• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two 3D Microporous Zn?MOF for Fluorescence Sensing of Fe3+,Cr2O7 2-,and Acetone in Aqueous Solution

    2022-04-18 01:50:46GAOLouJunMIJingCHAIHongMeiRENYiXiaSUNXueHuaZHANGGangQiangZHANGYan
    無機化學學報 2022年4期

    GAO Lou?JunMI Jing CHAI Hong?Mei*,REN Yi?Xia*, SUN Xue?HuaZHANG Gang?QiangZHANG Yan

    (1Shaanxi Key Laboratory of Chemical Reaction Engineering,College of Chemistry and Chemical Engineering,Yan′an University,Yan′an,Shaanxi 716000,China)

    (2Xinjiang Xuanli Environmental Protection Energy Co.,Ltd.,Hami,Xinjiang 839000,China)

    Abstract:Two 3D microporous zinc metal?organic frameworks,formulated as[Zn3(DBA)(OH)(1,10?phen)2]n(1)and{[Zn2(HDBA)(4,4′?bipy)1.5]·H2O}n(2)(H5DBA=(3,5?di(2′,4′?dicarboxylphenyl)benzoic acid;1,10?phen=1,10?phenan?throline;4,4′?bipy=4,4′?bipyridine),were synthesized under solvothermal conditions.Structural analysis shows that 1 could be described as a 3D microporous framework based on the trinuclear metal units,while 2 exhibits the micro?porous structure from the binuclear zinc groups.Compared with 2,1 demonstrated a strong luminescence in the water,so it could be used as luminescent sensors for detection of Fe3+,Cr2O72?,and acetone molecules with high selectivity and sensitivity.CCDC:2076066,1;2076067,2.

    Keywords:Zn?MOFs;Fe3+;Cr2O72?;acetone;fluorescence sensing

    With the rapid development of industry,more and more pollutants are released into the environment,such as toxic metal ions,organic small molecules,and nitro?aromatic compounds(NACs),which lead to many adverse effects on human health and life[1?3].According to previous works of literature,traditional measuring approaches,such as mass spectrum,atomic emission spectroscopy,and gas spectrometer,require sophisti?cated instruments and proficient skill,and it is time?consuming,complex pretreatment[4].Compared with the above instrumental methods,the luminescent sensor was considered a promising material because of the advantages of easy operation,fast speed response,low detection,etc[5].Acetone is a poisonous substance,so the high concentrated acetone in the environment can cause some symptoms,such as headache,dizziness,and nausea.To human health,it is very important to exploit a fast?response acetone sensor to monitor its concentration[6?7].Fe3+is an essential trace element in the human body.However,excessive or insufficient Fe3+will cause a variety of diseases[8?10].Furthermore,the detection of Fe3+ion is key to early diagnosis of these diseases and as well as assessment of important indicators of human health.Cr2O72?is a potent carcino?genic substance that will affect people′s health even at a low concentration.It has been classified as a serious pollutant by the United States Environmental Protec?tion Agency(USEPA)[11?13].It is vitally important to detect the Cr2O72?in aqueous media.Therefore,it is imperative to establish a superior sensitivity and high selectivity chemical sensing method to monitor heavy metal ions,organic small molecules,explosive aromat?ic substances in the environment of medicine,industry,and so on[14?15].

    Metal?organic frameworks(MOFs),as one of the most promising candidates of porous material,have been constructed from metal ions/clusters and organic ligands[16].Their excellent properties such as high porosity,large surface areas,adjustable channel as well as rich structural network,lead to their wide?spread application in drug diversity[17?18],gas separation/storage[19?20],chemical sensing[21],catalysis[22?23],electro?chemistry sensing[24?25],and so on.Luminescence MOF has gained great progress in synthesis,design,and sensing application and has attracted the attention of many researchers as a desirable sensing material[26?28].The mechanism of MOFs luminescence involves elec?tron transfer and energy transfer processes,such as metal?to?ligand charge transfer(MLCT),ligand?to?metal charge transfer(LMCT),ligand?to?ligand charge transfer (LLCT), metal?to?metal charge transfer(MMCT)[29].Meanwhile,it refers to the introduction of guest molecules,including guest sensitization and guest?centered emission.MOFshave been constructed through topology design,pore functionalization,and so on,so an increasing number of MOFs have been con?structed as fluorescent sensing materials and lumines?cent chemical sensors[30?31].

    In this work,two 3D microporous Zn?MOFs have been constructed based on 3,5?di(2′,4′?dicarboxylphe?nyl)benzoicacid(H5DBA),namely[Zn3(DBA)(OH)(1,10?phen)2]n(1)and{[Zn2(HDBA)(4,4′?bipy)1.5]·H2O}n(2)(1,10?phen=1,10?phenanthroline;4,4′?bipy=4,4′?bipyri?dine),under the solvothermal condition.The lumines?cence properties of 1 and the crystal structures of 1 and 2 have been studied.It was concluded that 1 has fluorescence sensing properties for Fe3+,Cr2O72?,and acetone.

    1 Experimental

    1.1 Materials and methods

    All of the reagents were commercially available and used directly in the experiment without any purifi?cation.Powder X?ray diffraction(PXRD)patterns were collected on a PANalytical X′Pert PRO instrument with CuKαradiation(λ=0.154 06 nm,U=45 kV,I=40 mA,2θ=5°?50°).TGA curves were recorded by Netzsch TG209.Fluorescence spectra were performed by the Hitachi F?7000 fluorescence spectrophotometer.FT?IR(KBr pellet)spectra were recorded on a Shimadzu IRAFFINITY?1S spectrometer in a range of 4 000?500 cm?1.Elemental analyses(C,H,N)were performed using a Vario EL elemental analyzer.

    1.2 Synthesis of[Zn3(DBA)(OH)(1,10?phen)2]n(1)

    A mixture of Zn(NO3)2·6H2O(0.1 mmol),H5DBA(0.1 mmol),1,10?phenanthroline monohydrate(0.1 mmol),DMF(1 mL),H2O(8 mL),and NaOH(1 mL)were sealed in 25 mL Teflon?lined stainless autoclave.Then the autoclave was heated to 160℃for 72 h and was cooled to 30 ℃ at a descending rate of 4 ℃·h?1.Some orange crystals were obtained and washed with water,then dried in air(86% based on Zn).Anal.Calcd.for C47H26N4O11Zn3(%):C,55.35;H,2.55;N,5.49.Found(%):C,55.37;H,2.66;N,5.50.FT?IR(KBr pellets,cm?1):3 056(w),2 342(w),1 626(s),1 556(s),1 505(w),1 418(m),1 364(m),1 100(w),929(w),845(s),785(s),721(s),691(m),638(w),554(w)(Fig.S1,Supporting information).

    1.3 Synthesis of{[Zn2(HDBA)(4,4′?bipy)1.5]·H2O}n (2)

    A mixture of Zn(NO3)2·6H2O(0.1 mmol),H5DBA(0.1 mmol),4,4′?bipyridine(0.1 mmol),H2O(9 mL),HAc?NaAc solution(pH=6,1 mL)were sealed in 25 mL Teflon ?lined stainless autoclave.Then the auto?clave was heated to 160℃for 72 h and was cooled to 30 ℃ at a descending rate of 4 ℃·h?1.Some colorless crystals were obtained and washed with water,then dried in air(62% based on Zn).Anal.Calcd.for C38H22N3O10Zn2·H2O(%):C,55.02;H,2.89;N,5.07.Found(%):C,55.26;H,2.68;N,5.09.FT?IR(KBr pel?lets,cm?1):3 056(w),2 343(w),1 617(s),1 559(s),1 405(s),1 372(s),1 296(w),1 215(w),1 060(w),806(m),765(m),726(w),686(w),628(m),592(w)(Fig.S1).

    1.4 Structure determination

    The data for 1 and 2 were collected from a single crystal at 296.15 K on a Bruker APEX2 QUAZAR single?crystal diffractometer with a microfocus sealed X?ray tube using mirror optics as monochromator and a Bruker APEXⅡdetector.The diffractometer was equipped with an Oxford Cryostream 800 low?tempera?ture device and used MoKαradiation(λ=0.071 073 nm).All data were integrated with SAINT and a multi?scan absorption correction using SADABS was applied.The structures were solved by partial structure expan?sion using SHELXS and refined by full?matrix least?squares methods againstF2by SHELXL.All non?hydrogen atoms were refined with anisotropic displace?ment parameters.The hydrogen atoms were refined isotropically on calculated positions using a riding model with their Uiso values constrained to 1.2 times theUeqof their parent atoms.PLATON/SQUEEZE program was used to remove the disordered solvent molecules in the structure.Crystallographic data and structure refinement for 1 and 2 are displayed in Table 1.Selected bond lengths and bond angles for 1 and 2 are summarized in Table S1(1)and S2(2).

    Table 1 Crystallographic data and structure refinement for 1 and 2

    CCDC:2076066,1;2076067,2.

    Continued Table 1

    1.5 Luminescence sensing experiments

    The powder of complex 1(3 mg)was dispersed in 3 mL different solutions or different solvents to form a suspension,then it was sonicated for 30 min and kept at room temperature for 3 d before fluorescence mea?surement.Those different solutions(0.01 mol·L?1)included M(NO3)x(Mx+=Pb2+,Ni2+,Cd2+,Bi3+,Hg2+,Na+,Co2+,Ag+,K+,Mg2+,Fe2+,Al3+,Fe3+,Cu2+)or KyX(Xy?=Cr2O72?,I?,Ac?,Br?,SO42?,SCN?,Cl?,CO32?,H2PO4?,PO43?,ClO4?,IO?,S2?,SO2?33),and those different sol?vents includedN,N?dimethylformamide(DMF),water(H2O),isopropanol(IPA),acetone(CP),n?propanol(NPA),dimethylsulfoxide(DMSO),ethanol(EA),acetic acid(HAc),trichloromethane(CHCl3),methanol(MT),cyclohexane(CYH),ethyl acetate(EAc).

    2 Results and discussion

    2.1 Crystal structure

    2.1.1 Crystal structure of complex 1

    Single?crystal X?ray analysis shows that 1 crystal?lizes in the monoclinic system withP21/nspace group(Table 1).The asymmetric unit of 1 consists of three independent Zn2+ions,one DBA5?ligand,one coordi?nated hydroxyl group,and two 1,10?phen molecules(Fig.1a).Zn1 is centered in a six?coordinate octahedron geometry with three carboxyl oxygen atoms(O1,O11,and O6#1)of two DBA5?ligands,two nitrogen atoms(N1 and N2)from one 1,10?phen molecule,and one hydroxyl oxygen atom(O9)(Fig.S2a).Zn2 forms a five?coordinate environment coordinated with two carboxyl oxygen atoms(O2 and O10)from the monodentate bridged carboxyl of one DBA5?,two nitrogen atoms(N3 and N4)of a 1,10?phen molecule,and one hydroxyl oxygen atom(O9)(Fig.S2b).Zn3 lies in a six?coordinate geometry including one hydroxyl oxygen atom(O9#4)and four carboxylate oxygen atoms(O3,O4,O5#3,and O6#3)coming from two DBA5?ligands,respectively,and one carboxyl oxygen(O8#2)from the other ligand in a monodentate bridging?coupled coordination mode(Fig.S2c).The bond length scope of Zn—O/N is 0.194 7(2)?0.218 97(19)nm and the range of O—Zn—O bond angle is 85.72(7)°?176.80(8)°(Table S1).

    Fig.1 (a)Coordination environment of metal ions and DBA5?ligand in 1 with 30% thermal ellipsoids;(b)1D chains based on adjacent Zn1,Zn2,Zn3 trinuclear units;(c)2D network;(d)3D microporous framework

    Zn1,Zn2,and Zn3 are connected through one hydroxyl oxygen atom(O9)forming a trinuclear metal cluster(Fig.S2d).The coordination mode of the full deprotonation DBA5?ligand in 1 isκ1κ2?κ1κ0?κ1κ1?κ1κ1?κ1κ1?μ6to link six metal ions(Fig.S2e).Adjacent trinu?clear metal clusters are alternately connected into a 1D chain by chelating and bridging carboxyl groups of DBA5?ligands(Fig.1b).1D chains are bridged with the carboxylates of DBA5?ligands to form a 2D network in thebcplane(Fig.1c).Then the 2D network is extended into a 3D microporous framework through the multi?dentate DBA5?ligand(Fig.1d).

    2.1.2 Crystal structure of complex 2

    Single?crystal X?ray analysis reveals that 2 crys?tallizes in the triclinic system with theP1 space group(Table 1).The asymmetric unit of 2 consists of two independent Zn2+ions,one HDBA4?ligand,one and a half of 4,4′?bipy molecules(Fig.2a).Zn1 is in a five?coordinate environment with four carboxyl oxygen atoms(O1#1,O2,O9,and O10)from three HDBA4?ligands,one nitrogen atom(N1)of one 4,4′?bipy mole?cule.Two oxygen atoms(O9 and O10)are from one chelated carboxylate of one HDBA4?ligand,and two oxygen atoms(O1#1 and O2)from the other two HDBA4?ligands in monodentate bridged coordination mode,respectively(Fig.2a).Zn2 ion also lies in a five?coordinate environment with four carboxyl oxygen atoms(O3,O8,O4#2,and O7#2)of two ligands,one nitrogen atom(N2)of 4,4′?bipy(Fig.2a).The bond length scope of Zn—O/N is 0.196 34(15)?0.301 55(6)nm,and the range of O—Zn—O bond angle is 59.37(7)°?157.99(7)°.

    Fig.2 (a)Coordination environment of metal ions and ligands in 2 with 30% thermal ellipsoids;(b)2D network;(c)3D microporous framework

    Two adjacent atoms are bridged by one carboxyl?ate of HDBA4?ligand forming a binuclear cluster(Zn1…Zn1),which is connected by the HDBA4?ligand into 1D chain A(Fig.2b).Two adjacent Zn2 ions are connected by one HDBA4?ligand forming a similar binuclear cluster(Zn2…Zn2 cluster,Fig.S3a)and 1D chain B(Fig.2b).Each HDBA4?ligand adopts the coor?dination mode ofκ1κ1?κ1κ1?κ1κ1?κ1κ1?κ0κ0?μ5(Fig.S3b).Two 1D chains A and B are crossing to form a 2D net?work bridged by HDBA4?ligands(Fig.2b).The 2D net?works are connected by the pillared 4,4′?bipy ligands forming a 3D microporous structure(Fig.2c).

    2.2 General characterization of 1 and 2

    The phase purity of complexes 1 and 2 has been confirmed by PXRD(Fig.S4a and S4b).The peaks in the PXRD patterns of as?synthesized complexes were coincident with the simulated patterns,proving their high purities.TGA curves(Fig.S4c)exhibited high thermal stability up to 450℃for 1,and the skeleton gradually collapsed between 450 and 700℃mainly caused by the decomposition of 1,10?phenanthroline,with a weight loss of 35.5%(Calcd.35.3%),and then it probably continued to collapse with further increasing temperature.While 2 had a slight weight loss(2.0%)before 70℃,which may be the loss of solvent H2O molecules(Calcd.2.1%,indicating that an asymmetric unit contains one water molecule).It had high thermal stability between 70 and 320℃,and then its skeleton gradually collapsed between 320 and 700℃,mainly due to the decomposition of ligand(HDBA4?),with a weight loss of 55.4%(Calcd.55.0%),and then it continued to decompose with further increasing temper?ature.

    2.3 Luminescent properties

    2.3.1 Fluorescence properties of solids

    The solid?state fluorescence spectra of 1,2,and the ligands at room temperature are shown in Fig.3.It shows that 1 had the stronger emission peak at 368 nm,while 2 didn′t show any luminescence,because the N?donor molecules of the two complexes are different.Hence,it can be concluded that the presence of an aux?iliary ligand may affect LLCT[32?34].Internal emission of two complexes may be attributed to theπ*→πorπ*→ntransition,which leads to enhanced and quenching of fluorescence[34?35].So 1 can be potentially used as a luminescent material.

    Fig.3 Solid?state fluorescence spectra of 1,2,and the ligands

    2.3.2 Sensing for small solvent molecules

    The results of the solvent molecule sensing experi?ment of 1 are shown in Fig.4a.It is found that the sol?vent can influence the intensity of emission peak,and especially,the acetone caused the fluorescence quenching of 1.Therefore,1 can act as a highly selec?tive and sensitive sensor to detect acetone.The lumi?nescence titration spectra of 1 for acetone are shown in Fig.4b.It was found that there was a good linear rela?tionship between the concentration of acetone(cCP)in a range of 0?1.535 mmol·L?1andI0/I?1.The linear equa?tion wasy=22.677 5x?1.618 01(Fig.4b,Inset).The detection limit was 7.26 mmol·L?1(at 3σ/klevel,whereσis the standard deviation,kis the slope).The results indicate that 1 is a sensitive fluorescent sensing material for acetone quantitative analysis.Usually,the fluorescence quenching may be caused by the structur?al collapse of fluorescent materials.Compared with the simulated pattern,the PXRD pattern of 1 was unaffect?ed(Fig.S4a).Hence,the quenching mechanism is attributed to the competitive absorption of energy between 1 and acetone[36?37].

    Fig.4 (a)Relative fluorescence intensity of 1 introduced into various pure organic solvents;(b)Luminescence spectrum titration of 1 for sensing acetone

    2.3.3 Sensing for metal ions

    As shown in Fig.5a,1 showed different lumines?cence intensities in different metal ions solutions.Especially, the luminescence was significantly quenched when the suspension of 1 was mixed with Fe3+solution.Further study found that the lumines?cence intensity of 1 gradually decreased with the increase of Fe3+concentration(0?180 μmol·L?1,Fig.5b).The quenching efficiency of 1 can be quantitatively described with the Stern?Volmer equation:whereI0andIare luminescence intensities of 1 before and after adding Fe3+,respectively;cFe3+is the concentration of Fe3+;Ksvis the quenching effect coeffi?cient of the Fe3+.There was a good linear relationship between the concentration of Fe3+andI0/I?1:y=0.304 12x?0.162 9(Fig.5b,Inset),and theKsvwas 3.0×105L·mol?1.The detection limit for Fe3+was caculated to be 0.54 μmol·L?1(at 3σ/klevels).Compared with the detection limit of Fe3+previously reported[38],1 can be used as a highly selective and sensitive fluorescent sensor.

    Fig.5 (a)Normalized intensity of 1 in different metal ions solutions;(b)Luminescence spectrum titration of 1 for sensing Fe3+

    To discuss the luminescence quenching mecha?nism of Fe3+toward 1,UV?Vis spectra of 1 in different metal ions solutions were determined(Fig.S5),and it was found that only Fe3+had a particularly strong absorption in a range of 290?380 nm.Therefore,the flu?orescence quenching mechanism might be attributed to the competitive absorption of Fe3+and 1[39].

    To further explore the potential applications of such a sensitive MOF sensor in the biological system,we performed sensing experiments of 1 under the simu?lated physiological condition(20 mmol·L?1HEPES buf?fer solution,pH=7)with different Fe3+concentra?tions[40].With increasing Fe3+concentration in the HEPES buffer solution,the luminescence intensity of 1 decreased dramatically(Fig.6).The sensing behaviors of 1 under biological conditions were similar to those observed in an aqueous solution,but theKsvvalue was slightly lower(Ksv=1.19×104L·mol?1)(Fig.6,Inset).The result indicates that 1 could be considered as a flu?orescent probe for sensing Fe3+in a biological system.

    Fig.6 Luminescence spectrum titration of 1 for sensing Fe3+in HEPES aqueous solution

    2.3.4 Sensing for inorganic anions

    The fluorescence intensity of 1 is closely related to the coexistence of inorganic anions,and especially,the quenching effect of Cr2O72?to 1 was very obvious(Fig.7a).The luminescence intensity of 1 gradually decreased with increasing concentration of Cr2O72?(Fig.7b).It can be concluded in Inset of Fig.7b that there was a good linear relationship betweenI0/I?1 and the concentration of Cr2O72?in a range of 0?80 μmol·L?1,which linear equation wasy=0.240 23x?0.062 1.The detection limit was 0.69 μmol·L?1(at 3σ/klevels).To further study the luminescencequenching mecha?nism of Cr2O72?toward 1,the UV?Vis absorption spec?troscopy was studied(Fig.S6).It can be found that only CrO2?27had a strong absorption band in a range of 300?400 nm,so the possible fluorescence quenching mecha?nism is attributed to the competitive absorption of CrO2?27ions and 1[41?42].

    Fig.7 (a)Relative fluorescence intensity of complex 1 in different anionic solutions;(b)Luminescence spectrum titration of 1 for sensing CrO2?27

    2.3.5 Recyclability after sensing experiment

    To further evaluate the re?utilization of 1 for Fe3+,Cr2O72?,and acetone sensing detection,1 was washed with water and ethanol and dried after sensing.Then the recovered samples of 1 were immersed again in the aqueous solution(0.01 mol·L?1)of Fe3+,Cr2O72?,and acetone to detect the fluorescence intensities,respec?tively.After five cycles of quenching and recovery of fluorescence intensity,the fluorescence intensity of 1was unchanged(Fig.S7).The PXRD patterns showed that the structure remains integrated after quenching and recovery(Fig.S4a).It follows that 1 can be used as a stable and recyclable chemical sensing for detecting Fe3+,Cr2O72?,and acetone.

    3 Conclusions

    In summary,two 3D microporous Zn?MOFs,1 and 2,based on H5DBA were successfully constructed.1 shows a stable microporous structure featuring the trinuclear inorganic building unit,while 2 exhibits a 3D framework based on the binuclear unit.Different N?donor ligands result in different luminescence proper?ties.1 possessed strong luminescence with superior selectivity and sensitivity induced in aqueous medium Fe3+(0.54 μmol·L?1),Cr2O72?(0.69 μmol·L?1),and acetone(7.26 mmol·L?1).However,2 has poor lumines?cence.The structure of 1 remains intact after multiple cycles of sensing,indicating it is an efficient and recy?clable sensing material.

    Conflicts of interest:The authors declare no competing financial interest.

    Supporting information is available at http://www.wjhxxb.cn

    色老头精品视频在线观看| 国产精品自产拍在线观看55亚洲| 男人操女人黄网站| 九色国产91popny在线| 日韩国内少妇激情av| 国产精品影院久久| 久久久久久久午夜电影| 国产色视频综合| 欧美国产日韩亚洲一区| 又紧又爽又黄一区二区| 久久精品国产亚洲av香蕉五月| 午夜亚洲福利在线播放| www国产在线视频色| 国产精品电影一区二区三区| 日韩欧美 国产精品| 99热只有精品国产| 国产av又大| 国产精品永久免费网站| 熟女电影av网| 亚洲熟妇中文字幕五十中出| 亚洲人成电影免费在线| 在线国产一区二区在线| 免费看a级黄色片| 亚洲第一青青草原| 精品欧美国产一区二区三| 国产高清videossex| 又黄又爽又免费观看的视频| 日本 av在线| 亚洲av第一区精品v没综合| 欧美色欧美亚洲另类二区| 看片在线看免费视频| 国产一区二区三区视频了| 18禁国产床啪视频网站| 午夜精品在线福利| 国产精品电影一区二区三区| 日韩欧美国产一区二区入口| 国产精品av久久久久免费| 国产国语露脸激情在线看| 精品一区二区三区av网在线观看| 色哟哟哟哟哟哟| 亚洲成人国产一区在线观看| 精品欧美国产一区二区三| 黑人欧美特级aaaaaa片| 一进一出抽搐gif免费好疼| 国产精品一区二区三区四区久久 | 国产国语露脸激情在线看| 高潮久久久久久久久久久不卡| 熟女电影av网| 日韩三级视频一区二区三区| 中文字幕精品亚洲无线码一区 | 免费av毛片视频| 99久久无色码亚洲精品果冻| 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线观看免费| 19禁男女啪啪无遮挡网站| 制服诱惑二区| 看黄色毛片网站| ponron亚洲| 99精品欧美一区二区三区四区| 久久久久九九精品影院| 日韩大尺度精品在线看网址| 嫩草影视91久久| 久久久久久国产a免费观看| 精品熟女少妇八av免费久了| 欧美日本视频| 久久狼人影院| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 亚洲一区中文字幕在线| 国产91精品成人一区二区三区| 亚洲精品久久国产高清桃花| 脱女人内裤的视频| 国产三级在线视频| 99国产精品一区二区蜜桃av| 国产高清videossex| 欧美成人午夜精品| 国产一区二区在线av高清观看| 欧美人与性动交α欧美精品济南到| 亚洲欧美日韩高清在线视频| 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 久久久久国产一级毛片高清牌| 亚洲自偷自拍图片 自拍| 日韩成人在线观看一区二区三区| 久久亚洲真实| 91老司机精品| 亚洲精品在线观看二区| 亚洲精品中文字幕一二三四区| 免费看日本二区| 天天一区二区日本电影三级| 我的亚洲天堂| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 日本一区二区免费在线视频| 久久精品亚洲精品国产色婷小说| 国产成人系列免费观看| 日韩高清综合在线| 久久久久精品国产欧美久久久| 黄色成人免费大全| 久久久水蜜桃国产精品网| 午夜福利视频1000在线观看| 看黄色毛片网站| 亚洲精品在线观看二区| 欧美黑人巨大hd| 日韩欧美国产在线观看| 18禁观看日本| 亚洲av熟女| 婷婷丁香在线五月| 一级a爱视频在线免费观看| 悠悠久久av| 十八禁网站免费在线| 别揉我奶头~嗯~啊~动态视频| 99国产精品99久久久久| av在线播放免费不卡| 久久天躁狠狠躁夜夜2o2o| 国产又黄又爽又无遮挡在线| 午夜福利在线在线| 男女视频在线观看网站免费 | 熟女电影av网| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| av免费在线观看网站| 88av欧美| 亚洲人成伊人成综合网2020| 国产精品国产高清国产av| 欧美午夜高清在线| 精品欧美国产一区二区三| 中文字幕高清在线视频| 两个人免费观看高清视频| 禁无遮挡网站| 国产成+人综合+亚洲专区| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 两个人看的免费小视频| 色在线成人网| 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| 18禁黄网站禁片免费观看直播| 久久天躁狠狠躁夜夜2o2o| 人妻丰满熟妇av一区二区三区| 久久欧美精品欧美久久欧美| a在线观看视频网站| 99精品在免费线老司机午夜| 无遮挡黄片免费观看| 一个人观看的视频www高清免费观看 | 国产男靠女视频免费网站| 国产黄色小视频在线观看| svipshipincom国产片| 身体一侧抽搐| 90打野战视频偷拍视频| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 亚洲av第一区精品v没综合| 中文字幕最新亚洲高清| 欧美一区二区精品小视频在线| 91av网站免费观看| 人妻丰满熟妇av一区二区三区| 亚洲精品一区av在线观看| 人成视频在线观看免费观看| 日韩大尺度精品在线看网址| 国产三级在线视频| 久久精品91无色码中文字幕| 韩国av一区二区三区四区| 久久亚洲精品不卡| 中文字幕精品亚洲无线码一区 | 国内毛片毛片毛片毛片毛片| 91大片在线观看| 久久精品人妻少妇| www.www免费av| 免费一级毛片在线播放高清视频| avwww免费| 一本一本综合久久| 亚洲色图av天堂| 一二三四社区在线视频社区8| 国产97色在线日韩免费| 老汉色∧v一级毛片| 91av网站免费观看| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人下体高潮全视频| 黄色片一级片一级黄色片| 久久久久国产精品人妻aⅴ院| 亚洲,欧美精品.| 中文字幕精品亚洲无线码一区 | 免费女性裸体啪啪无遮挡网站| 国产人伦9x9x在线观看| 神马国产精品三级电影在线观看 | 高清在线国产一区| 色在线成人网| 可以在线观看的亚洲视频| 欧美性长视频在线观看| 国产一区二区激情短视频| 欧美成人免费av一区二区三区| 欧美日韩黄片免| 久久久精品欧美日韩精品| 日韩欧美在线二视频| 精品电影一区二区在线| www.www免费av| 9191精品国产免费久久| 亚洲成人国产一区在线观看| 桃色一区二区三区在线观看| 老司机靠b影院| 日日干狠狠操夜夜爽| 怎么达到女性高潮| 黄色女人牲交| 老司机午夜十八禁免费视频| 999精品在线视频| 欧美日韩乱码在线| 窝窝影院91人妻| www日本黄色视频网| 男人操女人黄网站| 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 国内精品久久久久精免费| 亚洲第一av免费看| 国产日本99.免费观看| 午夜两性在线视频| 日韩av在线大香蕉| av电影中文网址| 久久中文看片网| 久久久国产成人精品二区| 妹子高潮喷水视频| 国产精品久久久久久人妻精品电影| 日日夜夜操网爽| 午夜a级毛片| 中文字幕精品亚洲无线码一区 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产精品999在线| 久久九九热精品免费| 国产免费男女视频| 久久久精品欧美日韩精品| 色av中文字幕| 久久久久精品国产欧美久久久| 国产一区二区三区在线臀色熟女| 亚洲熟妇中文字幕五十中出| 久久九九热精品免费| 日韩av在线大香蕉| 人成视频在线观看免费观看| 99riav亚洲国产免费| 别揉我奶头~嗯~啊~动态视频| 黄色片一级片一级黄色片| 很黄的视频免费| 久久草成人影院| 成人18禁在线播放| 亚洲第一电影网av| 欧美乱码精品一区二区三区| 少妇 在线观看| 国产高清视频在线播放一区| 一进一出好大好爽视频| 国产精品免费一区二区三区在线| 精品乱码久久久久久99久播| 国内毛片毛片毛片毛片毛片| 亚洲精品久久国产高清桃花| 熟女少妇亚洲综合色aaa.| 国产精品亚洲美女久久久| 亚洲 国产 在线| 日韩三级视频一区二区三区| 欧美成狂野欧美在线观看| 日本一本二区三区精品| 亚洲专区国产一区二区| 久久99热这里只有精品18| 中亚洲国语对白在线视频| 伦理电影免费视频| 国语自产精品视频在线第100页| 国产又色又爽无遮挡免费看| 国产成人精品久久二区二区91| 午夜久久久在线观看| 美女国产高潮福利片在线看| 国产免费av片在线观看野外av| 欧美zozozo另类| 正在播放国产对白刺激| 精品国产超薄肉色丝袜足j| 国产精品一区二区三区四区久久 | 中文字幕最新亚洲高清| 婷婷六月久久综合丁香| 校园春色视频在线观看| 97人妻精品一区二区三区麻豆 | 999精品在线视频| 老鸭窝网址在线观看| 亚洲av片天天在线观看| 琪琪午夜伦伦电影理论片6080| xxx96com| 久久久久久久久久黄片| √禁漫天堂资源中文www| 色在线成人网| 国产亚洲欧美98| 欧美亚洲日本最大视频资源| 香蕉国产在线看| 国产精品一区二区精品视频观看| 最近最新中文字幕大全免费视频| 美国免费a级毛片| 国产精品日韩av在线免费观看| xxx96com| 亚洲男人天堂网一区| 日本在线视频免费播放| 草草在线视频免费看| 少妇的丰满在线观看| 欧美又色又爽又黄视频| 热99re8久久精品国产| 身体一侧抽搐| 男人操女人黄网站| 亚洲电影在线观看av| 两个人视频免费观看高清| 国产成人精品久久二区二区免费| 美女高潮到喷水免费观看| 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看| 国产片内射在线| 国产一区在线观看成人免费| 婷婷丁香在线五月| 中文字幕人成人乱码亚洲影| 欧美中文日本在线观看视频| 国产成人系列免费观看| 亚洲成a人片在线一区二区| 18禁观看日本| 国产欧美日韩一区二区精品| 亚洲人成网站在线播放欧美日韩| 视频在线观看一区二区三区| 在线观看66精品国产| 免费人成视频x8x8入口观看| 欧美日韩精品网址| 亚洲av第一区精品v没综合| 欧美日本视频| 欧美激情高清一区二区三区| 国产免费男女视频| 久久精品国产亚洲av高清一级| 久久久久免费精品人妻一区二区 | 中文字幕久久专区| 亚洲精品美女久久av网站| xxx96com| 亚洲av成人av| 成人一区二区视频在线观看| 久久久久久国产a免费观看| 免费在线观看日本一区| 国产精品九九99| 啦啦啦观看免费观看视频高清| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 伊人久久大香线蕉亚洲五| 啪啪无遮挡十八禁网站| 日日夜夜操网爽| 久久人人精品亚洲av| 免费观看人在逋| 高清在线国产一区| 一区二区三区高清视频在线| 国产黄色小视频在线观看| 国产精品久久电影中文字幕| 丝袜在线中文字幕| 国产一区二区三区在线臀色熟女| 亚洲一区高清亚洲精品| 国产精品一区二区精品视频观看| 美女高潮到喷水免费观看| 欧美成人免费av一区二区三区| 精品一区二区三区视频在线观看免费| 日韩三级视频一区二区三区| 99久久综合精品五月天人人| 999精品在线视频| 亚洲五月天丁香| 国产精品一区二区精品视频观看| 人成视频在线观看免费观看| 久热爱精品视频在线9| 亚洲黑人精品在线| 国产亚洲av高清不卡| 又大又爽又粗| 亚洲精品中文字幕在线视频| 可以在线观看的亚洲视频| 少妇粗大呻吟视频| 亚洲精品久久国产高清桃花| 超碰成人久久| 亚洲成av片中文字幕在线观看| 久久久久久亚洲精品国产蜜桃av| 久久精品91蜜桃| 国产精品自产拍在线观看55亚洲| 老司机福利观看| 日韩免费av在线播放| 91av网站免费观看| 男女那种视频在线观看| 国产av在哪里看| 99riav亚洲国产免费| 色播在线永久视频| 欧美黑人精品巨大| 在线观看日韩欧美| 国产伦一二天堂av在线观看| 精品国产美女av久久久久小说| 欧美人与性动交α欧美精品济南到| 久久精品影院6| 国产精品永久免费网站| 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 淫秽高清视频在线观看| 欧美绝顶高潮抽搐喷水| 母亲3免费完整高清在线观看| 国产精品99久久99久久久不卡| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 999久久久国产精品视频| 午夜激情福利司机影院| 国产av在哪里看| 在线av久久热| 亚洲片人在线观看| 精品第一国产精品| 亚洲精品粉嫩美女一区| 久久久久免费精品人妻一区二区 | 窝窝影院91人妻| 久久久久久久午夜电影| 亚洲专区字幕在线| 久久久久久久精品吃奶| 熟女电影av网| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看 | 亚洲最大成人中文| 免费看十八禁软件| 黄色 视频免费看| 99久久国产精品久久久| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 国产欧美日韩一区二区三| 两个人看的免费小视频| 亚洲av日韩精品久久久久久密| 国产熟女xx| 亚洲七黄色美女视频| 亚洲av五月六月丁香网| 国产亚洲av嫩草精品影院| 一进一出抽搐gif免费好疼| 老司机午夜十八禁免费视频| 国产不卡一卡二| 亚洲欧洲精品一区二区精品久久久| 亚洲男人天堂网一区| 日日爽夜夜爽网站| 91av网站免费观看| 久久国产精品影院| 后天国语完整版免费观看| 91字幕亚洲| 首页视频小说图片口味搜索| 久热这里只有精品99| 黑人欧美特级aaaaaa片| 淫秽高清视频在线观看| 亚洲一区中文字幕在线| 青草久久国产| 精品电影一区二区在线| 国产熟女午夜一区二区三区| 亚洲专区国产一区二区| 少妇裸体淫交视频免费看高清 | 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| 日韩高清综合在线| 色婷婷久久久亚洲欧美| 黄色视频,在线免费观看| 看片在线看免费视频| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 88av欧美| xxx96com| 亚洲,欧美精品.| 最近最新中文字幕大全电影3 | 欧美乱妇无乱码| 中文字幕精品免费在线观看视频| 19禁男女啪啪无遮挡网站| 午夜久久久久精精品| 日韩精品免费视频一区二区三区| 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费| 1024视频免费在线观看| 午夜激情av网站| 亚洲av熟女| 女性被躁到高潮视频| 俄罗斯特黄特色一大片| 欧美最黄视频在线播放免费| 一进一出好大好爽视频| 91麻豆av在线| 久久婷婷成人综合色麻豆| www.www免费av| 欧美精品啪啪一区二区三区| 露出奶头的视频| 欧美最黄视频在线播放免费| 精品乱码久久久久久99久播| 久久久久久久久免费视频了| 少妇被粗大的猛进出69影院| 婷婷丁香在线五月| 韩国精品一区二区三区| 美女 人体艺术 gogo| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频 | 动漫黄色视频在线观看| 1024视频免费在线观看| 国产乱人伦免费视频| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 香蕉丝袜av| 国产精品野战在线观看| 国产精品九九99| 窝窝影院91人妻| 久久久久久久午夜电影| 免费观看精品视频网站| 99热只有精品国产| 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影 | 18禁黄网站禁片免费观看直播| 97超级碰碰碰精品色视频在线观看| 99久久久亚洲精品蜜臀av| 18美女黄网站色大片免费观看| 777久久人妻少妇嫩草av网站| 99久久无色码亚洲精品果冻| 白带黄色成豆腐渣| a级毛片在线看网站| 一二三四在线观看免费中文在| 51午夜福利影视在线观看| 久久久久久久久免费视频了| 国产一区二区在线av高清观看| 精品第一国产精品| 变态另类丝袜制服| 亚洲欧美日韩高清在线视频| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 久久香蕉国产精品| 久久 成人 亚洲| 国产亚洲欧美在线一区二区| 精品久久久久久成人av| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| 长腿黑丝高跟| 啦啦啦韩国在线观看视频| 亚洲精品色激情综合| 久久热在线av| 免费在线观看完整版高清| 亚洲国产中文字幕在线视频| 在线视频色国产色| 国产成人av教育| 一区二区三区高清视频在线| 青草久久国产| 黄色成人免费大全| 亚洲黑人精品在线| 天天一区二区日本电影三级| 成在线人永久免费视频| 国产精品电影一区二区三区| 久久久久久久久久黄片| 日本一本二区三区精品| 亚洲国产欧洲综合997久久, | 国产av一区二区精品久久| 一卡2卡三卡四卡精品乱码亚洲| 久久中文看片网| 级片在线观看| 欧美激情 高清一区二区三区| 黑人欧美特级aaaaaa片| 国产精品二区激情视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品香港三级国产av潘金莲| 国产精品久久电影中文字幕| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| 久久天堂一区二区三区四区| 国产精品一区二区免费欧美| 日韩三级视频一区二区三区| 色播在线永久视频| 一本精品99久久精品77| 精品乱码久久久久久99久播| 免费观看精品视频网站| 露出奶头的视频| 不卡av一区二区三区| 久久亚洲真实| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区精品| 自线自在国产av| 少妇的丰满在线观看| 久久亚洲精品不卡| 精品第一国产精品| 51午夜福利影视在线观看| 国产高清视频在线播放一区| 日本在线视频免费播放| 国产精品av久久久久免费| 国产一区二区三区视频了| 亚洲av电影不卡..在线观看| 美女高潮到喷水免费观看| 久久国产精品影院| 首页视频小说图片口味搜索| 变态另类丝袜制服| 久热爱精品视频在线9| 国产区一区二久久| 国产av不卡久久| 一级a爱视频在线免费观看| 国产区一区二久久| 变态另类丝袜制服| 侵犯人妻中文字幕一二三四区| 久久久久久亚洲精品国产蜜桃av| 免费高清视频大片| 欧美日韩精品网址| 国产亚洲欧美98| 哪里可以看免费的av片| 亚洲专区国产一区二区| 首页视频小说图片口味搜索| 日韩三级视频一区二区三区| 麻豆成人av在线观看| 免费看日本二区| 久久久久久久午夜电影| 亚洲 欧美 日韩 在线 免费| 亚洲精品国产一区二区精华液| 国产一区二区三区在线臀色熟女| 国产一级毛片七仙女欲春2 | 国产一卡二卡三卡精品| 在线十欧美十亚洲十日本专区| bbb黄色大片| 91麻豆精品激情在线观看国产| 亚洲自偷自拍图片 自拍| 别揉我奶头~嗯~啊~动态视频| 免费av毛片视频| www日本在线高清视频| 午夜老司机福利片| 男女床上黄色一级片免费看| 国语自产精品视频在线第100页| 国产区一区二久久| 国产一区二区激情短视频| 黄网站色视频无遮挡免费观看| 成人三级做爰电影| 久久久久久国产a免费观看| 欧美三级亚洲精品|