(shù)二階錐規(guī)劃的幾乎相同,但優(yōu)化效率提高了15%~30%,具有較高的優(yōu)化精度和效率。

    ZIP負(fù)荷模型;配電網(wǎng)重構(gòu);混合整數(shù)二階錐規(guī)劃;線性回歸法;混合整數(shù)線性規(guī)劃

    0 引言

    配電網(wǎng)重構(gòu)主要是通過(guò)切換聯(lián)絡(luò)開(kāi)關(guān)和分段開(kāi)關(guān)的開(kāi)合狀態(tài)來(lái)改變網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),從而實(shí)現(xiàn)降低網(wǎng)損、提高供電可靠性等運(yùn)行目標(biāo)[1-5]。近年來(lái),隨著分布式電源(Distributed Generation, DG)大規(guī)模并網(wǎng),負(fù)荷類型越來(lái)復(fù)雜,使得傳統(tǒng)配電網(wǎng)重構(gòu)的優(yōu)化模型難以適應(yīng)有源配電網(wǎng)的發(fā)展[6-8],另一方面,有源配電網(wǎng)重構(gòu)的優(yōu)化模型維數(shù)越來(lái)越高,亟需高效的求解方法。

    從數(shù)學(xué)優(yōu)化的角度講,有源配電網(wǎng)重構(gòu)是一個(gè)典型的組合優(yōu)化問(wèn)題,需要從組合問(wèn)題的可行解集中找到最優(yōu)解。有源配電網(wǎng)重構(gòu)的求解方法主要分為啟發(fā)式方法[9-11]、智能優(yōu)化方法(也稱為亞啟發(fā)式方法)[12-15]、運(yùn)籌學(xué)方法[16-18]三大類。啟發(fā)式方法是依據(jù)特定的規(guī)則或經(jīng)驗(yàn)構(gòu)造出的一類尋優(yōu)方法,所謂特定的經(jīng)驗(yàn)通常是依據(jù)具體的問(wèn)題所總結(jié)出來(lái)的一種直觀的規(guī)律,應(yīng)用最多是支路交換法(switch exchange method),雖然支路交換法可以減少尋優(yōu)的范圍,但一般很難或不能獲得全局最優(yōu)解,只能得到一個(gè)可行的較優(yōu)解。智能優(yōu)化方法是基于局部搜索或隨機(jī)尋優(yōu)思想的智能化算法,具有較好的可移植性,廣泛地適用于配電網(wǎng)重構(gòu)的各類優(yōu)化模型。智能優(yōu)化算法在配電網(wǎng)重構(gòu)中的研究成果十分豐富,主要包括粒子優(yōu)化算法、模擬退火算法[12]、教與學(xué)優(yōu)化算法[13]、禁忌搜索方法[14]、遺傳算法[19]等,并且在不斷的發(fā)展。智能優(yōu)化算法雖然能適應(yīng)各種非線性約束和目標(biāo)函數(shù),但也面臨著由于收斂性差而難以獲得全局最優(yōu)解的問(wèn)題。運(yùn)籌學(xué)方法是采用數(shù)學(xué)規(guī)劃算法求解有源配電網(wǎng)重構(gòu)模型,具有嚴(yán)格的數(shù)學(xué)理論基礎(chǔ),優(yōu)化結(jié)果可靠性高。由于有源配電網(wǎng)重構(gòu)模型中潮流的非線性,已有的凸優(yōu)化算法難以求解有源配電網(wǎng)重構(gòu)的非凸優(yōu)化模型。為此,文獻(xiàn)[19]將輻射狀配電網(wǎng)非線性潮流模型轉(zhuǎn)化為二階錐規(guī)劃模型,建立了配電網(wǎng)重構(gòu)的混合整數(shù)二階錐規(guī)劃模型,可以直接調(diào)用商業(yè)求解器進(jìn)行求解,求解效率高。在文獻(xiàn)[20]的基礎(chǔ)上,文獻(xiàn)[16]進(jìn)一步考慮DG并網(wǎng)情況,綜合考慮網(wǎng)損、購(gòu)電成本、DG發(fā)電量建立了有源配電網(wǎng)重構(gòu)的混合整數(shù)二階錐規(guī)劃模型。文獻(xiàn)[17]在上層以配電網(wǎng)安全域距離最大化為目標(biāo),下層以配電網(wǎng)網(wǎng)損最小化為目標(biāo),建立了同時(shí)考慮安全性和經(jīng)濟(jì)性的配電網(wǎng)重構(gòu)的雙層二階錐規(guī)劃模型。文獻(xiàn)[18]將電動(dòng)汽車延時(shí)充電策略模型和錯(cuò)峰充電策略模型嵌入到配電網(wǎng)重構(gòu)的混合整數(shù)二階錐規(guī)劃模型,分析了電動(dòng)汽車充電策略對(duì)配電網(wǎng)重構(gòu)結(jié)果的影響?;诨旌险麛?shù)二階規(guī)劃的配電網(wǎng)重構(gòu)模型雖然在一定程度上獲得了較高的求解效率,但非線性二階錐約束隨著配電網(wǎng)重構(gòu)維數(shù)的增加,求解效率將會(huì)下降。此外,已有配電網(wǎng)重構(gòu)中均采用恒功率負(fù)荷模型,缺乏考慮ZIP負(fù)荷模型的配電網(wǎng)重構(gòu)模型,這是因?yàn)閆IP負(fù)荷模型會(huì)破壞原有的配電網(wǎng)重構(gòu)的混合整數(shù)二階錐模型結(jié)構(gòu),導(dǎo)致不能采用二階錐規(guī)劃方法進(jìn)行求解。

    為了解決非線性二階錐約束的求解效率問(wèn)題以及嵌入ZIP負(fù)荷模型會(huì)改變?cè)械亩A錐模型結(jié)構(gòu),本文提出了基于多面體近似[21-22]的有源配電網(wǎng)重構(gòu)混合整數(shù)線性規(guī)劃方法。在配電網(wǎng)重構(gòu)的混合整數(shù)二階規(guī)劃模型基礎(chǔ)上,本文采用線性回歸法[23-24]將ZIP負(fù)荷模型近似轉(zhuǎn)化為等效ZP模型以嵌入到配電網(wǎng)重構(gòu)模型,解決ZIP負(fù)荷模型的適應(yīng)性問(wèn)題,通過(guò)多面體近似將配電網(wǎng)重構(gòu)的混合整數(shù)二階規(guī)劃模型線性化為混合整數(shù)線性規(guī)劃模型求解,提高了求解效率。仿真算例結(jié)果表明了本文所提出的有源配電網(wǎng)重構(gòu)混合整數(shù)線性規(guī)劃方法的準(zhǔn)確性和高效性。

    1 有源配電網(wǎng)重構(gòu)模型

    假設(shè)有源配電網(wǎng)線路均為輻射狀,且所有支路均配備分段開(kāi)關(guān)或聯(lián)絡(luò)開(kāi)關(guān)。有源配電網(wǎng)網(wǎng)損等于網(wǎng)絡(luò)實(shí)際總發(fā)電量與負(fù)荷實(shí)際總需求量之差,也即所有節(jié)點(diǎn)凈實(shí)際注入有功功率之和[25]。因此,以降低有源配電網(wǎng)網(wǎng)損為重構(gòu)目的時(shí)的目標(biāo)函數(shù)可表達(dá)為

    重構(gòu)模型約束條件包括以下幾個(gè)方面。

    1) 節(jié)點(diǎn)注入有功功率

    2) 節(jié)點(diǎn)注入無(wú)功功率

    3) 節(jié)點(diǎn)電壓

    4) 支路電流

    其中

    5) 輻射狀拓?fù)浣Y(jié)構(gòu)

    6) 聯(lián)絡(luò)開(kāi)關(guān)動(dòng)作次數(shù)

    2 有源配電網(wǎng)的混合整數(shù)線性規(guī)劃模型

    2.1 重構(gòu)模型的混合整數(shù)二階錐轉(zhuǎn)化

    上述建立的有源配電網(wǎng)重構(gòu)模型是一個(gè)典型非凸的混合整數(shù)非線性規(guī)劃模型,本文在輻射狀配電網(wǎng)二階錐規(guī)劃潮流模型[26-27]的基礎(chǔ)上,將該重構(gòu)模型轉(zhuǎn)化為混合整數(shù)二階錐規(guī)劃模型,進(jìn)而可采用凸規(guī)劃方法求解全局最優(yōu)解。

    引入如下新變量:

    式中:

    應(yīng)用式(12)和式(16)可將節(jié)點(diǎn)電壓約束和支路電流約束分別轉(zhuǎn)化為

    2.2 基于線性回歸的負(fù)荷模型等效

    2.1節(jié)建立的配電網(wǎng)重構(gòu)混合整數(shù)二階錐規(guī)劃模型以式(1)為目標(biāo)函數(shù)、從式(3)、式(5)、式(9)、式(11)以及(13)—式(19)為約束條件。由于式(3)和式(5)中的ZIP負(fù)荷模型使得潮流模型無(wú)法二階錐化,因此本文將ZIP負(fù)荷模型轉(zhuǎn)化為等效的ZP模型后再進(jìn)行二階錐化,即

    結(jié)合式(20)給出的ZIP負(fù)荷模型與式(21),可得

    2.3 基于多面體近似的混合整數(shù)線性規(guī)劃模型

    2.1節(jié)和2.2節(jié)所建立的配電網(wǎng)重構(gòu)混合整數(shù)二階錐規(guī)劃模型中,除了式(15)和式(16)中的旋轉(zhuǎn)二階錐約束條件外,其他約束均為線性約束條件。首先將式(15)中的旋轉(zhuǎn)二階錐約束轉(zhuǎn)換為

    采用兩個(gè)三維二階錐對(duì)式(25)進(jìn)行等效,得

    式(26)可統(tǒng)一描述為

    采用文獻(xiàn)[21]提出的多面體近似方法將式(27)進(jìn)行線性化,從而將混合整數(shù)二階錐規(guī)劃模型近似轉(zhuǎn)換成混合整數(shù)線性規(guī)劃模型求解。三維的二階錐約束式(27)的多面體近似表達(dá)式為

    根據(jù)式(34),當(dāng)時(shí),其誤差約為。因此,有源配電網(wǎng)重構(gòu)的混合整數(shù)二階錐規(guī)劃模型近似等價(jià)于混合整數(shù)線性規(guī)劃模型,可以直接基于Matlab的工具箱Yalmip[29]進(jìn)行建模,并調(diào)用商業(yè)求解器Cplex12.7[30]求解。圖1對(duì)本文所建立的兩類有源配電網(wǎng)重構(gòu)優(yōu)化模型進(jìn)行了比較,兩者主要區(qū)別在于約束條件的近似松弛方法不同。

    3 仿真驗(yàn)證

    本文采用3個(gè)配電系統(tǒng)作為測(cè)試對(duì)象:1) 配電系統(tǒng)#1。83節(jié)點(diǎn)配電系統(tǒng),運(yùn)行電壓11.4 kV,負(fù)荷和線路參數(shù)詳見(jiàn)文獻(xiàn)[31];2) 配電系統(tǒng)#2。由5個(gè)83節(jié)點(diǎn)配電系統(tǒng)#1拼接而成,5個(gè)配電系統(tǒng)依次進(jìn)行編號(hào);3) 配電系統(tǒng)#3。由2個(gè)配電系統(tǒng)#2拼接而成,2個(gè)415節(jié)點(diǎn)配電系統(tǒng)依次進(jìn)行編號(hào)。

    表1 測(cè)試系統(tǒng)數(shù)據(jù)

    表2 配電系統(tǒng)#1中DG數(shù)據(jù)

    為驗(yàn)證本文所提出的配電網(wǎng)重構(gòu)優(yōu)化模型的精度,采用Bonmin求解原始的配電網(wǎng)重構(gòu)模型,以所得到的全局最優(yōu)解為基準(zhǔn)。表3給出了分別采用混合整數(shù)二階錐規(guī)劃模型(Mixed Integer Second-Order Cone Programming, MISOCP)和混合整數(shù)線性規(guī)劃模型(Mixed Integer Linear Programming, MILP)的結(jié)果。

    表3 兩類重構(gòu)優(yōu)化模型精度對(duì)比

    從表3中不難看出:配電網(wǎng)重構(gòu)的MISOCP模型精度較MILP模型更高,但兩者的模型精度誤差最大僅為0.09%。這反映了當(dāng)=11時(shí),配電網(wǎng)重構(gòu)的MILP模型精度可以達(dá)到9×10-4,幾乎等同于配電網(wǎng)重構(gòu)的MISOCP模型。

    進(jìn)一步,本文對(duì)比了配電網(wǎng)重構(gòu)的MILP模型和MISOCP模型的效率,結(jié)果如表4所示。

    從表4可以看出,配電網(wǎng)重構(gòu)MILP模型的配電網(wǎng)網(wǎng)損優(yōu)化結(jié)果小于MISOCP模型的結(jié)果,網(wǎng)損下降幅度更大。表明盡管MISOCP模型精度略優(yōu)于MILP模型,但在尋優(yōu)的過(guò)程中,MILP模型可獲得更佳的分段開(kāi)關(guān)組合模式。更為重要的是隨著配電系統(tǒng)規(guī)模的擴(kuò)大,MILP模型求解時(shí)間較MISOCP模型減小,這充分說(shuō)明了通過(guò)多面體進(jìn)行二階錐線性化可以提高優(yōu)化效率,可達(dá)到15%~30%。

    表4 配電網(wǎng)重構(gòu)優(yōu)化結(jié)果對(duì)比

    Table 4 Comparison of optimization results of distribution network reconfiguration

    文獻(xiàn)[31]采用模擬退火法對(duì)83節(jié)點(diǎn)系統(tǒng)進(jìn)行了配電網(wǎng)重構(gòu)優(yōu)化,本文所提出的MILP方法與文獻(xiàn)[31]所得結(jié)果的對(duì)比如表5所示。

    表5 83節(jié)點(diǎn)系統(tǒng)重構(gòu)結(jié)果對(duì)比

    從表5中不難看出:模擬退火法的斷開(kāi)支路與本文所提出的配電網(wǎng)重構(gòu)的MILP方法不一致,該方法結(jié)果是一個(gè)局部最優(yōu)解,這也是模擬退火等智能優(yōu)化算法的固有缺陷,即會(huì)限于局部最優(yōu)。而基于凸優(yōu)化理論的配電網(wǎng)重構(gòu)MILP方法具有完善的數(shù)學(xué)理論,能保證獲得可行域中的全局最優(yōu)解。

    圖2 不同開(kāi)關(guān)動(dòng)作次數(shù)對(duì)網(wǎng)損的影響

    4 結(jié)論

    本文在輻射狀配電網(wǎng)二階錐模型的基礎(chǔ)上,考慮更加復(fù)雜的ZIP負(fù)荷模型,通過(guò)線性回歸法將ZIP負(fù)荷模型近似等效為ZP模型,建立了有源配電網(wǎng)重構(gòu)的MISOCP模型,并基于多面體近似建立了有源配電網(wǎng)重構(gòu)的MILP模型,所得主要結(jié)論包括:

    1) 提出了基于線性回歸法的等效ZP負(fù)荷模型參數(shù)近似估算方法,實(shí)現(xiàn)了ZIP負(fù)荷模型的有效處理,拓展了配電網(wǎng)二階錐潮流模型的適應(yīng)性;

    2) 所提出的有源配電網(wǎng)重構(gòu)的MILP模型具有與MISOCP模型幾乎相同的優(yōu)化精度,誤差數(shù)量級(jí)為10-4,但優(yōu)化效率較后者可提高15%~30%;

    3) 配電網(wǎng)重構(gòu)結(jié)果的網(wǎng)損下降幅度隨開(kāi)關(guān)動(dòng)作次數(shù)限制的增大而增加,最后趨于平穩(wěn)。

    在未來(lái)關(guān)于配電網(wǎng)重構(gòu)的研究中可以考慮將儲(chǔ)能等新型裝置拓展到重構(gòu)模型中,建立更加完善的約束條件和目標(biāo)函數(shù);也可以考慮負(fù)荷和分布式電源的不確定性,將本文的確定性重構(gòu)方法延伸到不確定性應(yīng)用場(chǎng)景。

    [1] 易海川, 張彼德, 王海穎, 等.提高DG 接納能力的配電網(wǎng)動(dòng)態(tài)重構(gòu)方法[J].電網(wǎng)技術(shù), 2016, 40(5): 1431-1436.

    YI Haichuan, ZHANG Bide, WANG Haiying, et al.Distribution network dynamic reconfiguration method for improving distribution network’s ability of accepting DG[J].Power System Technology, 2016, 40(5): 1431-1436.

    [2] LIU Y, LI J, WU L.Coordinated optimal network reconfiguration and voltage regulator/DER control for unbalanced distribution systems[J].IEEE Transactions on Smart Grid, 2019, 10(3): 2912-2922.

    [3] 姜萌萌, 佟永吉, 陳明豐, 等.基于災(zāi)害條件的主動(dòng)配電網(wǎng)快速重構(gòu)策略研究[J].智慧電力, 2021, 49(5): 85-92.

    JIANG Mengmeng, TONG Yongji, CHEN Mingfeng, et al.Rapid reconfiguration strategy of active distribution network under disaster conditions[J].Smart Power, 2021, 49(5): 85-92.

    [4] 馬倩, 茍亮, 張海峰, 等.考慮開(kāi)關(guān)動(dòng)作次數(shù)的多時(shí)段配電網(wǎng)動(dòng)態(tài)重構(gòu)[J].電測(cè)與儀表, 2021, 58(3): 9-14.

    MA Qian, GOU Liang, ZHANG Haifeng, et al.Multi-period dynamic reconfiguration of distribution network considering the number of switching actions[J].Electrical Measurement & Instrumentation, 2021, 58(3): 9-14.

    [5] 章博, 劉晟源, 林振智, 等.高比例新能源下考慮需求側(cè)響應(yīng)和智能軟開(kāi)關(guān)的配電網(wǎng)重構(gòu)[J].電力系統(tǒng)自動(dòng)化, 2021, 45(8): 86-94.

    ZHANG Bo, LIU Shengyuan, LIN Zhenzhi, et al.Distribution network reconfiguration with high penetration of renewable energy considering demand response and soft open point[J].Automation of Electric Power Systems, 2021, 45(8): 86-94.

    [6] 鄭能, 胡瑞馨, 丁曉群, 等.考慮多種類型的分布式電源和網(wǎng)絡(luò)重構(gòu)的配電網(wǎng)無(wú)功優(yōu)化[J].智慧電力, 2019, 47(3): 90-96.

    ZHENG Neng, HU Ruixin, DING Xiaoqun, et al.Reactive power optimization of distribution network considering multiple types of distributed generations and network reconfiguration[J].Smart Power, 2019, 47(3): 90-96.

    [7] WANG Y, HUANG Z, SHAHIDEHPOUR M, et al.Reconfigurable distribution network for managing transactive energy in a multi-microgrid system[J].IEEE Transactions on Smart Grid, 2020, 11(2): 1286-1295.

    [8] 謝琳宇, 唐忠, 黃星宇, 等.考慮分布式電源和電動(dòng)汽車不確定性的雙層動(dòng)態(tài)配網(wǎng)重構(gòu)[J].電力系統(tǒng)保護(hù)與控制, 2020, 48(10): 1-11.

    XIE Linyu, TANG Zhong, HUANG Xingyu, et al.Bi-layer dynamic reconfiguration of a distribution network considering the uncertainty of distributed generation and electric vehicles[J].Power System Protection and Control, 2020, 48(10): 1-11.

    [9] 李辰雷, 衛(wèi)志農(nóng), 韓連山, 等.序優(yōu)化理論在配電網(wǎng)重構(gòu)中的應(yīng)用[J].電力系統(tǒng)保護(hù)與控制, 2015, 43(8): 41-48.

    LI Chenlei, WEI Zhinong, HAN Lianshan, et al.Application of ordinal optimization in distribution network reconstruction[J].Power System Protection and Control, 2015, 43(8): 41-48.

    [10] ZHAN J, LIU W, CHUNG C Y, et al.Switch opening and exchange method for stochastic distribution network reconfiguration[J].IEEE Transactions on Smart Grid, 2020, 11(4): 2995-3007.

    [11] 陳永進(jìn).基于混合整數(shù)凸規(guī)劃的有源配電網(wǎng)重構(gòu)與無(wú)功電壓協(xié)調(diào)優(yōu)化[J].電力電容器與無(wú)功補(bǔ)償, 2020, 41(6): 21-29.

    CHEN Yongjin.A coordinated optimization for active distribution network reconfiguration and volt/var optimization based on mixed integer convex programming[J].Power Capacitor & Reactive Power Compensation, 2020, 41(6): 21-29.

    [12] 徐小琴, 王博, 趙紅生, 等.基于布谷鳥(niǎo)搜索和模擬退火算法的兩電壓等級(jí)配網(wǎng)重構(gòu)方法[J].電力系統(tǒng)保護(hù)與控制, 2020, 48(11): 84-91.

    XU Xiaoqin, WANG Bo, ZHAO Hongsheng, et al.Reconfiguration of two-voltage distribution network based on cuckoo search and simulated annealing algorithm[J].Power System Protection and Control, 2020, 48(11): 84-91.

    [13] 潘本仁, 王和春, 張妍, 等.含分布式電源的主動(dòng)配電網(wǎng)重構(gòu)策略研究[J].電力系統(tǒng)保護(hù)與控制, 2020, 48(15): 102-107.

    PAN Benren, WANG Hechun, ZHANG Yan, et al.Study on an active distribution network reconstruction strategy with distributed power supply[J].Power System Protection and Control, 2020, 48(15): 102-107.

    [14] 吳泓儉, 雷霞, 劉斌, 等.基于遺傳膜算法的含風(fēng)電機(jī)組和電動(dòng)汽車的配電網(wǎng)分時(shí)段動(dòng)態(tài)重構(gòu)[J].電工技術(shù)學(xué)報(bào), 2016, 31(2): 196-205, 220.

    WU Hongjian, LEI Xia, LIU Bin, et al.Membrane computing based genetic algorithm for dynamic reconfiguration of distribution network with dividing time and considering electric vehicles and wind turbines[J].Transactions of China Electrotechnical Society, 2016, 31(2): 196-205, 220.

    [15] 李揚(yáng), 韋鋼, 馬鈺, 等.含電動(dòng)汽車和分布式電源的主動(dòng)配電網(wǎng)動(dòng)態(tài)重構(gòu)[J].電力系統(tǒng)自動(dòng)化, 2018, 42(5): 102-110.

    LI Yang, WEI Gang, MA Yu, et al.Dynamic reconfiguration of active distribution network considering electric vehicles and distributed generations[J].Automation of Electric Power Systems, 2018, 42(5): 102-110.

    [16] 汪芳宗, 王兆豐.基于混合整數(shù)二次錐規(guī)劃方法的含分布式電源配電網(wǎng)優(yōu)化重構(gòu)方法[J].電力系統(tǒng)保護(hù)與控制, 2016, 44(24): 24-30.

    WANG Fangzong, WANG Zhaofeng.An optimumreconfiguration method for distribution networks with DG based on mixed integer second-order cone programming[J].Power System Protection and Control, 2016, 44(24): 24-30.

    [17] 江鈞, 成樂(lè)祥, 孫國(guó)強(qiáng), 等.考慮安全域的配電網(wǎng)重構(gòu)二階錐雙層規(guī)劃模型[J].電力系統(tǒng)保護(hù)與控制, 2019, 47(4): 9-16.

    JIANG Jun, CHENG Lexiang, SUN Guoqiang, et al.Distribution network reconfiguration based on second order cone bi-level programming considering security distance[J].Power System Protection and Control, 2019, 47(4): 9-16.

    [18] 李洪美, 崔翰韜, 萬(wàn)秋蘭.考慮電動(dòng)汽車充電策略的配網(wǎng)重構(gòu)二階錐規(guī)劃模型[J].中國(guó)電機(jī)工程學(xué)報(bào), 2015, 35(18): 4674-4681.

    LI Hongmei, CUI Hantao, WAN Qiulan.Distribution network reconfiguration based on second-order conic programming considering EV charging strategy[J].Proceedings of the CSEE, 2015, 35(18): 4674-4681.

    [19] 李錳, 王利利, 劉向?qū)? 等.基于門(mén)當(dāng)戶對(duì)遺傳算法的配電網(wǎng)多目標(biāo)主動(dòng)重構(gòu)研究[J].電力系統(tǒng)保護(hù)與控制, 2019, 47(7): 30-38.

    LI Meng, WANG Lili, LIU Xiangshi, et al.Multiobjective active reconfiguration of distribution network based the “properly matched marriage” genetic algorithm[J].Power System Protection and Control, 2019, 47(7): 30-38.

    [20] JABR R A.Minimum loss network reconfiguration using mixed-integer convex programming[J].IEEE Transactions on Power Systems, 2012, 27(2): 1106-1115.

    [21] BEN T, AHARO N, NEMIROVS K I, et al.On polyhedral approximations of the second-order cone[J].Mathematics of Operations Research, 2001, 26(2): 193-205.

    [22] 郭清元, 吳杰康, 莫超, 等.基于混合整數(shù)二階錐規(guī)劃的新能源配電網(wǎng)電壓無(wú)功協(xié)同優(yōu)化模型[J].中國(guó)電機(jī)工程學(xué)報(bào), 2018, 38(5): 1385-1396.

    GUO Qingyuan, WU Jiekang, MO Chao, et al.A model for multi-objective coordination optimization of voltage and reactive power in distribution networks based on mixed integer second-order cone programming[J].Proceedings of the CSEE, 2018, 38(5): 1385-1396.

    [23] NAZIR F U, PAL B C, JABR R A.Approximate load models for conic OPF solvers[J].IEEE Transactions on Power Systems, 2021, 36(1): 549-552.

    [24] 邵尹池, 袁紹軍, 孫榮富, 等.基于空間相關(guān)性的分布式光伏實(shí)用化功率預(yù)測(cè)及誤差分析[J].中國(guó)電力, 2021, 54(7): 185-191, 207.

    SHAO Yinchi, YUAN Shaojun, SUN Rongfu, et al.Practical method and error analysis for distributed photovoltaic power prediction based on spatial correlation[J].Electric Power, 2021, 54(7): 185-191, 207.

    [25] 劉一兵, 吳文傳, 張伯明, 等.基于混合整數(shù)二階錐規(guī)劃的三相有源配電網(wǎng)無(wú)功優(yōu)化[J].電力系統(tǒng)自動(dòng)化, 2014, 38(15): 58-64.

    LIU Yibing, WU Wenchuan, ZHANG Boming, et al.Reactive power optimization for three-phase distribution networks with distributed generators based on mixed integer second-order cone programming[J].Automation of Electric Power Systems, 2014, 38(15): 58-64.

    [26] BOSE A, TIAN Z, WU W, et al.Mixed-integer second- order cone programing model for VAR optimisation and network reconfiguration in active distribution networks[J].IET Generation Transmission & Distribution, 2016, 10(8): 1938-1946.

    [27] 張福民, 劉國(guó)鑫, 李占凱, 等.基于二階錐規(guī)劃的交直流混合配電網(wǎng)優(yōu)化調(diào)度[J].智慧電力, 2020, 48(3): 117-123.

    ZHANG Fumin, LIU Guoxin, LI Zhankai, et al.Optimal dispatch of AC/DC hybrid distribution network based on second-order cone programming[J].Smart Power, 2020, 48(3): 117-123.

    [28] 高紅均, 劉俊勇, 沈曉東, 等.主動(dòng)配電網(wǎng)最優(yōu)潮流研究及其應(yīng)用實(shí)例[J].中國(guó)電機(jī)工程學(xué)報(bào), 2017, 37(6): 1634-1644.

    GAO Hongjun, LIU Junyong, SHEN Xiaodong, et al.Optimal power flow research in active distribution network and its application examples[J].Proceedings of the CSEE, 2017, 37(6): 1634-1644.

    [29] LOFEBRG J.YALMIP: a toolbox for modeling and optimization in Matlab[C] // 2004 IEEE International Symposium on Computer Aided Control Systems Design, September 2-4, 2004, Taibei, China: 284-289.

    [20] 李曉明, 劉翔宇, 李安昌, 等.配電網(wǎng)電壓控制的分布式光伏無(wú)功仿射可調(diào)魯棒優(yōu)化方法[J].電力系統(tǒng)保護(hù)與控制, 2021, 49(12): 124-131.

    LI Xiaoming, LIU Xiangyu, LI Anchang, et al.Distributed photovoltaic reactive power affine adjustable robust optimization method for voltage control of a distribution network[J].Power System Protection and Control, 2021, 49(12): 124-131.

    [31] SU C T, LEE C S.Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution[J].IEEE Transactions on Power Delivery, 2003, 18(3): 1022-1027.

    Reconfiguration method of an active distribution network with a ZIP load model based on mixed integer linear programming

    ZHANG Linna1, LE Jian2, LI Haojiong1

    (1.State Grid Shanxi Electric Power Company, Taiyuan 030001, China; 2.School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

    There is grid connection of distributed generation and an increasing complexity of load types.However, the traditional distribution network reconfiguration model has not considered an integrated load model.Therefore, this paper proposes a mixed integer linear programming model of an active distribution network considering the ZIP load model.Based on the second-order cone power flow model of a radial distribution network, the ZIP load model is equivalent to a ZP load model by linear regression method.The active distribution network reconfiguration model based on mixed integer second-order cone programming is established.The second-order cone constraint is linearized by polyhedron approximation, and the active distribution network reconfiguration model is established.The simulation results of three different scale distribution systems show that the accuracy of this active distribution network reconfiguration model is almost the same as that based on mixed integer second-order cone programming, but the optimization efficiency is improved by 15% ~ 30%.This shows high optimization accuracy and efficiency.

    ZIP load model; distribution network reconfiguration; mixed integer second-order cone programming; linear regression method; mixed integer linear programming

    10.19783/j.cnki.pspc.210903

    2021-07-15;

    2021-10-15

    張琳娜(1974—),女,高級(jí)工程師,主要研究方向?yàn)殡娋W(wǎng)規(guī)劃;E-mail: zhanglinna@sx.sgcc.com.cn

    樂(lè) 健(1975—),男,博士,副教授,主要從事智能電網(wǎng)運(yùn)行與控制技術(shù)研究。E-mail: lej01@tsinghua.org.cn

    國(guó)家自然科學(xué)基金項(xiàng)目資助(51877154)

    This work is supported by the National Natural Science Foundation of China (No.51877154).

    (編輯 周金梅)

    猜你喜歡
    有源二階整數(shù)
    一類二階迭代泛函微分方程的周期解
    一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
    二階線性微分方程的解法
    基于移相控制的雙有源橋變換器回流功率分析
    一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
    一類整數(shù)遞推數(shù)列的周期性
    聚焦不等式(組)的“整數(shù)解”
    基于有源箝位的開(kāi)關(guān)電源設(shè)計(jì)
    邱有源書(shū)法作品欣賞
    45V輸入200mALDO提供有源輸出放電
    寿光市| 达日县| 濮阳市| 林芝县| 海城市| 同心县| 武平县| 翁牛特旗| 平陆县| 城固县| 大丰市| 原平市| 姚安县| 西平县| 清原| 平顶山市| 景宁| 罗源县| 汽车| 达孜县| 长治市| 汶川县| 饶河县| 新丰县| 黄山市| 全州县| 东宁县| 平泉县| 城口县| 宝山区| 师宗县| 图木舒克市| 沙雅县| 永和县| 襄樊市| 大丰市| 兴义市| 舟山市| 普安县| 新宾| 邮箱|