• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antibiotic Silver Particles Coated Graphene Oxide/polyurethane Nanocomposites Foams and Its Mechanical Properties①

    2022-04-16 02:59:34YANGZhiLIKunRongZHANGYuanYeHUJiaLeLITianYuanWENGZiXiangWULiXin
    結構化學 2022年3期

    YANG Zhi LI Kun-Rong ZHANG Yuan-Ye HU Jia-Le LI Tian-Yuan WENG Zi-Xiang② WU Li-Xin②

    a (College of Chemistry, Fuzhou University, Fuzhou 350108, China)

    b (CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)

    c (Key Lab for Sport Shoes Upper Materials of Fujian Province,Fujian Huafeng New Material Co., Ltd., Putian 351164, China)

    ABSTRACT Silver nanoparticles (AgNPs) are widely adopted in polyurethane foams (PUFs) as a type of antibacterial agent. However, due to its poor interfacial interaction, AgNPs are difficult to be dispersed in the polymer matrix uniformly, which deteriorates the enhancement effect. In this paper, silver-coated graphene nanocomposite (Ag/GO)is prepared by an enzyme reductant which is efficient and non-toxic. Compared with traditional antibacterial agent,the Ag/GO nanoparticles can be uniformly dispersed in the nanocomposite, which means that Ag/GO can be welldispersed into the polyurethane foams (PUFs). Compared with AgNPs modified PUFs, the as-prepared Ag/GO modified PUFs have a 1.85% improvement in resilience, 7.9% improvement in tensile strength, 6.52% improvement in tensile elongation, and 8.74% improvement in bacteriostats rate at a loading of 0.4%.

    Keywords: graphene, nanocomposite, polyurethane foams, antibacterials;

    1 INTRODUCTION

    Polyurethane (PU), prepared through the addition reaction between disocyanate and polyol, is a special group of segmented copolymers and is used in the field of coatings[1],adhesives[2], rubbers and foams[3,4]. Through the modification of polyol polymer chain and optimizing synthesis routes, PU can be prepared to different final products with various mechanical properties including polyurethane foams[5], cast polyurethane elastomers[6], thermoplastic polyurethanes[7],and so on. In the market of elastomers, cellular elastomers, a casted elastomer comprising isocyanate, polyol, chain extenders, and additive, domains up to about 40% of the elastomers. Because of the better resistance to compaction during wearing than ethylene vinyl acetate (EVA), cellular elastomers are used in the field of footwear as midsoles[8]. Nevertheless, the poor antibacterial for PU is still uncapable to fulfill the requirement proposed by footwear industry. As a commonly used wearable material in daily life, a better antibacterial activity and better mechanical properties were demanded.

    To solve this problem above, various antibacterial agents were developed[9-12]. Among them, silver nanoparticles(AgNPs) were most widely used due to its wide-spectrum antibiotic, high efficiency, and long-term durability[13]. Additionally, thanks to the nano effects, the addition of AgNPs usually leads to an enhancement in the mechanical properties of polymer matrix[14]. However, high specific surface area and high surface energy of AgNPs together make it easy to agglomerate while being dispersed into polymer matrix,which deteriorates both antibacterial activity and the enhancement of mechanical properties[15]. Vinayet al.[16]introduced AgNPs into auxetic PUFs, and the as-prepared materials showed an improvement in both compression strength and antibacterial properties. Zhaoet al.[17]introduced AgNPs into waterborne PUFs and found that the antibacterial property of as-prepared nanocomposites were prominently improved along with the tensile properties. Nevertheless, they also found that the tensile properties were decreased with a further increase of AgNPs loading because of the agglomeration of nano-particles. Wattanodornet al.[18]introduce AgNPs into PUFs byin situreduction method and tried to disperse the antibacterial agent uniformly in the polymer matrix. Result showed that as-prepared antibacterial foams exhibit an obvious increase in mechanical properties. Considering the literatures mentioned above, how to disperse AgNPs uniformly in the polymer matrix is what researchers are concerning about.

    With the rapid development of nanotechnology, carbon materials on nano-dimensional materials have attracted a wide concern. Recently, carbon-based nanomaterials including carbon nanotube, carbon nanofiber, and graphene play important roles in various fields including aerospace[19], biomedical[20], automotive[21], electronic[22], etc. Due to its favorable introduced chemical and physical properties, carbon nanomaterials, which are treated as a reinforcement phase,can be combined into a polymer matrix to prepare nanocomposites. The uniformly dispersed carbon nanocomposites in the polymer matrix would enhance the mechanical properties[23,24], electrical properties[25], thermal properties[26], wave absorbing[27], and electromagnetic shielding[28]. Among various carbon nanomaterials, graphene nanomaterials with a planar structure have attracted great interests whether in academia or industry[29]. Polyurethane/graphene nanocomposite also has aroused research interests in the field of polyurethane foam. Coated with graphene nanoparticles and their derivates, oil absorbent property[30], hydrophobic property[31],sound damping property[32], and electronic property[33]can be also greatly improved.

    In recent years, researchers found that AgNPs can be uniformly anchored on the graphene oxide (GO) nanosheet[34].Besides, the anchored Ag nanoparticles will construct a codispersing GO-Ag nanosystem, in which the AgNPs and GO sheet can support each other hindering their individual aggregation[35]. With the combination of the properties of GO and AgNPs, silver-coated graphene nanocomposite (Ag/GO)would exhibit a better stability in polymer matrix. Baoet al.[36]took hydroquinone as a reductant and prepared GOAgNPs successfully. As-prepared AgNPs exhibited excellent antibacterial activity forE. coli.andS. aureus.Besides that,Ag/GO nanoparticle has been reported to show a great effect in anticancer[37]and antiviral[38]. Moreover, compared with AgNPs or GO nanosheets only, Ag/GO is easier to be dispersed in the polymer matrix[35]. Though Ag/GO nanoparticles have great potential in the enhancement and functionalization of the polymer matrix, few reports about their application in polyurethane foams (PUFs) have been reported.Therefore, in this paper, we developed an efficient and nontoxic method to prepare the Ag/GO nanoparticles. Accordingly, a series of PUFs containing Ag/GO was prepared. Corresponding mechanical properties and antibacterial properties were also investigated in detail.

    2 EXPERIMENT

    2. 1 Reagents and materials

    The AgNPs (30 ± 5 nm) were obtained from InnoShines Technology Co. Ltd. The polyester polyol and methylene diphenyl diisocyanate were kindly provided by BASF China;the hydroxyl value of the polyester polyol was measured at 56 mg KOH/g. The graphite was supplied by Shanghai Macklin Biochemical Co., Ltd. Trimethylene diamine, H2SO4(98%), KNO3, KMnO4, H2O2, pepsin from the porcine stomach, and AgNO3were commercial products with analytical purity and used without further purification. Distilled water was produced in our laboratory.

    2. 2 Synthesis of GO and Ag/GO

    A modified Hummers method[39-41]was involved to prepare GO. In a typical synthesis, 3 g of graphite, 3.6 g of KNO3,and 200 mL of H2SO4were together added into a threenecked bottle with vigorous stirring in an ice bath. The mixture was reacted at 35 ℃ for 6 h. Then 250 mL distilled water was slowly added to the mixture, and kept the reaction under 5 ℃ for 10 h. After that, the mixture was poured into 80 mL H2O2and further diluted with 600 mL distilled water to stop the reaction. Finally, a yellow powder was obtained after repeatedly washing with distilled water and completely drying by lyophilization, and named as GO.

    The Ag/GO nanocomposite was prepared by pepsin as a reductant. Typically, 100 mg as prepared GO powder was dispersed in 80 mL distilled water and sonicated for 30 minutes to form a homogeneous solution. Then, 100 mg pepsin was fully dissolved into the GO solution. Afterwards, 20 mL AgNO3aqueous (1 mM) was rapidly poured into the mixture, then kept stirring for 6 h under dark at room temperature.Finally, the samples were collected by centrifugation at 10,000 rpm for 8 min with distilled water for several times and dried at 60 ℃ in a vacuum for 3 h.

    2. 3 Preparation of nanoparticles reinforced polyurethane foams

    In this study, PUFs were prepared by a two-step method.Appropriate amounts of as-prepared nanoparticles (AgNPs,Ag/GO), polyester polyol, catalysts (triethylene diamine), and distilled water were fully mixed. Followed by that, the isocyanate prepolymer was added into the mixture with vigorous stirring and poured into a steel mold for foaming and then kept post-curing for 12 h at 60 ℃.

    2. 4 Characterization

    Transmission electron microscopy (TEM) was performed on a JEM-2010 (JEOL, Japan) at 200 kV accelerating voltage.The as-prepared GO and Ag/GO was prepared by mounting a drop of the micelle solution (0.05 mL) on a copper EM grid covered with a thin film of formvar. Scanning electron microscope (SEM) (HITACHI, SU8010/ EDX, JAPAN) was employed to observe the morphologies of the nanoparticles reinforced PUF.

    The apparent density of as-prepared PUF was measured according to ISO 845. The PUFs were cut into small cubes of 1 cm3. The mass of the cubes was measured by electronic analytical balance (Mettler Toledo, MS104TS/02, China).

    The resilience of the particle reinforced PUFs was measured by ball rebound according to ISO 8307. The diameter of the iron ball was 16 mm and the dropping height was 460 mm.

    The tensile property test was performed according to ASTM D638 with a constant speed of 5 mm·min-1using a load cell of 1 kN. The results were averaged from five specimens.

    2. 5 Antibacterial test

    The turbidimetric method and inhibition zone method were used to test the antibacterial properties of AgNPs or Ag/GO reinforced PUFs. TheS. aureus(ATCC 25923) was involved in these two tests. The turbidimetric method was conducted according to ASTM D6756, the bacterial concentration was monitored by measuring the OD at 595 nm on a microplate reader (iMark, Bio-Rad Laboratories, Inc); the inhibition zone method was conducted according to ISO 20645. All the tested samples were cut into small cubes with a size of 1 cm3and then sterilized for 30 min by UV light.

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis and characterization

    As schematically illustrated in Fig. 1a, an efficient and non-toxic method was proposed to prepare Ag/GO nanoparticles. In first step, modified Hummers method was involved to prepare the GO. Since pepsin can be used as an eco-friendly reducing and stabilizing agent to prepare metal nanoparticles[42], here it was involved to coat silver nanoparticles onto the GO nano-sheets. Then the uniformly coated Ag particles, as a dissolution antibacterial agent, partially dissociated Ag+cation, which can be absorbed on the bacteria’s membrane and denature it, finally ruptured the bacterial[43].

    Captured TEM pictures (Fig. 1b) show that the few-layer graphene with high transparency was prepared after oxidation and intercalation by Hummer’s method. While after being treated by pepsin, the AgNPs was uniformly coated on the GO nano-sheets, and the diameter of the coated AgNPs was measured around 20~50 nm.

    Fig. 2. Mechanical properties of PUFs with different rates of AgNPs and Ag/GO density (a), resilience (b), tensile tests (c).(d) morphology of pure PUFs (left), 0.4% AgNPs reinforced PUFs (middle), and Ag/GO reinforced PUFs (right)

    3. 2 Mechanical properties

    The mechanical property plays an important role in materials application. To study the effect on mechanical properties of the PUFs brought by the content of reinforced particles,PUFs with the different ratios (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%) of AgNPs and Ag/GO were prepared.

    As shown in Fig. 2a, with the addition of both AgNPs and Ag/GO, the density increases, and the rate of increase accelerated with the loading of two nanoparticles increased. Among them,compared with the foams reinforced with Ag/GO, the density of PUFs reinforced with AgNPs is higher at each content.

    Fig. 2b shows the relation between nanoparticle content and PUFs’ resilience. From the picture, it can be concluded that the resilience of PUFs show a trend of rising at initial stage and then decreasing. Opposite with the density, the resilience of the foams reinforced with Ag/GO is always higher than that of AgNPs. The resilience of two nanoparticles reinforced PUFs reaches the maximum value, 40.2%(Ag/GO) and 39.5% (AgNPs), respectively.

    The tensile properties of different PUFs show a similar trend of resilience (Fig. 2c). With the addition of nanoparticles, both the tensile strength and elongation at break are increased firstly when the content of the reinforced particles is lower than 0.4%, and then decreases. As the same as the resilience properties, the PUF reinforced by Ag/GO is always stronger than that of AgNPs at each content. The maximum value of tensile strength and corresponding elongation at the break of AgGO and AgNPs reinforced nanocomposites are 40.25 MPa/778.1% and 39.52 MPa/730.5%, respectively.

    To further study the mechanism of the mechanical property improvement brought by the AgNPs and Ag/GO, the SEM images of pure PUF, PUFs containing 0.4% AgNPs and Ag/GO were captured and presented in Fig. 2d. For pure PUF,the cellular structure is larger compared with nanoparticles reinforced PUFs. For the AgNPs reinforced PUF, the cellular is smaller but more concentrated, and the size is uneven. For the PUFs containing 0.4% Ag/GO, the cellular structure is uniform, and each pore is connected. The added nanoparticles provide active sites when the polyurethane is reacting and forming[44]. Such active sites make PUFs easier to foam,leading to a smaller cellular generation in PUFs. However,due to the agglomeration of AgNPs, the foams of PUFs nanocomposites are concentrated, while the Ag/GO is easier to disperse, resulting in a more uniform structure along with a significant improvement of mechanical properties.

    3. 3 Antibacterial test

    To evaluate the antibacterial properties of two nanoparticles reinforced PUFs, the turbidimetric method and inhibition zone method were involved here.

    The PUFs reinforced with two different weight ratios of nanoparticles was tested by turbidimetric method, and corresponding results are shown in Fig. 3a. With the increase of antibacterial nanoparticles, the bacteriostasis rate is constantly increasing, but the increasing speed is slowing down.Thanks to the well-dispersed Ag/GO, PUFs containing Ag/GO exhibit a better antibacterial ability, no matter what the weight ratio of Ag/GO is.

    The inhibition zone method can display the antibacterial ability more intuitively. Here, the PUFs contents 0.4% AgNPs and Ag/GO were involved in this test (Fig. 3b). From the picture, it can be seen that the foam containing Ag/GO has a larger inhibition zone compared with that with AgNPs, which demonstrated that Ag/GO is a more effective antibacterial agent for PUFs than AgNPs.

    Fig. 3. (a) Bacteriostasis rate of PUFs with different rates of AgNPs and Ag/GO tested by the turbidimetric method.(b) Bacteriostasis rate of PUFs with AgNPs (left) and Ag/GO (right) at a content of 0.4% by the inhibition zone method

    4 CONCLUSION

    In summary, a facile and non-toxic method to prepared Ag/GO nanoparticles was presented in this paper. Compared with traditional antibacterial nanoparticles, Ag/GO nanoparticles can be dispersed more homogeneously in PUFs. By comparison with AgNPs, the as-prepared Ag/GO nanoparticles modified PUFs have a 1.85% improvement in resilience,7.9% improvement in tensile strength, 6.52% improvement in tensile elongation at break, and 8.74% in bacteriostats rate, at a concentration of 0.4%. These promising results provide a facile and environmentally friendly way to prepare functionalized polyurethane foams, which have high academic and application value.

    97超视频在线观看视频| 中文资源天堂在线| 久久这里只有精品19| 淫秽高清视频在线观看| 亚洲专区中文字幕在线| 亚洲 欧美一区二区三区| 成人鲁丝片一二三区免费| 免费人成视频x8x8入口观看| 一二三四社区在线视频社区8| 他把我摸到了高潮在线观看| 亚洲真实伦在线观看| 中文字幕av在线有码专区| 免费在线观看成人毛片| 一级作爱视频免费观看| 狠狠狠狠99中文字幕| 性色av乱码一区二区三区2| 亚洲av熟女| 亚洲aⅴ乱码一区二区在线播放| 又大又爽又粗| 亚洲国产中文字幕在线视频| 国产亚洲精品一区二区www| 不卡一级毛片| 国产成人精品久久二区二区免费| 99国产极品粉嫩在线观看| 国产私拍福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 免费看美女性在线毛片视频| 亚洲av熟女| 亚洲无线在线观看| 视频区欧美日本亚洲| 丰满人妻一区二区三区视频av | 观看美女的网站| 五月玫瑰六月丁香| 在线视频色国产色| 精品一区二区三区视频在线观看免费| 国产精品永久免费网站| 欧美中文日本在线观看视频| 久久性视频一级片| 欧美日韩乱码在线| 99国产综合亚洲精品| 91麻豆精品激情在线观看国产| 日韩 欧美 亚洲 中文字幕| 亚洲成人中文字幕在线播放| 丰满人妻一区二区三区视频av | 99精品欧美一区二区三区四区| 深夜精品福利| 国产成年人精品一区二区| 国产伦精品一区二区三区视频9 | 又紧又爽又黄一区二区| 亚洲国产高清在线一区二区三| 97碰自拍视频| 亚洲狠狠婷婷综合久久图片| 亚洲成a人片在线一区二区| 日日摸夜夜添夜夜添小说| 曰老女人黄片| 欧美一区二区精品小视频在线| 一级a爱片免费观看的视频| 日本免费一区二区三区高清不卡| 色哟哟哟哟哟哟| 12—13女人毛片做爰片一| 日韩欧美精品v在线| 国产免费av片在线观看野外av| 久久久久久久午夜电影| 18美女黄网站色大片免费观看| 久久九九热精品免费| 免费无遮挡裸体视频| 欧美日韩国产亚洲二区| 亚洲无线观看免费| 无限看片的www在线观看| 网址你懂的国产日韩在线| 亚洲欧美精品综合一区二区三区| 黄色 视频免费看| 亚洲真实伦在线观看| 亚洲av美国av| 国产成人福利小说| 久久精品影院6| 男女床上黄色一级片免费看| 亚洲精品美女久久久久99蜜臀| 日本免费a在线| 成人无遮挡网站| 精品一区二区三区四区五区乱码| 欧美极品一区二区三区四区| 精品久久久久久久久久免费视频| 在线观看舔阴道视频| av福利片在线观看| 国内少妇人妻偷人精品xxx网站 | 国产成人影院久久av| xxx96com| 国产精品久久久久久亚洲av鲁大| 国产成人精品无人区| 成人三级做爰电影| 人人妻人人看人人澡| 亚洲 欧美 日韩 在线 免费| 久久久久久九九精品二区国产| 久久久久国产一级毛片高清牌| 久久久国产成人免费| 女警被强在线播放| av女优亚洲男人天堂 | 久久久久久人人人人人| 国产私拍福利视频在线观看| 69av精品久久久久久| 97超级碰碰碰精品色视频在线观看| 国产 一区 欧美 日韩| 免费看光身美女| 91字幕亚洲| 91麻豆精品激情在线观看国产| 日本精品一区二区三区蜜桃| 精品乱码久久久久久99久播| 精品久久久久久久毛片微露脸| 性色avwww在线观看| 99在线视频只有这里精品首页| 久久久久性生活片| 18禁黄网站禁片午夜丰满| 欧美极品一区二区三区四区| 联通29元200g的流量卡| 国产高清不卡午夜福利| 人人妻人人澡欧美一区二区| 99久久精品热视频| 淫秽高清视频在线观看| 一边摸一边抽搐一进一小说| 久久99热6这里只有精品| 一级av片app| 啦啦啦啦在线视频资源| 日本免费a在线| a级毛片免费高清观看在线播放| 日本免费a在线| 亚洲av免费高清在线观看| 男女国产视频网站| 欧美高清性xxxxhd video| 国产单亲对白刺激| 性色avwww在线观看| 午夜福利在线观看吧| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频| av视频在线观看入口| 亚洲精华国产精华液的使用体验| 一级毛片电影观看 | 如何舔出高潮| 少妇熟女欧美另类| 国产片特级美女逼逼视频| 国产精品久久电影中文字幕| 亚洲av中文av极速乱| 美女xxoo啪啪120秒动态图| 99久久精品国产国产毛片| 老司机福利观看| 小说图片视频综合网站| 特大巨黑吊av在线直播| 毛片女人毛片| 欧美xxxx黑人xx丫x性爽| 国产午夜精品久久久久久一区二区三区| 日本黄大片高清| 最近中文字幕2019免费版| 午夜福利高清视频| 亚洲伊人久久精品综合 | 日本猛色少妇xxxxx猛交久久| 我要搜黄色片| 乱码一卡2卡4卡精品| 99热精品在线国产| 永久免费av网站大全| 国产私拍福利视频在线观看| 亚洲国产色片| videos熟女内射| 国产午夜精品论理片| 热99在线观看视频| 精品久久国产蜜桃| 偷拍熟女少妇极品色| 日韩av在线免费看完整版不卡| 能在线免费看毛片的网站| 男女边吃奶边做爰视频| 亚洲内射少妇av| 国产国拍精品亚洲av在线观看| 免费av毛片视频| 国产成年人精品一区二区| 九九在线视频观看精品| 国产午夜福利久久久久久| 日韩精品青青久久久久久| 久久国产乱子免费精品| 国产精品爽爽va在线观看网站| 美女cb高潮喷水在线观看| 国产精品伦人一区二区| 99久久人妻综合| 青春草国产在线视频| 18+在线观看网站| av天堂中文字幕网| 免费看a级黄色片| 欧美又色又爽又黄视频| 久久这里只有精品中国| 最新中文字幕久久久久| 亚洲乱码一区二区免费版| 免费av观看视频| 夜夜爽夜夜爽视频| 伦精品一区二区三区| 国产日韩欧美在线精品| 精品久久久久久久久久久久久| 午夜激情欧美在线| 久久国内精品自在自线图片| 岛国在线免费视频观看| 久久久久久大精品| 亚洲av.av天堂| 97在线视频观看| 日本wwww免费看| 黄片无遮挡物在线观看| 中文字幕av成人在线电影| 国产免费男女视频| 禁无遮挡网站| 97热精品久久久久久| a级毛片免费高清观看在线播放| 亚洲精品日韩av片在线观看| 久久精品91蜜桃| 国产 一区精品| 久久99精品国语久久久| 小说图片视频综合网站| 日日摸夜夜添夜夜添av毛片| 国产一区有黄有色的免费视频 | 国产精品久久久久久久电影| 色5月婷婷丁香| 国内精品一区二区在线观看| av专区在线播放| 亚洲三级黄色毛片| 国产69精品久久久久777片| 秋霞在线观看毛片| 特大巨黑吊av在线直播| 国产乱来视频区| 免费黄色在线免费观看| 99久久精品国产国产毛片| 男人和女人高潮做爰伦理| 久久精品久久精品一区二区三区| 亚洲国产欧洲综合997久久,| 亚洲av成人精品一二三区| 日韩人妻高清精品专区| 美女被艹到高潮喷水动态| 女的被弄到高潮叫床怎么办| 国产精品一区www在线观看| 欧美xxxx性猛交bbbb| 看黄色毛片网站| 精品久久久噜噜| 亚洲欧美成人精品一区二区| 亚洲国产精品合色在线| 日韩av在线免费看完整版不卡| 2022亚洲国产成人精品| 国产成人91sexporn| 美女cb高潮喷水在线观看| 国产乱来视频区| 久久精品国产亚洲av涩爱| 久久久久国产网址| 亚洲欧美成人精品一区二区| 午夜精品一区二区三区免费看| 联通29元200g的流量卡| 成人美女网站在线观看视频| 欧美另类亚洲清纯唯美| 国产在线一区二区三区精 | 大又大粗又爽又黄少妇毛片口| 国产亚洲精品av在线| 国产av码专区亚洲av| 亚洲精品久久久久久婷婷小说 | 色播亚洲综合网| 久久人人爽人人片av| av线在线观看网站| 免费一级毛片在线播放高清视频| 日韩国内少妇激情av| 精品熟女少妇av免费看| 久久99蜜桃精品久久| 亚洲av福利一区| 一二三四中文在线观看免费高清| 国产精品久久久久久久久免| 成人午夜精彩视频在线观看| 人妻夜夜爽99麻豆av| 亚洲国产欧洲综合997久久,| 女人十人毛片免费观看3o分钟| 免费观看人在逋| 噜噜噜噜噜久久久久久91| 亚洲av一区综合| 国产淫片久久久久久久久| 国产久久久一区二区三区| 三级男女做爰猛烈吃奶摸视频| 久久99蜜桃精品久久| 亚洲欧洲日产国产| 大香蕉97超碰在线| 国产探花在线观看一区二区| 久久精品91蜜桃| 搡女人真爽免费视频火全软件| 国产精品女同一区二区软件| 激情 狠狠 欧美| 久久久精品94久久精品| 国产高清国产精品国产三级 | 最近2019中文字幕mv第一页| 亚洲四区av| 国产老妇伦熟女老妇高清| 日韩av在线大香蕉| 精品午夜福利在线看| 亚洲综合色惰| 国产真实伦视频高清在线观看| 国产爱豆传媒在线观看| 亚洲av二区三区四区| 亚洲久久久久久中文字幕| 69av精品久久久久久| 国产黄色小视频在线观看| 免费黄色在线免费观看| 性色avwww在线观看| 久久久久网色| 99久国产av精品国产电影| 国产亚洲精品久久久com| 99在线视频只有这里精品首页| 国产在线一区二区三区精 | 免费看av在线观看网站| 国产午夜精品一二区理论片| 午夜久久久久精精品| 国产探花在线观看一区二区| 午夜精品一区二区三区免费看| 中文字幕av在线有码专区| 欧美高清成人免费视频www| 国产色婷婷99| 国产 一区 欧美 日韩| 国产 一区 欧美 日韩| 久久久a久久爽久久v久久| 国产又黄又爽又无遮挡在线| 又黄又爽又刺激的免费视频.| 亚洲av成人精品一区久久| 国产探花在线观看一区二区| 日本黄色视频三级网站网址| 精品一区二区免费观看| 色吧在线观看| 精品午夜福利在线看| 久久久精品欧美日韩精品| 听说在线观看完整版免费高清| 亚洲婷婷狠狠爱综合网| 毛片女人毛片| 老司机影院成人| 免费在线观看成人毛片| 最近的中文字幕免费完整| 青春草国产在线视频| 亚洲av电影不卡..在线观看| 在线免费观看的www视频| 狂野欧美激情性xxxx在线观看| 91在线精品国自产拍蜜月| 精品久久久久久久末码| 国产老妇伦熟女老妇高清| 简卡轻食公司| 三级毛片av免费| 尤物成人国产欧美一区二区三区| 内地一区二区视频在线| 高清在线视频一区二区三区 | 午夜精品在线福利| 99久久精品国产国产毛片| 国产亚洲精品久久久com| 日韩亚洲欧美综合| 午夜激情福利司机影院| 别揉我奶头 嗯啊视频| 亚洲,欧美,日韩| 人体艺术视频欧美日本| 欧美又色又爽又黄视频| 久久99热这里只有精品18| 一级毛片电影观看 | 国产一区二区亚洲精品在线观看| 爱豆传媒免费全集在线观看| 听说在线观看完整版免费高清| 欧美成人一区二区免费高清观看| 熟女人妻精品中文字幕| 久热久热在线精品观看| av在线老鸭窝| 久久精品91蜜桃| av在线观看视频网站免费| 国内揄拍国产精品人妻在线| 中文精品一卡2卡3卡4更新| 亚洲av电影在线观看一区二区三区 | av福利片在线观看| 亚洲精品乱码久久久久久按摩| 亚洲美女视频黄频| 狂野欧美激情性xxxx在线观看| 欧美xxxx黑人xx丫x性爽| 简卡轻食公司| 亚洲美女搞黄在线观看| 麻豆一二三区av精品| 不卡视频在线观看欧美| 国产毛片a区久久久久| 国产熟女欧美一区二区| 国产成人免费观看mmmm| 黑人高潮一二区| 久久久精品94久久精品| 18禁在线无遮挡免费观看视频| 国产片特级美女逼逼视频| 黄色欧美视频在线观看| 欧美日本视频| 一级黄色大片毛片| 午夜日本视频在线| 国产亚洲最大av| 国产精品久久久久久av不卡| 1024手机看黄色片| 亚洲不卡免费看| 欧美最新免费一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲美女视频黄频| 欧美一区二区国产精品久久精品| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| videos熟女内射| 看黄色毛片网站| .国产精品久久| 国产av在哪里看| 色吧在线观看| 最近中文字幕高清免费大全6| 国语对白做爰xxxⅹ性视频网站| 青春草国产在线视频| 国产日韩欧美在线精品| 伦精品一区二区三区| 亚洲中文字幕日韩| 日本午夜av视频| 国产一区二区亚洲精品在线观看| 青青草视频在线视频观看| 亚洲成人久久爱视频| 中文字幕制服av| 一级毛片aaaaaa免费看小| 亚洲最大成人中文| 日本黄大片高清| 久久这里只有精品中国| 中国国产av一级| 好男人在线观看高清免费视频| 国产乱人偷精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品aⅴ在线观看| 亚洲国产精品专区欧美| 免费观看性生交大片5| 国产乱来视频区| 青春草视频在线免费观看| 成年版毛片免费区| 国产午夜精品久久久久久一区二区三区| 国产高清视频在线观看网站| 一个人观看的视频www高清免费观看| 国产69精品久久久久777片| a级一级毛片免费在线观看| 免费黄网站久久成人精品| 久久久久久久亚洲中文字幕| 国产高清不卡午夜福利| 国产三级在线视频| 久久久久久国产a免费观看| 一区二区三区乱码不卡18| 欧美丝袜亚洲另类| 99热这里只有是精品50| 不卡视频在线观看欧美| 自拍偷自拍亚洲精品老妇| 欧美精品国产亚洲| 国内精品宾馆在线| 国产精品一二三区在线看| 国产精品久久久久久久久免| 国产午夜精品一二区理论片| 久久久久免费精品人妻一区二区| 你懂的网址亚洲精品在线观看 | 热99在线观看视频| 青春草亚洲视频在线观看| 欧美色视频一区免费| 成人av在线播放网站| 蜜桃久久精品国产亚洲av| 不卡视频在线观看欧美| 日韩av在线免费看完整版不卡| 欧美精品国产亚洲| 禁无遮挡网站| 国产亚洲av片在线观看秒播厂 | 国产精品日韩av在线免费观看| 免费观看的影片在线观看| 精品久久久久久久久久久久久| 高清视频免费观看一区二区 | 嘟嘟电影网在线观看| 国产老妇女一区| 搡女人真爽免费视频火全软件| av视频在线观看入口| 少妇熟女欧美另类| 中文字幕久久专区| 日本免费在线观看一区| 亚洲综合色惰| 69av精品久久久久久| 老司机福利观看| 成人高潮视频无遮挡免费网站| 日韩精品青青久久久久久| 变态另类丝袜制服| av国产久精品久网站免费入址| 亚洲国产成人一精品久久久| 中文字幕av在线有码专区| 色网站视频免费| 国产私拍福利视频在线观看| 久久韩国三级中文字幕| 日本黄色片子视频| 伦精品一区二区三区| av免费观看日本| 爱豆传媒免费全集在线观看| 99国产精品一区二区蜜桃av| 亚洲欧美精品综合久久99| 久久久久国产网址| 国产午夜精品久久久久久一区二区三区| 男女国产视频网站| 三级国产精品片| 精品少妇黑人巨大在线播放 | 国产精品久久久久久精品电影| 免费搜索国产男女视频| 午夜免费男女啪啪视频观看| 两个人的视频大全免费| 久久久久久国产a免费观看| 国产中年淑女户外野战色| 国产成人一区二区在线| 亚洲欧美日韩无卡精品| 两个人视频免费观看高清| 婷婷色av中文字幕| 国产精品1区2区在线观看.| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久久亚洲| 97在线视频观看| 午夜激情福利司机影院| 特级一级黄色大片| 少妇人妻一区二区三区视频| 成人特级av手机在线观看| 日韩 亚洲 欧美在线| .国产精品久久| 黑人高潮一二区| 国产精品美女特级片免费视频播放器| 啦啦啦韩国在线观看视频| 国产乱人视频| 青青草视频在线视频观看| 色视频www国产| 欧美激情久久久久久爽电影| 国产极品天堂在线| 一级二级三级毛片免费看| 中文字幕精品亚洲无线码一区| 亚洲,欧美,日韩| 亚洲欧洲国产日韩| 日韩高清综合在线| 联通29元200g的流量卡| 午夜福利在线观看免费完整高清在| 国产精品久久久久久精品电影| 成人鲁丝片一二三区免费| 久久精品国产亚洲av涩爱| 深夜a级毛片| 日韩av在线大香蕉| 国产精品麻豆人妻色哟哟久久 | 午夜老司机福利剧场| 国产成人freesex在线| 国产精品av视频在线免费观看| 美女内射精品一级片tv| 亚洲人成网站高清观看| 国产精品一区二区性色av| 欧美性感艳星| 久久这里有精品视频免费| 亚洲欧美精品专区久久| 99久久无色码亚洲精品果冻| 一级爰片在线观看| 永久免费av网站大全| 七月丁香在线播放| 国产淫片久久久久久久久| 特级一级黄色大片| 色综合亚洲欧美另类图片| 青春草亚洲视频在线观看| 欧美成人精品欧美一级黄| 欧美最新免费一区二区三区| 我的女老师完整版在线观看| 久热久热在线精品观看| 国产av码专区亚洲av| 色综合站精品国产| 色视频www国产| 成年版毛片免费区| 亚洲国产欧洲综合997久久,| 高清在线视频一区二区三区 | 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| 国产高清国产精品国产三级 | 国产伦在线观看视频一区| 色综合亚洲欧美另类图片| 国产精品熟女久久久久浪| 亚洲国产成人一精品久久久| 日本与韩国留学比较| 嫩草影院入口| 一级爰片在线观看| av在线观看视频网站免费| 2021少妇久久久久久久久久久| 秋霞伦理黄片| 日本与韩国留学比较| 成人午夜高清在线视频| 亚洲久久久久久中文字幕| 少妇人妻一区二区三区视频| 2021少妇久久久久久久久久久| 色5月婷婷丁香| 久久婷婷人人爽人人干人人爱| 在现免费观看毛片| 中文资源天堂在线| 免费电影在线观看免费观看| 欧美xxxx性猛交bbbb| 纵有疾风起免费观看全集完整版 | 日韩高清综合在线| 大又大粗又爽又黄少妇毛片口| 日韩中字成人| 精品一区二区三区视频在线| 欧美97在线视频| 又粗又硬又长又爽又黄的视频| 久久久久性生活片| 免费无遮挡裸体视频| 亚洲国产欧美人成| 成人亚洲精品av一区二区| 两个人的视频大全免费| 青青草视频在线视频观看| 又黄又爽又刺激的免费视频.| 又粗又爽又猛毛片免费看| 97热精品久久久久久| 欧美日韩国产亚洲二区| eeuss影院久久| 国产精品久久电影中文字幕| 午夜日本视频在线| 亚洲综合精品二区| 欧美潮喷喷水| 国产成人福利小说| 亚洲欧美精品综合久久99| 久久精品人妻少妇| 国产亚洲一区二区精品| 亚洲精品成人久久久久久| 免费黄网站久久成人精品| 国产精品一及| 国产成人精品一,二区| 日本猛色少妇xxxxx猛交久久| 国产成人午夜福利电影在线观看|