李夢嬌,原 陽,孫文社,張鈺坤,盧 琦,鄒林峰,高遠(yuǎn)真,葉 婷,邢東明, 3*
? 藥理與臨床 ?
基于代謝組學(xué)的燈盞花素抗阿霉素心臟毒性作用機(jī)制研究
李夢嬌1, 2,原 陽2#,孫文社2,張鈺坤1, 2,盧 琦1, 2,鄒林峰1, 2,高遠(yuǎn)真1, 2,葉 婷1, 2,邢東明1, 2, 3*
1.青島大學(xué)基礎(chǔ)醫(yī)學(xué)院,山東 青島 266071 2. 青島大學(xué)附屬醫(yī)院腫瘤研究所和青島腫瘤研究院,山東 青島 266000 3. 清華大學(xué)生命科學(xué)學(xué)院,北京 100091
通過體內(nèi)外實(shí)驗(yàn)研究燈盞花素對(duì)阿霉素誘導(dǎo)心臟毒性的保護(hù)作用及機(jī)制。體內(nèi)實(shí)驗(yàn)中,將C57BL/6小鼠隨機(jī)分為對(duì)照組、模型組、右雷佐生(12 mg/kg)組和燈盞花素低、中、高劑量(4、8、16 mg/kg)組,給予藥物干預(yù)3周后,采用蘇木素-伊紅(HE)染色觀察小鼠心肌組織的病理變化;采用ELISA法檢測各組小鼠血漿端B型利鈉肽前體(amino-terminal pro-B-type natriuretic peptide,NT-proBNP)水平;采用超高效液相色譜/四極桿飛行時(shí)間質(zhì)譜(UHPLC/Q-TOF MS)研究其代謝途徑和主要代謝產(chǎn)物。體外實(shí)驗(yàn)中,將大鼠心肌細(xì)胞H9c2隨機(jī)分為對(duì)照組、阿霉素組、右雷佐生組和燈盞花素組,給予藥物處理后,檢測丙二醛(malondialdehyde,MDA)和谷胱甘肽(glutathione,GSH)水平,觀察H9c2細(xì)胞抗氧化能力;采用TUNEL及Annexin V-FITC/PI雙染法檢測各組細(xì)胞凋亡情況;采用Western blotting法檢測H9c2細(xì)胞核因子E2相關(guān)因子2(nuclear factor E2 related factor 2,Nrf2)、腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)和Ras同源蛋白A(Ras homolog gene family member A,RhoA)蛋白表達(dá)情況。與對(duì)照組比較,模型組小鼠血漿NT-proBNP水平顯著升高(<0.05),心肌組織發(fā)生肌原纖維紊亂、破裂以及心肌纖維的波狀變性;與模型組比較,燈盞花素組和右雷佐生組心肌組織的形態(tài)損傷減輕,血漿NT-proBNP水平顯著降低(<0.05);代謝組學(xué)分析篩選出16個(gè)顯著改變的代謝物作為潛在的生物標(biāo)志物,涉及氨基酸代謝、脂質(zhì)代謝及炎癥因子調(diào)節(jié)等代謝路徑。在H9c2細(xì)胞中,阿霉素組GSH水平顯著降低(<0.05),MDA水平顯著升高(<0.05),心肌細(xì)胞凋亡率顯著升高(<0.05),RhoA和Nrf2蛋白表達(dá)水平均顯著降低(<0.05),AMPK蛋白表達(dá)水平顯著升高(<0.05);與阿霉素組比較,燈盞花素組和右雷佐生組細(xì)胞存活率升高(<0.05),MDA水平顯著降低(<0.05),GSH水平顯著升高(<0.05),心肌細(xì)胞凋亡率和ROS生成均顯著降低(<0.05),RhoA和Nrf2蛋白表達(dá)水平均顯著升高(<0.05),AMPK蛋白表達(dá)水平顯著降低(<0.05)。燈盞花素通過調(diào)節(jié)脂質(zhì)代謝、氨基酸代謝以及炎癥因子水平維持細(xì)胞氧化還原狀態(tài)和炎癥水平,恢復(fù)心肌細(xì)胞穩(wěn)態(tài),抑制了阿霉素誘導(dǎo)的細(xì)胞損傷和凋亡,緩解心臟毒性,此外燈盞花素可能通過調(diào)節(jié)神經(jīng)活性配體受體相互作用保護(hù)受損心臟功能。燈盞花素可能是一種很有前途的心臟保護(hù)劑。
燈盞花素;阿霉素;心臟毒性;細(xì)胞凋亡;代謝途徑
20世紀(jì)50年代起,蒽環(huán)類化療藥物阿霉素廣泛應(yīng)用于乳腺癌、淋巴瘤等實(shí)體瘤以及多種血液腫瘤的臨床治療[1-2],隨著其臨床使用增多,其不良反應(yīng)如心臟毒性、高血壓及心律失常等常見的心血管疾病損害也日益突出[3],制約其進(jìn)一步發(fā)展和應(yīng)用。研究顯示,蒽環(huán)類化療藥物是導(dǎo)致心臟毒性的首要因素,腫瘤患者因藥物相關(guān)心臟毒性導(dǎo)致的死亡風(fēng)險(xiǎn)已超過了腫瘤自身或因復(fù)發(fā)而導(dǎo)致的死亡風(fēng)險(xiǎn)[4-7]。右雷佐生是臨床指南推薦的作為預(yù)防蒽環(huán)類化療藥物心臟毒性的唯一有效藥物,近20年來一直用于防止蒽環(huán)類抗腫瘤藥物產(chǎn)生的心臟毒性[8],然而右雷佐生會(huì)增加霍奇金淋巴瘤兒童經(jīng)前綜合癥、骨髓抑制等[9-10],不良反應(yīng)顯著。因此為進(jìn)一步提高蒽環(huán)類化療藥物臨床發(fā)展,急需開發(fā)新型安全高效的心臟毒性保護(hù)劑。
燈盞花素是燈盞花中幾種黃酮類化合物的粗提物,具有抗氧化、抗炎、清除自由基等生物活性[11],主要用于治療高血壓、腦栓塞和腦血管意外引起的癱瘓等疾病[12-13]。研究表明,燈盞花素可用于治療腦梗死和糖尿病腎病,具有明顯的神經(jīng)改善和保護(hù)作用[14-17]。然而其對(duì)化療藥物導(dǎo)致的心臟損傷有無保護(hù)價(jià)值,迄今為止并未發(fā)現(xiàn)相關(guān)報(bào)道。本研究利用超高效液相色譜-四極桿-飛行時(shí)間質(zhì)譜(UHPLC-Q-TOF/MS)技術(shù),探究燈盞花素對(duì)阿霉素誘導(dǎo)的具有心臟毒性的小鼠血漿代謝物的變化趨勢及其相關(guān)代謝通路,通過代謝組學(xué)闡明燈盞花素治療阿霉素誘導(dǎo)的心臟毒性的潛在生物標(biāo)志物和可能機(jī)制。
SPF級(jí)雌性C57BL/6小鼠48只,8周齡,體質(zhì)量18~22 g,購自北京斯貝福動(dòng)物中心,動(dòng)物合格證號(hào)為SCXK(京)2019-0010。動(dòng)物分籠飼養(yǎng)于青島大學(xué)醫(yī)學(xué)部動(dòng)物實(shí)驗(yàn)中心,自由進(jìn)食飲水,飼養(yǎng)溫度為(22±3)℃,濕度為50%。動(dòng)物實(shí)驗(yàn)通過青島大學(xué)醫(yī)學(xué)部實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)(批準(zhǔn)號(hào)C577620210617068)。
大鼠心肌細(xì)胞H9c2(批號(hào)CRL1531446)購自美國ATCC。
阿霉素(批號(hào)HBW200804-3)、右雷佐生(批號(hào)HBW200701-3)購自湖北威德利化學(xué)科技有限公司;燈盞花素(批號(hào)ETYSW200915-1,質(zhì)量分?jǐn)?shù)≥98%)購自上海第一生化藥業(yè)有限公司;胎牛血清購自美國Gibco公司;二甲基亞砜(dimethyl sulfoxide,DMSO,批號(hào)D8371)、丙二醛(malondialdehyde,MDA)試劑盒(批號(hào)S0021)、谷胱甘肽(glutathione,GSH)活性檢測試劑盒(批號(hào)S0053)購自北京索萊寶科技有限公司;細(xì)胞活性CCK-8試劑盒(批號(hào)MA0718-L)、TUNEL檢測試劑盒(批號(hào)MA0723-L)、蘇木素-伊紅(HE)染色試劑(批號(hào)MB9898-1)購自碧云天生物技術(shù)研究所;DMEM培養(yǎng)基、青霉素/鏈霉素(批號(hào)PWL062)、活性氧(reactive oxygen species,ROS)熒光檢測試劑盒(批號(hào)MA0082-2)、Annexin V-FITC/PI細(xì)胞凋亡檢測試劑盒(批號(hào)MA0220-1)、BCA蛋白定量試劑盒(批號(hào)MA0082-2)、ECL超敏發(fā)光液(批號(hào)MA0186)、RIPA裂解液(批號(hào)MA0152)購自大連美侖生物技術(shù)有限公司;端B型利鈉肽前體(amino-terminal pro-B-type natriuretic peptide,NT-proBNP)ELISA試劑盒(批號(hào)H421AD0355)購自上海玉博生物科技有限公司;核因子E2相關(guān)因子2(nuclear factor E2 related factor 2,Nrf2)抗體(批號(hào)WH180316)、Ras同源蛋白A(Ras homolog gene family member A,RhoA)抗體(批號(hào)WH180696)、腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)抗體(批號(hào)WH182712)、甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)抗體(批號(hào)WH180745)、HRP標(biāo)記的山羊抗兔IgG抗體(批號(hào)WH183453)購自武漢愛博泰克生物技術(shù)有限公司;色譜級(jí)甲醇、甲酸、醋酸銨購自美國Thermo Fisher Scientific公司;超純水購自德國Merck公司。
Q Exactive? HF質(zhì)譜儀、Vanquish UHPLC色譜儀(美國Thermo Fisher Scientific公司);低溫離心機(jī)(美國Scilogex公司);VICTOR Nivo酶標(biāo)儀(美國PerkinElmer公司);Cyto FLEX流式細(xì)胞儀(美國Beckman公司);DM IL LED倒置熒光顯微鏡(德國Leica公司)。
小鼠隨機(jī)分為對(duì)照組、模型組、右雷佐生(12 mg/kg)[18]組和燈盞花素低、中、高劑量(4、8、16 mg/kg)[19]組,每組8只。除對(duì)照組外,其余各組小鼠每7天ip阿霉素(4 mg/kg),持續(xù)3周,累積劑量為12 mg/kg[20];造模同時(shí)各給藥組ip相應(yīng)藥物,1次/d,連續(xù)3周。對(duì)照組不做任何處理,每天監(jiān)測各組小鼠存活率并記錄體質(zhì)量變化。
小鼠麻醉后采血,收集血液,離心取上清,按照ELISA試劑盒說明書測定血漿NT-proBNP水平。
給藥結(jié)束后,麻醉小鼠,以0.9%氯化鈉溶液進(jìn)行心臟灌注后,斷頭處死取心臟。將心臟組織置于4%多聚甲醛中固定,經(jīng)切片、二甲苯脫蠟、乙醇梯度脫水、蘇木素染色、清洗、伊紅染色、乙醇梯度脫水、封片,于熒光顯微鏡下觀察并拍照。
2.4.1 樣本代謝物提取 取100 μL血樣置于EP管中,加入400 μL 80%甲醇水溶液,渦旋振蕩,冰浴靜置5 min,4 ℃、15 000×離心20 min;取一定量的上清液加質(zhì)譜級(jí)水稀釋至甲醇含量為53%,4 ℃、15 000×離心20 min,收集上清,LC-MS進(jìn)樣分析。
2.4.2 UHPLC-MS分析 C18色譜柱(100 mm×2.1 mm,1.9 μm),流動(dòng)相為含0.1%甲酸的乙腈溶液(A)-0.1%甲酸水溶液(B),梯度洗脫:0~1.5 min,2% B;1.5~12.0 min,2%~100% B;12.0~14.0 min,100% B;14.0~14.1 min,100%~2% B;14.1~17.0 min,2% B;柱溫40 ℃;體積流量0.2 mL/min;進(jìn)樣量4 μL;在分析過程中,所有樣品于4 ℃保存。在質(zhì)譜儀上用電噴霧進(jìn)行質(zhì)譜分析,/設(shè)定為100~1500;分辨率設(shè)置為30 000的全掃描模式;干燥氣為氮?dú)猓浑妵婌F毛細(xì)管電壓3.2 kV;氣體溫度為320 ℃。
2.4.3 數(shù)據(jù)預(yù)處理和代謝物鑒定 將下機(jī)數(shù)據(jù)文件導(dǎo)入CD 3.1搜庫軟件中進(jìn)行處理,對(duì)每個(gè)代謝物進(jìn)行保留時(shí)間、質(zhì)荷比等參數(shù)的簡單篩選,然后設(shè)置相應(yīng)參數(shù)等信息進(jìn)行峰提取,同時(shí)對(duì)峰面積進(jìn)行定量,整合目標(biāo)離子,然后通過分子離子峰和碎片離子進(jìn)行分子式的預(yù)測并與數(shù)據(jù)庫進(jìn)行比對(duì),去除背景離子,并對(duì)原始定量結(jié)果進(jìn)行標(biāo)準(zhǔn)化處理,最后得到代謝物的鑒定和相對(duì)定量結(jié)果。
2.4.4 差異代謝物的篩選 使用京都基因與基因組百科全書(Kyoto encyclopedia of genes and genomes,KEGG)數(shù)據(jù)庫(https://www.genome.jp/ kegg/pathway.html)、HMDB數(shù)據(jù)庫(https:// hmdb.ca/metabolites)和LIPID Maps 數(shù)據(jù)(http:// www.lipidmaps.org/)對(duì)鑒定到的代謝物進(jìn)行注釋。使用代謝組學(xué)數(shù)據(jù)處理軟件對(duì)數(shù)據(jù)進(jìn)行轉(zhuǎn)換,然后進(jìn)行主成分分析(principal component analysis,PCA)和偏最小二乘法判別分析(partial least square-discriminant analysis,PLS-DA),進(jìn)而得到每個(gè)代謝物的變量投影重要性(variable importance plot,VIP)值。基于檢驗(yàn)來計(jì)算各代謝物在兩組間統(tǒng)計(jì)學(xué)顯著性(值),并計(jì)算代謝物在兩組間的差異倍數(shù)即FC值。差異代謝物篩選的默認(rèn)標(biāo)準(zhǔn)為VIP>1、<0.05且FC≥2或FC≤0.5。對(duì)篩選到的差異代謝物進(jìn)行層次聚類分析,將具有相同特征的代謝物歸為一類,并發(fā)現(xiàn)代謝物在實(shí)驗(yàn)組間的變化特征,結(jié)果以熱圖進(jìn)行展示。
2.4.5 差異表達(dá)代謝物的代謝通路分析 KEGG數(shù)據(jù)庫搜索差異表達(dá)代謝物的相關(guān)代謝通路。
2.5.1 細(xì)胞培養(yǎng) H9c2細(xì)胞用含10%胎牛血清、100 U/mL青霉素和100 mg/mL鏈霉素的DMEM培養(yǎng)基,于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)。待細(xì)胞融合度達(dá)到80%以上時(shí)進(jìn)行傳代,取處于對(duì)數(shù)生長期、生長狀態(tài)良好的細(xì)胞進(jìn)行實(shí)驗(yàn)。
2.5.2 CCK-8法測定燈盞花素最佳濃度 取處于對(duì)數(shù)生長期的H9c2細(xì)胞,胰酶消化后以1×104/孔接種于96孔板中,設(shè)置對(duì)照組、阿霉素組、右雷佐生(20 μmol/L)[21]組和不同濃度(10、20、50、100、200 μmol/L)的燈盞花素[22]組。對(duì)照組僅加入DMEM培養(yǎng)基,其余各組加入阿霉素(5 μmol/L)[23],各給藥組再加入相應(yīng)藥物,處理24 h。每孔加入10 μL CCK-8溶液,孵育0.5~4 h后,采用酶標(biāo)儀測定450 nm處的吸光度()值。
2.5.3 GSH和MDA含量檢測 取處于對(duì)數(shù)生長期的H9c2細(xì)胞,胰酶消化后以1×104/孔接種于6孔板中,對(duì)照組僅加入DMEM培養(yǎng)基,其余各組細(xì)胞分別加入阿霉素(5 μmol/L)、右雷佐生(20 μmol/L)、阿霉素(5 μmol/L)+右雷佐生(20 μmol/L)、燈盞花素(200 μmol/L)、阿霉素(5 μmol/L)+燈盞花素(200 μmol/L),處理24 h,按照試劑盒說明書測定測定GSH、MDA含量。
2.5.4 細(xì)胞ROS水平測定 按“2.5.3”項(xiàng)下方法分組及給藥,收集細(xì)胞,用PBS洗滌,加入DCFH-DA探針(10 μmol/L)孵育30 min,棄上清,用PBS洗滌2次,于熒光顯微鏡下觀察并拍照。
2.5.5 Annexin V-FITC/PI測定細(xì)胞凋亡 按“2.5.3”項(xiàng)下方法分組及給藥,收集細(xì)胞,用無EDTA的胰酶消化收集到15 mL離心管中,室溫孵育5 min;加入DPBS,離心棄上清,加入染色液重懸細(xì)胞,孵育后采用流式細(xì)胞儀采集細(xì)胞。
2.5.6 TUNEL染色分析細(xì)胞凋亡情況 按“2.5.3”項(xiàng)下方法分組及給藥,收集細(xì)胞,用4%多聚甲醛固定15 min,然后用0.2% Triton X-100固定5 min,用100 μL平衡緩沖液平衡,除去緩沖液,用50 μL末端脫氧核苷酸轉(zhuǎn)移酶反應(yīng)混合物處理細(xì)胞,37 ℃孵育60 min,用2×SSC緩沖液沖洗2次細(xì)胞,然后通過Green 226熒光染色檢測TUNEL陽性細(xì)胞,于熒光顯微鏡下觀察并拍照。
2.5.7 Western blotting法檢測細(xì)胞Nrf2、AMPK和RhoA蛋白表達(dá)情況 取處于對(duì)數(shù)生長期的H9c2細(xì)胞,胰酶消化后以1×104/孔接種于6孔板中,對(duì)照組僅加入DMEM培養(yǎng)基,其余各組細(xì)胞分別加入阿霉素(5 μmol/L)、燈盞花素(200 μmol/L)、阿霉素(5 μmol/L)+燈盞花素(200 μmol/L),處理24 h,收集細(xì)胞,加入RIPA細(xì)胞裂解緩沖液,于冰上裂解,4 ℃、12 000 r/min離心10 min,取上清液,用BCA蛋白定量試劑盒測定蛋白質(zhì)量濃度,將等量的蛋白與5×Loading Buffer混合,100 ℃煮沸5 min。蛋白樣品經(jīng)十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳,轉(zhuǎn)至PVDF膜,加入5%脫脂牛奶,室溫封閉,分別加入Nrf2、AMPK、RhoA和GAPDH抗體,4 ℃孵育過夜;TBST洗膜后,加入HRP標(biāo)記的山羊抗兔IgG抗體,室溫孵育,使用BioRad凝膠doc系統(tǒng)曝光顯影,采用Image J軟件進(jìn)行定量分析。
2.5.8 統(tǒng)計(jì)分析 使用IBM SPSS Statistics 25軟件對(duì)數(shù)據(jù)進(jìn)行分析,數(shù)據(jù)以表示。多組間均數(shù)比較采用單因素方差分析。
如圖1-A所示,與對(duì)照組相比,模型組小鼠血漿心臟毒性標(biāo)志物NT-proBNP水平顯著升高(<0.05);與模型組比較,各給藥組小鼠血漿NT-proBNP水平均顯著降低(<0.05)。如圖1-B所示,對(duì)照組小鼠心肌組織結(jié)構(gòu)正常,與對(duì)照組相比,模型組小鼠心肌組織產(chǎn)生損傷性形態(tài)學(xué)改變包括心肌萎縮、間隙增大、變性壞死、水腫、炎性浸潤,各給藥組以上變化減輕。
A-各組小鼠血漿NT-proBNP水平 B-各組小鼠心肌組織HE染色(×400) 與對(duì)照組比較:*P<0.05;與模型組比較:#P<0.05
血漿的代謝組學(xué)可以在一定程度上反映藥物干預(yù)對(duì)心臟功能的影響。通過PCA分析了對(duì)照組、模型組、右雷佐生組和燈盞花素低、中、高劑量組總離子模式下的PCA圖,用來評(píng)估各組代謝物之間的分布和差異。如圖2所示,PCA圖表明所有樣本都在置信區(qū)域內(nèi),不同組別之間存在較明顯的差異,同時(shí)可能由于不同小鼠生活習(xí)慣及對(duì)藥物適應(yīng)性差異,同組內(nèi)樣本之間的分布呈現(xiàn)一定分散。在對(duì)照組和模型組的代謝物之間觀察到明顯的分離,表明由于ip阿霉素引起小鼠代謝情況改變,造成小鼠血漿中的內(nèi)源性物質(zhì)水平受到干擾。各給藥組均向?qū)φ战M前移,表明燈盞花素和右雷佐生緩解了阿霉素誘導(dǎo)的心臟中毒小鼠的代謝紊亂,恢復(fù)了小鼠的內(nèi)源性物質(zhì)水平。但具體的差異情況還需要使用PLS-DA來研究對(duì)照組和模型組、模型組和燈盞花素組間的差異,以尋找治療心臟中毒的潛在生物標(biāo)志物。
為了研究給予不同劑量燈盞花素后對(duì)小鼠內(nèi)源性物質(zhì)代謝影響的大小,采用PLS-DA法分析了組間差異。根據(jù)VIP≥1、<0.05標(biāo)準(zhǔn),將組間有顯著差異的候選物確定為代謝的候選生物標(biāo)志物,評(píng)估燈盞花素治療阿霉素誘導(dǎo)心臟毒性的潛在機(jī)制和可能的代謝物的變化。
圖2 PCA圖
如表1所示,在各組中找到-精氨酸(-arginine)、-蘇氨酸(-threonine)、纈氨酸(valine)、絲氨酸(-serine)、肌酸(creatine)、牛磺酸(taurine)、前列腺素(prostaglandin)、磷脂酰膽堿(PC)、溶血磷脂酰肌醇(LPI)等16個(gè)代謝物可以作為燈盞花素干預(yù)后的生物標(biāo)志物,其中-精氨酸、-蘇氨酸、纈氨酸、絲氨酸等水平降低,前列腺素水平顯著升高,不同劑量燈盞花素干預(yù)后,含量異常的代謝物均有不同程度的回調(diào),這些生物標(biāo)志物在燈盞花素的作用下含量都有顯著變化(圖3),它們在機(jī)體氨基酸代謝、脂質(zhì)代謝及炎癥水平調(diào)節(jié)中發(fā)揮重要作用[24-28]。此外還構(gòu)建了基于代謝物的聚類熱圖(圖4),以確定分布情況并找出組間差異。以上結(jié)果表明在不同劑量燈盞花素的干預(yù)下,模型組小鼠血漿代謝物的含量產(chǎn)生了顯著變化。
表1 模型組和對(duì)照組的差異代謝物
Table 1 Differential metabolites between model group and control group
編號(hào)差異代謝物分子式相對(duì)分子質(zhì)量tR/minm/z趨勢 1prostaglandin F2αC20H34O5354.239 8513.688355.247 01↑* 2L-asparagineC4H8N2O3132.053 151.341155.042 31↓* 3L-arginineC6H14N4O2174.112 031.945173.104 75↓* 4L-kynurenineC10H12N2O3208.084 205.315209.091 51↑* 5valineC5H11NO2117.078 821.884118.086 11↓* 6taurineC2H7NO3S125.015 021.316124.007 77↓* 7DL-arginineC6H14N4O2157.084 611.303158.092 10↓* 8D-phenylalanineC9H11NO2165.078 719.459166.086 04↓* 9O-aceyl-L-serineC5H9NO4147.052 921.331148.060 06↓* 10L-threonineC4H9NO3119.058 581.353118.051 31↓* 112-furoylglycineC7H7NO4169.035 451.263168.028 27↓* 12creatineC4H9N3O2131.069 201.372132.076 43↓* 13LPE 16∶1C21H42NO7P451.268 7714.511452.276 28↓* 14LPI 18∶1C27H51O12P598.312 5614.740597.305 80↑* 15LPS 22∶6C28H44NO9P569.275 8514.433568.267 80↓* 16PC (18∶1e/22∶4)C48H88NO7P881.655 2316.300880.646 55↓*
↑表示升高;↓表示降低*<0.05
↑ means increase; ↓ means decrease*< 0.05
與對(duì)照組比較:*P<0.05;與模型組比較:#P<0.05
使用KEGG數(shù)據(jù)庫對(duì)差異代謝物的相關(guān)代謝通路進(jìn)行識(shí)別分析,以<0.05、Pathway impact>0.1為條件篩選出主要的代謝通路。如圖5所示,軸為值,代表該通路的顯著性水平。值越大,節(jié)點(diǎn)顏色越紅。軸是通路影響因子,表示代謝通路的重要性,數(shù)值越大,節(jié)點(diǎn)半徑越長?;诖斯埠Y選出4條主要代謝通路:鐵死亡(ferroptosis),甘氨酸、絲氨酸和蘇氨酸代謝(glycine,serine and threonine metabolism),不飽和脂肪酸的生物合成(biosynthesis of unsaturated fatty acids)以及神經(jīng)活性配體受體的相互作用(neuroactive ligand-receptor interaction)。此外,組氨酸代謝(histidine metabolism)、-谷氨酰胺和-谷氨酸代謝(-glutamine and-glutamate metabolism)等也被篩選出作為相關(guān)途徑之一。
如圖6-A所示,與阿霉素組相比,10~200 μmol/L燈盞花素顯著升高細(xì)胞存活率(<0.05)。
研究表明,阿霉素能夠誘導(dǎo)心臟毒性和氧化應(yīng)激,產(chǎn)生的過量ROS可能會(huì)破壞DNA、蛋白質(zhì)和膜結(jié)構(gòu)的不飽和脂質(zhì)等成分,最終加速細(xì)胞凋亡或誘發(fā)脂質(zhì)過氧化引起細(xì)胞鐵死亡,從而導(dǎo)致心臟毒性[29]。如圖6-B~D所示,阿霉素處理的H9c2細(xì)胞中MDA、ROS水平顯著升高(<0.05),GSH水平顯著降低(<0.05);燈盞花素明顯降低阿霉素誘導(dǎo)的H9c2細(xì)胞中MDA和ROS水平(<0.05),顯著升高GSH水平(<0.05)。
A-模型組和對(duì)照組的差異代謝物火山圖 B-燈盞花素低劑量組和模型組的差異代謝物火山圖 C-燈盞花素中劑量組和模型組的差異代謝物火山圖 D-燈盞花素高劑量組和模型組的差異代謝物火山圖 E-生物標(biāo)志物的熱圖
A-模型組與對(duì)照組的差異代謝物代謝通路圖 B-燈盞花素低劑量組與模型組的差異代謝物代謝通路圖 C-燈盞花素中劑量組與模型組的差異代謝物代謝通路圖 D-燈盞花素高劑量組與模型組的差異代謝物代謝通路圖
A-CCK8法測定細(xì)胞毒性 B-MDA含量 C-GSH含量 D-ROS水平 與對(duì)照組比較:*P<0.05;與阿霉素組比較:#P<0.05,圖7、8同
細(xì)胞凋亡是阿霉素誘導(dǎo)心臟毒性的重要表現(xiàn)。如圖7-A所示,與對(duì)照組相比,阿霉素處理后細(xì)胞凋亡和壞死比重明顯升高,活細(xì)胞數(shù)量顯著減少,經(jīng)燈盞花素和右雷佐生處理后凋亡細(xì)胞數(shù)量顯著減少。如圖7-B所示,H9c2心肌細(xì)胞長期暴露于阿霉素下導(dǎo)致DNA片段化增加,與對(duì)照組相比,TUNEL陽性細(xì)胞數(shù)顯著增加(<0.05),用燈盞花素處理后TUNEL陽性細(xì)胞數(shù)量顯著減少(<0.05),表明燈盞花素有效改善阿霉素誘導(dǎo)的DNA斷裂。
阿霉素誘導(dǎo)心臟毒性不僅增加細(xì)胞凋亡,而且影響凋亡相關(guān)蛋白的表達(dá)[30-34]。如圖8所示,與對(duì)照組比較,阿霉素組H9c2細(xì)胞AMPK蛋白表達(dá)水平顯著升高(<0.05),Nrf2和RhoA蛋白表達(dá)水平均顯著降低(<0.05);與阿霉素組比較,燈盞花素組和燈盞花+阿霉素組H9c2細(xì)胞AMPK蛋白表達(dá)水平顯著降低(<0.05),Nrf2和RhoA蛋白表達(dá)水平均顯著升高(<0.05)。
A-Annexin V-FITC/PI測定細(xì)胞凋亡 B-TUNEL染色測定細(xì)胞凋亡
圖8 燈盞花素對(duì)阿霉素誘導(dǎo)的H9c2細(xì)胞Nrf2、AMPK和RhoA蛋白表達(dá)的影響
燈盞花素臨床常用于治療心腦血管等疾病,然而其介導(dǎo)的心臟保護(hù)所依賴的代謝調(diào)節(jié)機(jī)制尚不明確。為了進(jìn)一步探究燈盞花素治療阿霉素誘導(dǎo)心臟毒性的作用機(jī)制,研究了小鼠血漿代謝物和代謝途徑的相關(guān)情況,結(jié)果顯示燈盞花素治療阿霉素心臟毒性與脂質(zhì)代謝、氨基酸代謝和炎癥水平調(diào)節(jié)密切相關(guān)。作為燈盞花素心臟保護(hù)形成的核心環(huán)節(jié),神經(jīng)活性配體受體相互作用是燈盞花素富集的主要通路。結(jié)合本研究結(jié)果,推測燈盞花素可能通過調(diào)節(jié)氨基酸代謝、脂質(zhì)代謝和炎癥水平來抑制細(xì)胞凋亡,通過神經(jīng)活性配體-受體通路保護(hù)受損心臟功能,最終抑制阿霉素產(chǎn)生的心臟毒性。
本研究結(jié)果顯示,阿霉素誘導(dǎo)的心臟毒性與鐵死亡,甘氨酸、絲氨酸及蘇氨酸代謝和不飽和脂肪酸的生物合成等有關(guān),這些代謝途徑與細(xì)胞凋亡的發(fā)生密切相關(guān),進(jìn)一步在體外實(shí)驗(yàn)中重復(fù)驗(yàn)證了阿霉素誘導(dǎo)的細(xì)胞凋亡水平升高。鐵死亡是一種由細(xì)胞內(nèi)磷脂過氧化引發(fā)的細(xì)胞死亡類型,與細(xì)胞的鐵含量、氨基酸代謝以及氧化還原狀態(tài)密切相關(guān),會(huì)催化細(xì)胞膜上不飽和脂肪酸的高表達(dá),誘發(fā)脂質(zhì)過氧化,從而導(dǎo)致細(xì)胞凋亡[35-37]。甘氨酸、絲氨酸及蘇氨酸代謝途徑的異常變化會(huì)影響免疫系統(tǒng)和其他器官功能的正常發(fā)揮,氨基酸為構(gòu)建細(xì)胞質(zhì)量提供底物,其異常會(huì)減少細(xì)胞增殖和遷移,導(dǎo)致細(xì)胞凋亡[38-39]。不飽和脂肪酸的生物合成涉及脂質(zhì)含量較高的中樞神經(jīng)系統(tǒng),與許多心血管疾病的發(fā)生有關(guān)[29],脂質(zhì)代謝參與多種細(xì)胞信號(hào)通路,是維持細(xì)胞結(jié)構(gòu)和提供能量的基本成分,但其異常變化可導(dǎo)致細(xì)胞功能障礙和壞死,從而引起細(xì)胞凋亡[40],脂質(zhì)代謝異常會(huì)影響AMPK信號(hào)通路和神經(jīng)活性配體受體相互作用通路。神經(jīng)活性配體受體相互作用是燈盞花素發(fā)揮心臟保護(hù)作用的核心途徑,調(diào)節(jié)神經(jīng)活性配體受體的相互作用可以緩解心臟功能受損[41]。AMPK是調(diào)節(jié)脂質(zhì)代謝和細(xì)胞凋亡連接器上的關(guān)鍵蛋白,抑制AMPK信號(hào)可以顯著減弱阿霉素參與的脂質(zhì)代謝異常,從而減少細(xì)胞凋亡和鐵死亡,抑制細(xì)胞毒性[42-43]。絲氨酸和蘇氨酸是RhoA家族的下游介質(zhì),RhoA蛋白可以通過三磷酸鳥苷(guanosine triphosphate,GTP)依賴的方式激活絲氨酸和蘇氨酸,2個(gè)氨基酸的末端可能是Rho家族潛在的藥物靶點(diǎn),絲氨酸和蘇氨酸含量異常,會(huì)誘發(fā)RhoA蛋白表達(dá)異常,引發(fā)細(xì)胞凋亡[44-45],此外,Rho家族相關(guān)蛋白表達(dá)異常會(huì)激活A(yù)MPK,繼而加重細(xì)胞凋亡[46]。Nrf2蛋白所在通路激活后會(huì)有效抑制炎癥反應(yīng),減少炎癥介質(zhì)釋放,降低細(xì)胞凋亡率[47-48]。阿霉素處理后的細(xì)胞AMPK蛋白表達(dá)水平顯著增加,嚴(yán)重干擾機(jī)體正常的脂質(zhì)代謝,而Nrf2和RhoA蛋白表達(dá)水平顯著降低,使氨基酸代謝異常,炎癥水平升高,細(xì)胞凋亡增加。因此推測燈盞花素可能通過調(diào)節(jié)異常的氨基酸代謝、脂質(zhì)代謝和炎癥水平來抑制細(xì)胞凋亡,通過神經(jīng)活性配體-受體通路保護(hù)受損心臟功能,最終抑制阿霉素產(chǎn)生的心臟毒性。
本研究采用右雷佐生作為陽性對(duì)照藥物,以確證燈盞花素對(duì)于阿霉素造成心臟損傷的治療效果。右雷佐生可以通過減少炎癥和細(xì)胞凋亡增加心肌細(xì)胞活力,從而減輕阿霉素心臟毒性[19],而燈盞花素主要通過減弱細(xì)胞氧化應(yīng)激和細(xì)胞凋亡減輕阿霉素心臟毒性。從代謝角度出發(fā),不同于右雷佐生發(fā)揮心臟保護(hù)的主要代謝途徑與能量代謝、氧化還原維持、磷脂和蛋白質(zhì)代謝有關(guān)[50-52],燈盞花素的保護(hù)作用更偏向于穩(wěn)定氨基酸代謝、脂質(zhì)代謝及炎癥代謝,并且通過神經(jīng)活性配體受體作用途徑來保護(hù)心臟功能等。但燈盞花素通過抑制細(xì)胞凋亡來減輕阿霉素產(chǎn)生心臟毒性的具體通路有待進(jìn)一步研究。
綜上所述,本研究發(fā)現(xiàn)燈盞花素可以改善阿霉素誘導(dǎo)的心臟毒性,可能是通過調(diào)節(jié)脂質(zhì)代謝、氨基酸代謝、炎癥水平和神經(jīng)活性配體受體相互作用等途徑抑制阿霉素產(chǎn)生的細(xì)胞凋亡和心臟損傷。
利益沖突 所有作者均聲明不存在利益沖突
[1] Rimal H, Lee S W, Lee J H,. Understanding of real alternative redox partner ofDoxA: Prediction and validation using in silico andanalyses [J]., 2015, 585: 64-74.
[2] Lewis W D, Lilly S, Jones K L. Lymphoma: Diagnosis and treatment [J]., 2020, 101(1): 34-41.
[3] van der Zanden S Y, Qiao X H, Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin [J]., 2021, 288(21): 6095-6111.
[4] Caron J, Nohria A. Cardiac toxicity from breast cancer treatment: Can we avoid this? [J]., 2018, 20(8): 61.
[5] Narezkina A, Nasim K. Anthracycline cardiotoxicity [J]., 2019, 12(3): e005910.
[6] Curigliano G, Cardinale D, Dent S,. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management [J]., 2016, 66(4): 309-325.
[7] McGowan J V, Chung R, Maulik A,. Anthracycline chemotherapy and cardiotoxicity [J]., 2017, 31(1): 63-75.
[8] Eneh C, Lekkala M R.[M]. StatPearls: Treasure Island, 2021: 24-25.
[9] Kopp L M, Womer R B, Schwartz C L,. Effects of dexrazoxane on doxorubicin-related cardiotoxicity and second malignant neoplasms in children with osteosarcoma: A report from the Children’s oncology group [J]., 2019, 5: 15.
[10] Getz K D, Sung L, Alonzo T A,. Effect of dexrazoxane on left ventricular systolic function and treatment outcomes in patients with acute myeloid leukemia: A report from the children’s oncology group [J]., 2020, 38(21): 2398-2406.
[11] 田麗華, 趙立忠, 顧佳, 等. 燈盞花素新品種及劑型研究進(jìn)展[J]. 中國中藥雜志, 2014, 39(19): 3719-3722.
[12] Gao J L, Chen G, He H Q,. Therapeutic effects of breviscapine in cardiovascular diseases: A review [J]., 2017, 8: 289.
[13] Wu L H, Liu M, Fang Z Y. Combined therapy of hypertensive nephropathy with breviscapine injection and antihypertensive drugs: A systematic review and a meta-analysis [J]., 2018, 2018: 2958717.
[14] 趙俊, 智英杰, 趙輝, 等. 燈盞花素注射液治療糖尿病腎病的療效和安全性: 隨機(jī)對(duì)照試驗(yàn)的綜述和Meta分析[J]. 中國中藥雜志, 2019, 44(4): 833-844.
[15] Li Z, Zhang X B, Gu J H,. Breviscapine exerts neuroprotective effects through multiple mechanisms in APP/PS1transgenic mice [J]., 2020, 468(1/2): 1-11.
[16] Wang M, Zhang W B, Song J L,. Effect of breviscapine on recovery of viable myocardium and left ventricular remodeling in chronic total occlusion patients after revascularization: Rationale and design for a randomized controlled trial [J]., 2018, 24: 4602-4609.
[17] Liu X D, Yao L, Sun D,. Effect of breviscapine injection on clinical parameters in diabetic nephropathy: A meta-analysis of randomized controlled trials [J]., 2016, 12(3): 1383-1397.
[18] 馬軍, 秦叔逵, 沈志祥. 蒽環(huán)類藥物心臟毒性防治指南(2013年版) [J]. 臨床腫瘤學(xué)雜志, 2013, 18(10): 925-934.
[19] Chen Z Q, Zhou Y, Chen F,. Breviscapine pretreatment inhibits myocardial inflammation and apoptosis in rats after coronary microembolization by activating the PI3K/Akt/GSK-3β signaling pathway [J]., 2021, 15: 843-855.
[20] Li M C, Sala V, de Santis M C,. Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth [J]., 2018, 138(7): 696-711.
[21] Shabalala S C, Dludla P V, Muller C J F,. Aspalathin ameliorates doxorubicin-induced oxidative stress in H9c2 cardiomyoblasts [J]., 2019, 55: 134-139.
[22] Wang J, Ji S Y, Liu S Z,. Cardioprotective effect of breviscapine: Inhibition of apoptosis in H9c2 cardiomyocytes via the PI3K/Akt/eNOS pathway following simulated ischemia/reperfusion injury [J]., 2015, 70(9): 593-597.
[23] Upadhyay S, Mantha A K, Dhiman M.(Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes [J]., 2020, 258: 112690.
[24] Mondanelli G, Iacono A, Carvalho A,. Amino acid metabolism as drug target in autoimmune diseases [J]., 2019, 18(4): 334-348.
[25] Basu S. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2alpha from physiology to new principles in inflammation [J]., 2007, 27(4): 435-468.
[26] Michel M, Dubowy K O, Entenmann A,. Targeted metabolomic analysis of serum amino acids in the adult Fontan patient with a dominant left ventricle [J]., 2020, 10(1): 8930.
[27] Aquilani R, La Rovere M T, Corbellini D,. Plasma amino acid abnormalities in chronic heart failure mechanisms, potential risks and targets in human myocardium metabolism [J]., 2017, 9(11): E1251.
[28] Sun H P, Wang Y B. Branched chain amino acid metabolic reprogramming in heart failure [J]., 2016, 1862(12): 2270-2275.
[29] Liu Y C, Zeng L P, Yang Y,. Acyl-CoA thioesterase 1 prevents cardiomyocytes from doxorubicin-induced ferroptosis via shaping the lipid composition [J]., 2020, 11(9): 756.
[30] Liu D, Ma Z Q, di S Y,. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis [J]., 2018, 129: 59-72.
[31] Chang Z F, Lee H H. RhoA signaling in phorbol ester-induced apoptosis [J]., 2006, 13(2): 173-180.
[32] Cheng X L, Liu D, Xing R N,. Orosomucoid 1 attenuates doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes via Nrf2 signaling [J]., 2020, 2020: 5923572.
[33] Feng K, Chen Z X, Pengcheng L,. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/ AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model [J]., 2019, 234(10): 18192-18205.
[34] Lin H, Zhang J, Ni T J,. Yellow wine polyphenolic compounds prevents doxorubicin-induced cardiotoxicity through activation of the Nrf2 signalling pathway [J]., 2019, 23(9): 6034-6047.
[35] Stockwell B R, Jiang X J, Gu W. Emerging mechanisms and disease relevance of ferroptosis [J]., 2020, 30(6): 478-490.
[36] Sun Y T, Chen P, Zhai B T,. The emerging role of ferroptosis in inflammation [J]., 2020, 127: 110108.
[37] Qiu Y M, Cao Y, Cao W J,. The application of ferroptosis in diseases [J]., 2020, 159: 104919.
[38] Koochekpour S, Majumdar S, Azabdaftari G,. Serum glutamate levels correlate with Gleason score and glutamate blockade decreases proliferation, migration, and invasion and induces apoptosis in prostate cancer cells [J]., 2012, 18(21): 5888-5901.
[39] Phang J M, Liu W, Hancock C,. The proline regulatory axis and cancer [J]., 2012, 2: 60.
[40] da Cunha Menezes Souza L, Fernandes F H, Presti P T,. Effect of doxorubicin on cardiac lipid metabolism-related transcriptome and the protective activity of Alda-1 [J]., 2021, 898: 173955.
[41] Bai H, Sun K, Wu J H,. Proteomic and metabolomic characterization of cardiac tissue in acute myocardial ischemia injury rats [J]., 2020, 15(5): e0231797.
[42] Gao L X, Xu Z G, Huang Z,. CPI-613 rewires lipid metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling [J]., 2020, 39(1): 73.
[43] Zhong Y, Tian F, Ma H X,. FTY720 induces ferroptosis and autophagy via PP2A/AMPK pathway in multiple myeloma cells [J]., 2020, 260: 118077.
[44] Lim W G, Chen X, Liu J P,. The-terminus of PRK2/PKNgamma is required for optimal activation by RhoA in a GTP-dependent manner [J]., 2008, 479(2): 170-178.
[45] Lim W G, Zhu Y M, Wang C H,. The last five amino acid residues at the-terminus of PRK1/PKN is essential for full lipid responsiveness [J]., 2005, 17(9): 1084-1097.
[46] Kamel W A, Sugihara E, Nobusue H,. Simvastatin-induced apoptosis in osteosarcoma cells: A key role of RhoA-AMPK/p38 MAPK signaling in antitumor activity [J]., 2017, 16(1): 182-192.
[47] Gao X Y, He D W, Liu D F,. Beta-naphthoflavone inhibits LPS-induced inflammation in BV-2 cells via AKT/Nrf-2/HO-1-NF-κB signaling axis [J]., 2020, 225(4): 151965.
[48] Prasanna P L, Renu K, Valsala Gopalakrishnan A. New molecular and biochemical insights of doxorubicin-induced hepatotoxicity [J]., 2020, 250: 117599.
[49] Eneh C, Lekkala M R.[M].StatPearls: Treasure Island, 2021: 87.
[50] Yang Q J, Yang G J, Wan L L,. Protective effects of dexrazoxane against doxorubicin-induced cardiotoxicity: A metabolomic study [J]., 2017, 12(1): e0169567.
[51] Dallons M, Schepkens C, Dupuis A,. New insights about doxorubicin-induced toxicity to cardiomyoblast-derived H9c2 cells and dexrazoxane cytoprotective effect: Contribution of1H-NMR metabonomics [J]., 2020, 11: 79.
[52] Carvalho R A, Sousa R P, Cadete V J,. Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy [J]., 2010, 270(2/3): 92-98.
Mechanisms of breviscapine against doxorubicin-induced cardiotoxicity based on metabolomics
LI Meng-jiao1, 2, YUAN Yang2, SUN Wen-she2, ZHANGYu-kun1, 2, LU Qi1, 2, ZOU Lin-feng1, 2, GAO Yuan-zhen1, 2, YE Ting1, 2, XING Dong-ming1, 2, 3
1. School of Basic Medicine, Qingdao University, Qingdao 266071, China 2. Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266000, China 3. School of Life Sciences, Tsinghua University, Beijing 100091, China
To investigate the effects and mechanism of breviscapine against doxorubicin-induced cardiotoxicityand, C57BL/6 mice were randomly divided into control group, model group, dexrazoxane (12 mg/kg) group and breviscapine low-, medium- and high-dose (4, 8, 16 mg/kg) groups, drugs were given for intervention for 3 weeks, hematoxylin-eosin (HE) staining was used to observe the pathological changes of myocardial tissue in mice; ELISA method was used to detect the amino-terminal pro-B-type natriuretic peptide (NT-proBNP) level in plasma; Metabolic pathways and major metabolites were studied by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS).experiments, rat cardiomyocytes H9c2 were randomly divided into control group, adriamycin group, dexrazoxane group and breviscapine group. After treatment, malondialdehyde (MDA) and glutathione (GSH) levels were detected to observe the antioxidant capacity of H9c2 cells; TUNEL and Annexin V-FITC/PI double staining were used to detect the apoptosis of cells in each group; Western blotting was used to detect nuclear factor E2 related factor 2 (Nrf2), adenylate-activated protein kinase (AMPK) and Ras homolog gene family member A (RhoA) protein expressions of H9c2 cells.Compared with control group, NT-proBNP level in plasma of mice in model group was significantly increased (< 0.05), myofibrils were disordered, ruptured and wavy degeneration of myocardial fibers occurred in myocardial tissue; Compared with model group, morphological damage of myocardial tissue in breviscapine group and dexrazoxane group was alleviated, and NT-proBNP level in plasma was significantly decreased (< 0.05). Metabolomics analysis screened out 16 significantly altered metabolites as potential biomarkers, involving metabolic pathways such as amino acid metabolism, lipid metabolism and regulation of inflammatory factors. In H9c2 cells, GSH level was significantly decreased (< 0.05), MDA level was significantly increased (< 0.05), apoptosis rate of cardiomyocytes was significantly increased (< 0.05), RhoA and Nrf2 protein expressions in adriamycin group were significantly decreased (< 0.05), AMPK protein expression was significantly increased (< 0.05). Compared with doxorubicin group, survival rate of cells in breviscapine group and dexrazoxane group was increased (< 0.05), MDA level was significantly decreased (< 0.05), GSH level was significantly increased (< 0.05), apoptosis rate and ROS generation of cardiomyocytes were significantly decreased (< 0.05), RhoA and Nrf2 protein expressions were significantly increased (< 0.05), AMPK protein expression was significantly decreased (< 0.05).Breviscapine maintains cellular redox state and inflammatory level by regulating lipid metabolism, amino acid metabolism and inflammatory factor levels, restores myocardial cell homeostasis, inhibits doxorubicin-induced cell damage and apoptosis, and relieves cardiac toxicity, and breviscapine may protect impaired cardiac function through neuroactive ligand-receptor interactions. Breviscapine may be a promising cardioprotective agent.
breviscapine; doxorubicin; cardiotoxicity; cell apoptosis; metabolic pathways
R285.5
A
0253 - 2670(2022)08 - 2356 - 12
10.7501/j.issn.0253-2670.2022.08.012
2021-12-09
國家自然科學(xué)基金資助項(xiàng)目(3200830);中國博士后基金資助項(xiàng)目(2021T140356);山東省自然科學(xué)基金資助項(xiàng)目(ZR2020MH369)
李夢嬌(1996—),女,碩士,主要從事腫瘤保護(hù)劑研究。Tel: 13636756256 E-mail: L04040112@163.com
邢東明,男,博士生導(dǎo)師,主要從事藥理學(xué)及藥物開發(fā)研究。E-mail: xdm_tsinghua@163.com
#共同第一作者:原 陽(1988—),男,博士后,主要從事化療性心肌損傷研究。Tel: 18053237721 E-mail: yuanyangofficial@yeah.net
[責(zé)任編輯 李亞楠]