• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structures,Photoluminescent and Magnetic Properties of Three 2D Lanthanide Complexes

    2022-04-18 01:50:46LIUShuangHUMingFeiLILeiLeiWANGWenZhen
    無機化學(xué)學(xué)報 2022年4期

    LIU Shuang HU Ming?Fei LI Lei?Lei WANG Wen?Zhen

    (1School of Chemistry and Chemical Engineering,Xi′an Shiyou University,Xi′an 710065,China)

    (2Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University,Tianjin 300071,China)

    Abstract:Three new 2D lanthanide complexes with the formula[Ln2(dmpa)4]Cl2,where Ln=Eu(1),Tb(2),Dy(3),have been prepared based on the ligand 2,2?bis(hydroxymethyl)propionic acid(Hdmpa)under solvothermal condi?tions and characterized by IR spectrum,elemental analysis,powder X?ray diffraction,thermogravimetric analysis,and single?crystal X?ray diffraction.These complexes are isostructural in which individual Ln(Ⅲ) ions are linked by carboxyl groups into 2D layers which are further assembled into 3D supramolecular structures by intermolecular interactions.Magnetic investigations on Dy complex indicate the presence of weak ferromagnetic interactions trans?mitted by carboxyl groups.And photoluminescence studies reveal that the Eu(Ⅲ) and Tb(Ⅲ) complexes exhibit charac?teristic red?light and green?light emissions,respectively.CCDC:1940310,1;1940311,2;1940312,3.

    Keywords:lanthanide complex;crystal structure;magnetic property;photoluminescent property

    0 Introduction

    The study of trivalent lanthanide(Ln3+)complexes has attracted great attention owing to their potential applications in many fields,especially for photolumi?nescence[1?7]and molecular magnets[8?13].Different from transition metal ions,4felectrons in Ln(Ⅲ)ions are greatly shielded by the outer 5sand 5pelectrons mak?ing that the electronic structures of Ln(Ⅲ) ions are main?ly decided by the inherent 4felectron interactions and spin?orbit couplings than the ligand fields(LFs).Based on such fact,the luminescence of Ln(Ⅲ)ions,originat?ing fromf?ftransition,has the advantages of narrow line?like emissions,long lifetimes,and high quantum yields,which make them good candidates in building luminescent systems toward applications in molecule and ion recognition[1],display materials[14],fluorescence labeling[15?16],etc.While in the field of molecular mag?nets,the large shielding effects on 4felectrons lead to large unquenched orbital moments and strong spin?orbit couplings which means strong magnetic anisotro?py for most lanthanide ions[17?19].This makes Ln(Ⅲ) com?plexes also outstanding systems for building functional magnetic materials,especially for single?molecule mag?nets[8?13].In addition,lanthanide complexes as bifunc?tional materials with both single?molecule magnet prop?erty and luminescent property are now attracting more and more attention[20?22].

    The key to building functional Ln(Ⅲ)?based coordi?nation systems is the design and choosing of organic ligands for they decide the crystal structures of the systems including the coordination environments of individual Ln(Ⅲ)ions and the linking modes among them.As Ln(Ⅲ)ions are more inclined to bond with O?containing ligands than N?containing ligands,carboxylate?based and hydroxyl?based ligands are wildly employed resulting in lots of Ln(Ⅲ)?complexes with fascinating structures and properties.Carboxyl?ates have rich coordination modes as bridging ligands and can therefore lead to various structures by modulat?ing the synthesis conditions.Compared with carboxyl?ates,hydroxyl?based ligands as single?atom bridging ligands can transmit more effective exchange couplings and lead to systems with interesting magnetic proper?ties,including magnetic ordering and/or slow relax?ation of magnetization(SRM)behaviors[23?24].Driven by such facts,2,2?bis(hydroxymethyl)propionic(Hdmpa)containing two hydroxyl groups and one carboxyl group was chosen as the ligand in our research to acquire new complexes with interesting structures and lumines?cent/magnetic properties.The rich coordination modes and effectiveness in transmitting exchange couplings of Hdmpa leading to fascinating cluster?based magnetic materials have been demonstrated in several reports[24?26].And there was also one report claiming the Hdmap ligand could well sensitize lanthanide ions to give strong luminescence[27],making it more attractive in functional coordination chemistry.However,to the best of our knowledge,almost all reported lanthanide com?plexes based on Hdmpa ligand were limited to zero?dimension structure,i.e.,mononuclear or polynuclear clusters.Therefore,the present work aims to investi?gate the potential of Hdmpa in constructing non?zero dimensional lanthanide complexes to expand the coor?dination chemistry based on Hdmpa ligand beyond the state of the art.And three novel Ln(Ⅲ)complexes[Ln2(dmpa)4]Cl2,where Ln=Eu(1),Tb(2),and Dy(3),were obtained by the solvothermal procedure.Single crystal X?ray tests show that all three complexes are isostructural with a 2D layer structure.Luminescent spectra of 1 and 2 exhibited characteristic red?light and green?light emissions,respectively.And magnetic measurements on 3 show the presence of weak ferro?magneticinteractionstransmittedbycarboxylatebridges.

    1 Experimental

    1.1 Materials and methods

    All chemicals and solvents used are of analytical grade and were used as received without further treat?ment.Infrared spectra on powdered samples were recorded with a Bruker Tensor 27 Spectrometer with samples as KBr disks in the 4 000 ?400 cm?1region.Elemental analyses(C,H,and N)were carried out by using a Perkin?Elmer analyzer.Powder X?ray diffrac?tion(PXRD)data were collected on a Bruker D8 advance diffractometer with CuKαradiation(λ=0.154 18 nm)in a range of 3°≤2θ≤50°,operated under a voltage of 40 kV and a current of 30 mA.Simulation of PXRD pattern was derived from the Mercury program avail?able free of charge via the Internet at http://www.iucr.org.Thermogravimetric(TG)analyses were conducted on a Labsys NETZSCH TG 209 Setaram apparatus with a heating rate of 10 ℃·min?1from room temperature to 800 ℃.Direct?current(dc)magnetic susceptibility data from 300 to 2 K was obtained using crushed crystals of the sample on a Quantum Design MPMS XL?7 magne?tometer.The data was corrected using Pascal′s con?stants to calculate the diamagnetic susceptibility and an experimental correction for the sample holder was applied.Alternating?current(ac)magnetic susceptibili?ty data was collected on the same instrument employ?ing a 5.0 Oe oscillating field.Photoluminescence emis?sion spectra tests were carried out on powdered sam?ples in a Thermo FL spectrometer.

    1.2 Synthesis of[Ln2(dmpa)4]Cl2

    A mixture of Hdmpa(0.080 4 g,0.6 mmol),LnCl3·6H2O(Ln=Eu(1),0.2 mmol,0.073 3 g;Tb(2),0.2 mmol,0.074 7 g;Dy(3),0.2 mmol,0.075 4 g),and 6 mL CH3CN in the present of one drop(about 0.05 mL)trimethylamine(TEA)were sealed in a 25 mL Teflon?lined stainless steel container and heated at 120℃for 3 d under autogenous pressure.Then the container was slowly cooled to room temperature at 2 ℃·h?1.Color?less rod?like crystals were obtained by filtration and washed with CH3CN three times.The yields(based on Ln)were 22%,35%,and 54% for 1,2,and 3,respec?tively.Elemental Anal.Calcd.(%)for C20H36Cl2Eu2O16(1):C,26.47;H,4.00.Found(%):C,26.36;H,3.95.Elemental Anal.Calcd.(%)for C20H36Cl2Tb2O16(2):C,26.07;H,3.94.Found(%):C,25.98;H,3.85.Elemen?tal Anal.Calcd.(%)for C20H36Cl2Dy2O16(3):C,25.87;H,3.91.Found(%):C,25.75;H,3.85.FT?IR(KBr pellet,cm?1):3 443(br),1 601(vs),1 357(w),1 069(w),1 000(w),857(w),773(w),623(m)for 1;3 443(br),1 600(vs),1 385(w),1 356(m),1 138(m),1 068(w),1 000(w),859(w),772(w),619(m)for 2;3 446(br),1 606(vs),1 385(w),1 350(m),1 134(m),1 074(w),995(w),945(w),851(w),770(w),619(m)for 3.

    1.3 Crystal structure determination

    X?ray single?crystal diffraction data for complexes 1?3 were collected using theω?φscan technique on a Bruker Single?Crystal Diffractometer equipped with a graphite?monochromated MoKαradiation source(λ=0.071 073 nm).The structures were solved by direct methods with the SHELXS?2008program of the SHELXTL package and refined by full?matrix least?squares methods onF2with Olex2 program[28?29].All the non?hydrogen atoms were refined with anisotropic ther?mal parameters.The hydrogen atoms of the ligands were located geometrically and refined by using a rid?ing model.The crystallographic data and the selected bond distances and bond angles for complexes 1?3 are listed in Table 1 and Table S1?S3(Supporting informa?tion),respectively.

    Table 1 Crystallographic data and structure refinement for complexes 1?3

    CCDC:1940310,1;1940311,2;1940312,3.

    2 Results and discussion

    2.1 Description of crystal structures for 1?3

    Complexes 1?3 are isostructural and crystallize in the orthorhombic system with the space group ofPcabrevealed by the single?crystal X?ray diffraction analy?ses,and here only 3 is selected as the representation to describe the structure detailedly.The asymmetrical unit of 3 consists of two crystallographic independent Dy(Ⅲ) ions,four dmpa?ligands,and two lattice Cl?ions.As shown in Fig.1a,Dy1 ion is nine coordinate by six O atoms of the carboxylates belonging to four dmpa?ligands and three O atoms of the hydroxyls from two dmpa?ligands,while Dy2 ion is eight coordinate finished by four O atoms of the carboxylates from four dmpa?ligands and four Ohydroxylatoms from three dmpa?ligands.The Dy—O bond lengths are in a range of 0.234 9?0.252 3 nm and 0.228 3?0.247 9 nm for Dy1 and Dy2,respectively.Notably,all hydroxyls serve as monodentate ligands.The continuous shape measure(CshM)method[30?31]realized by the SHAPE program is employed to estimate the coordination geometry sym?metry for Dy1 and Dy2 ions.And the results(Table S4)show the coordination polyhedron of Dy1 is mostly close to a muffin geometry ofCssymmetry with the devi?ation parameterS=1.406,while Dy2 is located in a bi?augmented trigonal prism geometry ofC2vsymmetry withS=3.738.Each Dy1 ion is connected with a near?est Dy2 ion by twoμ2?O atoms from two carboxylates,forming a dinuclear unit[Dy2],in which the distance of Dy1and Dy2 is 0.386 3 nm.Adjacent[Dy2]units are connected by twosyn,syn?μ?η1∶η1?COO?groups into parallelogram?shaped[Dy4]units(Fig.1b).The distance between neighboring[Dy2]units is 0.682 0 nm.Each[Dy4]unit links the other four neighboring[Dy4]units through four singleμ?1,3?carboxylate bridges affording the 2D layer structure of 3(Fig.1c).These 2D layers are further packed by Van Der Waals forces and inter?layer H?bonds between counter?anions Cl?ions and a hydroxyl group from dmpa?ligand to afford the final 3D supramolecular structure(Fig.S2).It is noted that all dmpa?ligands coordinate to two Dy(Ⅲ) ions and exhibit four different coordination modes which are plotted in Fig.2.

    Fig.1 Structures of[Dy2]unit(a),[Dy4]unit(b)and 2D layer(c)in complex 3

    Fig.2 Four different coordination modes of dmpa?ligand in 3

    2.2 PXRD and TG analyses

    The PXRD data of 1?3 were collected at room temperature to confirm the phase purity.As shown in Fig.S3,experimental patterns of 1?3 were all in good agreement with the simulation pattern calculated from crystallographic data of 3,indicating that the bulk materials are all in pure phase.To identify the thermal stability of 1?3,TG analyses for 1?3 were performed with a heating rate of 10 ℃ ·min?1in a temperature range of 25?800 ℃ (Fig.S4).TG analyses indicate that the TG curves of 1?3 had similar trends due to the isostructural nature.Complexes 1?3 were stable up to about 250℃and then showed a dramatic weight loss,corresponding to the decomposition of the organic ligands.

    2.3 Luminescent properties of complexes 1 and 2

    The solid?state luminescent emission spectra of 1 and 2 at room temperature are shown in Fig.3.Upon excited at 309 nm,1 exhibited four characteristic emis?sion bands of Eu3+centered at 592,614,691,and 700 nm,respectively.The first two peaks can be ascribed to5D0→7F1and5D0→7F2transitions,respectively,while the last two peaks are both corresponding to5D0→7F4transition which decomposes into two parts due to the minor differences of the local coordination environments[32].The red color luminescence of 1 is dominated by the emission of5D0→7F2at 614 nm with the highest intensity.When excited at 300 nm,com?plex 2 showed green color luminescence with four main emission bands centered at 489,544,584,and 620 nm which can be assigned to the transitions of5D4→7FJ(J=6,5,4,and 3)of Tb3+ion,respectively[33?35].And the green color is dominated by the emission of5D4→7F5at 544 nm with the highest intensity.As 1 and 2 exhib?it 2D layer structure and most pores are eliminated by the staggered stacking of 2D layers,no tests on mole?cule and ion recognition for them were performed as they can only interact with other ions and molecules on the surfaces.

    Fig.3 Solid?state photoluminescent spectra of complexes 1(a)and 2(b)

    2.4 Magnetic property of complex 3

    SRM behavior is an important research topic in lanthanide complexes for the understanding of the influences of LFs on electronic structures and their promising applications in high?density information stor?age.A double?degenerate ground state is a foundation for lanthanide complexes to show SRM behaviors which are guaranteed by Kramers′theorem for all Kramers ions in the absence of a magnetic field[36].However,for a non?Kramers ion,LF with strictly axial?symmetry geometry is a must for it to have a double?degenerate ground state[17?19].For complexes 2 and 3,as the LFs remarkably deviate from strictly axial symme?try demonstrated by the SHAPE results,only complex 3 based on the Kramers ion Dy(Ⅲ)is expected to show SRM behavior theoretically.And magnetic measure?ments were performed on it.

    Variable?temperature magnetic susceptibility measurement was performed on the powder sample of 3 in a range of 300 to 2 K under 1 000 Oe applied field.As shown in Fig.4,the room temperature value ofχMTwas 27.68 cm3·mol?1·K and was slightly lower than the value of 28.34 cm3·mol?1·K for two free Dy(Ⅲ) ions with6H15/2ground state.Upon cooling,χMTdecreased gradu?ally first,reaching a minimum value of 22.72 cm3·mol?1·K at 6.0 K.And below 6.0 K,χMTincreased sud?denly and reached a value of 25.05 cm3·mol?1·K at 2 K.The plot ofχM?1vsTshowed well linear dependence and Curie?Weiss fitting gave the Curie constant(C)of 27.95 cm3·mol?1·K and a negative value of?2.61 K forθ.The decrease ofχMTabove 6 K and the negative val?ue ofθcan be attributed to the thermal depopulation of the LF split excited sublevels and/or the intralayer anti?ferromagnetic coupling.What is interesting was the observed increase ofχMTbelow 6 K,implying the pres?ence of interlayer ferromagnetic couplings or spin cant?ing behavior[37?38].

    Fig.4 Temperature dependence of dc magnetic susceptibility for 3 under 1 000 Oe field

    The field dependence of magnetization was mea?sured at 2 K up to 70 kOe for 3(Fig.5).The magnetiza?tion of 12.2Nβwas far less than the saturation value of 20Nβfor two free Dy(Ⅲ) ions.As the superexchange coupling among Dy(Ⅲ)ions is usually extremely weak,the large difference between experimental and satura?tion values suggests the presence of large single?ion magnetic anisotropy and/or thermal population on low excited sublevels.The dM/dHplot exhibited a maxi?mum atca.200 Oe.Considering the so small strength of the critical field,we attribute this step to the over?whelming of the antiferromagnetic interlayer interac?tions.As there was no other peak on the dM/dHplot,indicating the absence of a spin?flop transition[37?38],and the magnetization increased rapidly at low fields,we attribute the increase ofχMTbelow 6 K to the presence of weak ferromagnetic couplings rather than the spin canting behavior.And the ferromagnetic couplings are believed to be transmitted by the single?O(carboxylate)bridges within[Dy2]units,for other bridges separate Dy(Ⅲ)ions remarkably farther.

    Fig.5 Field dependence of magnetization for 3 at 2 K

    To study the dynamic magnetic behavior for 3,ac susceptibility was measured between 2 and 16 K with the frequency of 100 and 800 Hz under zero dc field.As shown in Fig.6,the imaginary part of ac data didn′t show any signals over the detected temperature and fre?quency range,suggesting the absence of SRM behav?ior.Considering the Kramers ion nature for Dy(Ⅲ)ion,we attribute the absence of SRM behavior to the presence of a fast relaxation process by quantum tun?neling mechanism which can occur between the double?degenerate ground states without absorbing or emitting a photon.As has been demonstrated,transverse anisot?ropy produced by non?axial LF parameters is the main perturbation factor that mixes the double?degenerate stark sublevels and causes a strong tunneling effect[39?40].To reduce the transverse LF parameters as far as possi?ble for Dy(Ⅲ)?based complexes,the LFs should be axi?al,meaning strong axial LF and weak non?axial LF,with a high symmetry likeD4d,D5h,Cn(n>7),etc[41].Such requirements are not satisfied in 3 according to the facts:(1)both Dy1 and Dy2 are located in LFs with low symmetry ofCsandC2v,respectively;(2)all coordi?nating O atoms are from either the neutral—OH groups or negative—COO?groups and both two kinds of ligands are weak ?field ligands which can′t build axial LFs when considering the high coordination num?bers of 9 and 8 for Dy1 and Dy2,respectively.And the tunneling effect should be strong and prevents the observation of SRM behaviors.As dc magnetic field was often employed to suppress the tunneling effect by introducing Zeeman splitting,we also tested the ac sus?ceptibility of 3 under dc field from 200 to 3 000 Oe(Fig.S5).However,no well?defined peaks inχ″can be observed indicating the external dc field can′t effec?tively suppress the strong tunneling effect alone.

    Fig.6 Temperature dependence of ac magnetic susceptibility for 3 under zero dc field

    To the best of our knowledge,the three isostruc?tural complexes 1?3 are the unique kind of lanthanide complexes showing 2D layer structure based on dmpa?ligand.Usually,dmpa?was introduced to construct cluster complexes with high nuclearity because dmpa?was a significantly small organic molecule but with four O atoms which can serve as coordinating atoms simultaneously.And [Ni64Ln96][24], [Ln60][25], and[Ni36Ln102][26]complexes based on dmpa?have been syn?thesized which showed fascinating structures.To obtain these high?nuclearity structures,a certain kind of base was always introduced for the hydrolysis of lan?thanide ions,while no base was added in our synthesis procedure for 1?3 which may be the key reason that 2D layer structure complexes,not clusters,were obtained here.And our research demonstrates the high potential of Hdmpa ligand for constructing complexes with high dimensional structures beyond the clusters.In addi?tion,in the magnetic study on complex 3,ferromagnet?ic coupling was observed first in lanthanide complexes based on Hdmpa ligand.As high?spin ground state lan?thanide complexes based on ferromagnetic couplings are interesting in the fields of molecule?based magnets,magnetic cooling materials,and so on,our work also demonstrates the high potential of Hdmpa ligand in building such kinds of magnetic materials which will further promote the study on coordination chemistry based on Hdmpa ligand.

    3 Conclusions

    In summary,three new 2D lanthanide complexes 1?3 based on the ligand Hdmpa were prepared by sol?vothermal methods and fully characterized.These com?plexes are isostructural and show 2D layer structure.The studies of luminescent properties for 1 and 2 showed the typical red?light emission of Eu(Ⅲ) ion and green?light emission of Tb(Ⅲ) ion,respectively.Magnet?ic studies on 3 demonstrate the presence of weak ferro?magnetic couplings transmitted by single?O(carboxyl?ate)among the nearest Dy(Ⅲ)ions with a distance of 0.386 3 nm.However,due to the low symmetry of the coordination geometry of Dy(Ⅲ)ions,no slow relaxation of magnetization behavior was observed.

    Acknowledgments:The authors thank the Modern Analy?sis and Testing Center of Xi′an Shiyou University for their support.

    Supporting information is available at http://www.wjhxxb.cn

    变态另类成人亚洲欧美熟女| 亚洲人成网站高清观看| 热99re8久久精品国产| 美女 人体艺术 gogo| 国产国语露脸激情在线看| 精品一区二区三区四区五区乱码| 老司机午夜十八禁免费视频| 成年免费大片在线观看| 精品无人区乱码1区二区| 女人被狂操c到高潮| 日本三级黄在线观看| 最新美女视频免费是黄的| 怎么达到女性高潮| 成人欧美大片| 老熟妇乱子伦视频在线观看| 黄色成人免费大全| 男女下面进入的视频免费午夜 | 男人操女人黄网站| 成人欧美大片| 每晚都被弄得嗷嗷叫到高潮| 淫秽高清视频在线观看| 国产区一区二久久| 国产亚洲精品av在线| 亚洲全国av大片| 久久久水蜜桃国产精品网| 禁无遮挡网站| 成人一区二区视频在线观看| 久热爱精品视频在线9| 亚洲午夜精品一区,二区,三区| 一级毛片精品| 精品福利观看| 啦啦啦免费观看视频1| 在线观看一区二区三区| 天堂动漫精品| 母亲3免费完整高清在线观看| 成人午夜高清在线视频 | 波多野结衣巨乳人妻| 正在播放国产对白刺激| e午夜精品久久久久久久| e午夜精品久久久久久久| 99久久综合精品五月天人人| 91大片在线观看| 黄色毛片三级朝国网站| 欧美 亚洲 国产 日韩一| 久热爱精品视频在线9| 好男人电影高清在线观看| 丁香欧美五月| 他把我摸到了高潮在线观看| 视频区欧美日本亚洲| 女性生殖器流出的白浆| 国产亚洲欧美98| 色综合婷婷激情| 嫩草影视91久久| 国产一区二区在线av高清观看| a在线观看视频网站| 久9热在线精品视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品,欧美在线| 天堂√8在线中文| 又大又爽又粗| 国产99久久九九免费精品| 亚洲成人免费电影在线观看| 欧美黄色片欧美黄色片| 国产熟女午夜一区二区三区| 亚洲av成人一区二区三| 亚洲精品在线观看二区| 亚洲一码二码三码区别大吗| 观看免费一级毛片| 一级a爱视频在线免费观看| 国产高清视频在线播放一区| 久久欧美精品欧美久久欧美| 国产主播在线观看一区二区| 丝袜美腿诱惑在线| 1024视频免费在线观看| 99在线视频只有这里精品首页| 一本精品99久久精品77| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 精品一区二区三区四区五区乱码| 欧美 亚洲 国产 日韩一| 国产成人系列免费观看| 国产精品 国内视频| 国产激情久久老熟女| 手机成人av网站| avwww免费| 一级片免费观看大全| 亚洲国产中文字幕在线视频| 中文亚洲av片在线观看爽| 欧美激情 高清一区二区三区| 99riav亚洲国产免费| 午夜久久久久精精品| 亚洲熟女毛片儿| 岛国视频午夜一区免费看| 久久午夜亚洲精品久久| 国产成人精品久久二区二区免费| av中文乱码字幕在线| 黄色视频,在线免费观看| 亚洲成国产人片在线观看| 757午夜福利合集在线观看| av在线播放免费不卡| 男女视频在线观看网站免费 | 一本综合久久免费| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频| 国产精品影院久久| 69av精品久久久久久| 国产高清videossex| 精品国产亚洲在线| 久久中文字幕人妻熟女| 伦理电影免费视频| 伊人久久大香线蕉亚洲五| 欧美日韩亚洲综合一区二区三区_| 在线av久久热| 国语自产精品视频在线第100页| 免费av毛片视频| 香蕉国产在线看| 久久国产亚洲av麻豆专区| 男女午夜视频在线观看| 久久亚洲真实| 久久 成人 亚洲| 精品人妻1区二区| 亚洲av第一区精品v没综合| 法律面前人人平等表现在哪些方面| 久久国产精品影院| a级毛片a级免费在线| 精品久久蜜臀av无| 婷婷精品国产亚洲av| 欧美黄色片欧美黄色片| 老司机午夜十八禁免费视频| 一级黄色大片毛片| 中文字幕人妻丝袜一区二区| 中文字幕精品亚洲无线码一区 | 美女高潮到喷水免费观看| 两人在一起打扑克的视频| 曰老女人黄片| 国产亚洲欧美在线一区二区| 久久草成人影院| av免费在线观看网站| 深夜精品福利| 中文字幕人妻熟女乱码| 激情在线观看视频在线高清| 国产一区二区激情短视频| 亚洲免费av在线视频| 777久久人妻少妇嫩草av网站| 免费在线观看完整版高清| 一进一出抽搐动态| 麻豆成人av在线观看| 19禁男女啪啪无遮挡网站| 欧美丝袜亚洲另类 | 精品卡一卡二卡四卡免费| 亚洲真实伦在线观看| 欧美在线一区亚洲| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 女警被强在线播放| 精品少妇一区二区三区视频日本电影| av有码第一页| 亚洲第一电影网av| 免费看a级黄色片| 99久久无色码亚洲精品果冻| 亚洲中文日韩欧美视频| 丰满的人妻完整版| 国产国语露脸激情在线看| 亚洲一区中文字幕在线| 天堂√8在线中文| 性欧美人与动物交配| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲| 亚洲国产精品久久男人天堂| 国产男靠女视频免费网站| 亚洲国产欧美一区二区综合| 人人妻人人看人人澡| 午夜福利18| 波多野结衣高清作品| 色播亚洲综合网| 亚洲人成电影免费在线| 男女那种视频在线观看| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片| 51午夜福利影视在线观看| 热99re8久久精品国产| 亚洲精品国产一区二区精华液| 日日摸夜夜添夜夜添小说| 亚洲 欧美 日韩 在线 免费| 18禁黄网站禁片免费观看直播| 欧美性猛交黑人性爽| 午夜精品在线福利| 国产精品一区二区免费欧美| 亚洲五月色婷婷综合| 久久国产精品男人的天堂亚洲| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 国产99久久九九免费精品| 欧美三级亚洲精品| 性色av乱码一区二区三区2| 国产又黄又爽又无遮挡在线| 国产在线观看jvid| 国产麻豆成人av免费视频| 成年版毛片免费区| av在线天堂中文字幕| 亚洲欧洲精品一区二区精品久久久| 999久久久国产精品视频| 免费人成视频x8x8入口观看| 欧美日本视频| 19禁男女啪啪无遮挡网站| 成熟少妇高潮喷水视频| 亚洲国产欧美日韩在线播放| 男女之事视频高清在线观看| 久久国产亚洲av麻豆专区| 草草在线视频免费看| 欧美日韩一级在线毛片| 一边摸一边做爽爽视频免费| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 在线永久观看黄色视频| 久久草成人影院| 精品国产超薄肉色丝袜足j| 欧美日韩乱码在线| 看黄色毛片网站| 久久天堂一区二区三区四区| 欧美黄色淫秽网站| 男人舔女人的私密视频| 久久性视频一级片| 国产黄片美女视频| 亚洲av第一区精品v没综合| 中文字幕久久专区| 国产私拍福利视频在线观看| 成人三级做爰电影| 色在线成人网| 国内精品久久久久久久电影| 一进一出抽搐gif免费好疼| 亚洲一码二码三码区别大吗| 国产熟女xx| 岛国视频午夜一区免费看| 99久久综合精品五月天人人| 亚洲精品一区av在线观看| 男人的好看免费观看在线视频 | 欧美av亚洲av综合av国产av| 一区二区三区精品91| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 亚洲欧美日韩高清在线视频| 午夜免费观看网址| 国产激情久久老熟女| 日韩欧美国产一区二区入口| 麻豆成人午夜福利视频| 精品国产亚洲在线| 一边摸一边抽搐一进一小说| 欧美日韩精品网址| 亚洲精品中文字幕一二三四区| 免费在线观看日本一区| 男女下面进入的视频免费午夜 | 麻豆久久精品国产亚洲av| 亚洲黑人精品在线| 色综合婷婷激情| 亚洲精品色激情综合| 一卡2卡三卡四卡精品乱码亚洲| 韩国精品一区二区三区| 国产真实乱freesex| 少妇 在线观看| 精品国产乱码久久久久久男人| 啦啦啦观看免费观看视频高清| 午夜a级毛片| 欧美色欧美亚洲另类二区| 欧美亚洲日本最大视频资源| 99riav亚洲国产免费| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情极品国产一区二区三区| 日本一本二区三区精品| 色综合亚洲欧美另类图片| www国产在线视频色| 欧美一区二区精品小视频在线| 久久精品成人免费网站| 黄色成人免费大全| av超薄肉色丝袜交足视频| 国产亚洲精品一区二区www| АⅤ资源中文在线天堂| 久久热在线av| 久久中文看片网| 精品久久久久久成人av| 18禁黄网站禁片免费观看直播| 国产麻豆成人av免费视频| 精品国产亚洲在线| 亚洲五月婷婷丁香| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 国产亚洲精品久久久久久毛片| 日日干狠狠操夜夜爽| 色播在线永久视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品电影一区二区三区| 国产av不卡久久| 精品久久久久久久久久久久久 | 夜夜夜夜夜久久久久| 国产高清视频在线播放一区| 男人操女人黄网站| 麻豆久久精品国产亚洲av| 又大又爽又粗| 欧美成人午夜精品| 久久精品成人免费网站| 日本成人三级电影网站| 在线观看午夜福利视频| 亚洲欧美精品综合一区二区三区| 国产精品 国内视频| 日本熟妇午夜| 日日干狠狠操夜夜爽| 国产亚洲精品一区二区www| 国产精品日韩av在线免费观看| 制服人妻中文乱码| 免费av毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 色在线成人网| 欧美中文日本在线观看视频| 色在线成人网| 狂野欧美激情性xxxx| 婷婷精品国产亚洲av在线| 香蕉国产在线看| 亚洲三区欧美一区| 午夜福利视频1000在线观看| 变态另类成人亚洲欧美熟女| 亚洲精品久久国产高清桃花| 精品少妇一区二区三区视频日本电影| 在线观看午夜福利视频| 亚洲熟女毛片儿| 亚洲精华国产精华精| 日韩精品中文字幕看吧| 色播亚洲综合网| www日本在线高清视频| 久久中文字幕人妻熟女| 熟妇人妻久久中文字幕3abv| 日本a在线网址| 国产精品亚洲美女久久久| 成在线人永久免费视频| 国产精品亚洲美女久久久| 天天添夜夜摸| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 成人永久免费在线观看视频| 国产亚洲精品久久久久5区| 色综合婷婷激情| 成人免费观看视频高清| 亚洲av片天天在线观看| 久久中文字幕一级| 不卡av一区二区三区| 日韩欧美免费精品| 在线十欧美十亚洲十日本专区| 午夜亚洲福利在线播放| 亚洲国产精品合色在线| 啪啪无遮挡十八禁网站| 一级a爱视频在线免费观看| 久久亚洲真实| 国产精品亚洲一级av第二区| 在线观看午夜福利视频| 在线观看www视频免费| 国产成人影院久久av| 国产精品亚洲一级av第二区| 亚洲成av人片免费观看| 国产成人欧美| 日韩有码中文字幕| 男人舔奶头视频| 国产成人一区二区三区免费视频网站| 91字幕亚洲| 亚洲成人久久爱视频| 日韩免费av在线播放| 国产精品美女特级片免费视频播放器 | 精品久久久久久久久久久久久 | 校园春色视频在线观看| 18禁黄网站禁片免费观看直播| 免费看日本二区| 欧美av亚洲av综合av国产av| 精品久久久久久成人av| 91麻豆精品激情在线观看国产| 日本三级黄在线观看| 国产精品久久久人人做人人爽| 国内久久婷婷六月综合欲色啪| 少妇被粗大的猛进出69影院| 黑人欧美特级aaaaaa片| 亚洲精品粉嫩美女一区| 亚洲av成人一区二区三| 一夜夜www| 99国产精品一区二区三区| 一夜夜www| 岛国在线观看网站| 在线观看午夜福利视频| 999精品在线视频| av福利片在线| 免费看a级黄色片| 最新在线观看一区二区三区| www日本黄色视频网| 亚洲av电影不卡..在线观看| 在线永久观看黄色视频| 午夜免费鲁丝| 视频区欧美日本亚洲| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 久久午夜综合久久蜜桃| 村上凉子中文字幕在线| 丝袜人妻中文字幕| 国产99久久九九免费精品| 亚洲激情在线av| 久久精品国产99精品国产亚洲性色| 12—13女人毛片做爰片一| 1024视频免费在线观看| 久久久久免费精品人妻一区二区 | 十八禁人妻一区二区| 天天一区二区日本电影三级| 婷婷六月久久综合丁香| 欧美日韩一级在线毛片| 亚洲国产精品合色在线| 波多野结衣高清作品| 老司机福利观看| 精品国产超薄肉色丝袜足j| 色综合站精品国产| 人人澡人人妻人| 国产av不卡久久| 一区二区三区国产精品乱码| 国产亚洲精品久久久久5区| 757午夜福利合集在线观看| 一级片免费观看大全| 一边摸一边做爽爽视频免费| 国产真实乱freesex| 国产精品久久久久久亚洲av鲁大| 欧美一级毛片孕妇| 久久天堂一区二区三区四区| 成人一区二区视频在线观看| 丝袜美腿诱惑在线| 婷婷精品国产亚洲av| 久久久久九九精品影院| 久久久久久九九精品二区国产 | 中文资源天堂在线| 色播亚洲综合网| 久久香蕉精品热| 欧美色视频一区免费| www.自偷自拍.com| 精品日产1卡2卡| 香蕉av资源在线| 精品一区二区三区av网在线观看| 美女高潮到喷水免费观看| 91九色精品人成在线观看| 久久精品国产亚洲av高清一级| 亚洲欧美精品综合一区二区三区| 麻豆国产av国片精品| 国产精品影院久久| 精品久久久久久成人av| 国产精品二区激情视频| 久久精品国产综合久久久| 日日干狠狠操夜夜爽| 精品少妇一区二区三区视频日本电影| 99精品久久久久人妻精品| 亚洲精品在线观看二区| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 一级毛片精品| 搡老妇女老女人老熟妇| 亚洲成人免费电影在线观看| 午夜成年电影在线免费观看| 1024香蕉在线观看| 真人做人爱边吃奶动态| av视频在线观看入口| 麻豆成人av在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲自拍偷在线| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区久久 | 亚洲精品美女久久av网站| 黑人操中国人逼视频| 大型av网站在线播放| 夜夜看夜夜爽夜夜摸| 亚洲人成电影免费在线| 国产又爽黄色视频| 亚洲人成网站高清观看| 久久中文字幕人妻熟女| 一级黄色大片毛片| 人人妻人人澡人人看| 亚洲自拍偷在线| 在线播放国产精品三级| 国产一区二区在线av高清观看| 国产成+人综合+亚洲专区| 午夜福利在线观看吧| 国产高清视频在线播放一区| 中出人妻视频一区二区| 在线免费观看的www视频| 热re99久久国产66热| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| av片东京热男人的天堂| 亚洲精品久久成人aⅴ小说| 精品国产乱子伦一区二区三区| 久久中文字幕人妻熟女| 女同久久另类99精品国产91| 午夜老司机福利片| 国产高清激情床上av| 欧美最黄视频在线播放免费| 亚洲精品中文字幕一二三四区| 成人特级黄色片久久久久久久| 久久这里只有精品19| av欧美777| 日韩大尺度精品在线看网址| 精品久久久久久久毛片微露脸| 看黄色毛片网站| 91成年电影在线观看| 欧美日韩瑟瑟在线播放| 香蕉国产在线看| 欧美亚洲日本最大视频资源| 99精品久久久久人妻精品| 人人妻人人澡欧美一区二区| 天堂影院成人在线观看| 亚洲性夜色夜夜综合| 一级黄色大片毛片| 一进一出抽搐动态| 日韩欧美国产一区二区入口| 精品一区二区三区四区五区乱码| 午夜福利高清视频| 久久久国产成人免费| 日韩中文字幕欧美一区二区| a在线观看视频网站| 国产精品免费视频内射| a级毛片在线看网站| 麻豆久久精品国产亚洲av| 老司机午夜福利在线观看视频| 深夜精品福利| 不卡av一区二区三区| 欧美成狂野欧美在线观看| 亚洲自拍偷在线| 男女那种视频在线观看| 日本免费a在线| 精品国产超薄肉色丝袜足j| 成人国语在线视频| 男女床上黄色一级片免费看| 欧美绝顶高潮抽搐喷水| 一区二区三区精品91| 国产野战对白在线观看| 久久热在线av| 搡老妇女老女人老熟妇| 老司机靠b影院| 精品欧美一区二区三区在线| 久久精品影院6| 日韩精品中文字幕看吧| 可以在线观看的亚洲视频| 国产高清激情床上av| 国产成人精品久久二区二区免费| 在线观看午夜福利视频| 国产精品影院久久| 国产av一区在线观看免费| 亚洲人成77777在线视频| 侵犯人妻中文字幕一二三四区| bbb黄色大片| 国产高清激情床上av| 亚洲中文日韩欧美视频| 男女之事视频高清在线观看| 免费无遮挡裸体视频| 国产精品 国内视频| 夜夜看夜夜爽夜夜摸| 久久午夜亚洲精品久久| 亚洲第一av免费看| 丁香六月欧美| 欧美成人一区二区免费高清观看 | 亚洲 欧美 日韩 在线 免费| 国产单亲对白刺激| 波多野结衣高清作品| 在线观看舔阴道视频| 国产成人影院久久av| 波多野结衣av一区二区av| 最近最新中文字幕大全电影3 | 亚洲 欧美一区二区三区| 国产精品久久久久久人妻精品电影| 亚洲五月色婷婷综合| 久久久久久亚洲精品国产蜜桃av| 亚洲国产欧洲综合997久久, | 国产欧美日韩一区二区精品| 午夜a级毛片| 一级毛片女人18水好多| 51午夜福利影视在线观看| ponron亚洲| 亚洲第一电影网av| 日韩欧美免费精品| 亚洲成人久久性| svipshipincom国产片| 18禁裸乳无遮挡免费网站照片 | 99久久国产精品久久久| 宅男免费午夜| 少妇熟女aⅴ在线视频| 在线观看日韩欧美| 黄色女人牲交| 亚洲一区二区三区不卡视频| 精品欧美国产一区二区三| 美女午夜性视频免费| 精品高清国产在线一区| 午夜福利视频1000在线观看| 99re在线观看精品视频| 亚洲国产欧美网| 香蕉国产在线看| 国产高清激情床上av| 91九色精品人成在线观看| 亚洲色图 男人天堂 中文字幕| 国产不卡一卡二| 国产成人精品久久二区二区免费| 大香蕉久久成人网| 中文字幕人成人乱码亚洲影| 在线国产一区二区在线| 国产亚洲av嫩草精品影院| 男人舔女人下体高潮全视频| 精品国产国语对白av| 欧美色视频一区免费| 在线永久观看黄色视频| 欧美性长视频在线观看| bbb黄色大片| 亚洲精品色激情综合| 午夜激情av网站| 国产亚洲欧美98| 欧美激情极品国产一区二区三区| 国产精品亚洲一级av第二区| 色综合欧美亚洲国产小说| 90打野战视频偷拍视频|